

# Theoretical Simulation of Resonant Inelastic X-Ray scattering in Transition Metal Oxides



Siobhán Grayson

# Introduction

**Resonant inelastic x-ray scattering** (RIXS) belongs to a family of experimental techniques known as spectroscopy which are useful for studying valence electron states (VES).

RIXS is a second-order optical process, where first a core electron is excited by an incident x-ray photon. This is known as **x-ray absorption spectroscopy** (XAS).



| 10 Dq 0.0 0.0<br>Dt 0 0                                                                                  | Delta         0         2.0         T(eg)           Udd         0         1.0         T(t2g)                                                                                                                                                                                                            | <ul> <li>Energy range (eV)</li> <li>Suppress sticks</li> <li>Normalize</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                          | Delta 0 2.0 T(eg)                                                                                                                                                                                                                                                                                       | Energy range (eV) 0 - 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Initial state Final state                                                                                | CT 2.0 1(eg)                                                                                                                                                                                                                                                                                            | Temperature, K 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Crystal field parameters (eV)                                                                            | Charge transfer parameters (eV)                                                                                                                                                                                                                                                                         | broadening 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Slater integral<br>reduction (%) 1.0 1.0 1.0<br>Fdd Fpd Gpd                                              | SO coupling<br>reduction (%) 1.0 1.0<br>Core Valence                                                                                                                                                                                                                                                    | Lorentzian<br>broadening 0.2 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Final state 2P05 3D01<br>Initial state                                                                   | <ul> <li>3d (○ 2s)</li> <li>4d (○ 3s)</li> <li>5d</li> <li>1s</li> </ul>                                                                                                                                                                                                                                | Spectrum XAS • i X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Configuration and spectroscopy     Electronic     configuration     Ti4+     Initial state     2P06 3D00 | XAS       XPS       XES       RIXS            • 2p       2p       1s2p       2p3d            • 3p       3p       1s3p       3p3d            • 4p       1s       1s2p                                                                                                                                    | Plotting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Calculate Plot Fit Bundle Repo                                                                           | ort Help                                                                                                                                                                                                                                                                                                | Diattina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                          | Calculate Plot Fit Bundle Rep<br>Configuration and spectroscopy<br>Electronic<br>configuration Ti4+<br>Initial state 2P06 3D00<br>Final state 2P05 3D01<br>Initial state 2P05 3D01<br>Initial state 5<br>Slater integral 1.0 1.0 1.0<br>Final state 6<br>Crystal field parameters (eV)<br>Symmetry Oh T | Calculate       Plot       Fit       Bundle       Report       Help         Configuration and spectroscopy       Electronic configuration       Ti4+       Image: Configuration       XAS       XPS       XES       RIXS         Initial state       2P06       3D00       Image: Configuration       Ti4+       Image: Configuration       XAS       XPS       XES       RIXS         Initial state       2P06       3D00       Image: Configuration       Ti4+       Image: Configuration       Image: Configuration | Calculate       Plot Fit Bundle       Report       Help         Configuration and spectroscopy       Electronic       Ti4+       Image: Configuration       Ti4+       Image: Configuration       Plotting         Initial state       2P0       2p       2p       2p3d       Plotting         Initial state       2P0       3p       3p3d       4p       1s2p       3p3d         Initial state       2P0       3s       1s2p       3p3d       -       -         Initial state       3d       2s       1s3p       3p3d       -       -         Initial state       5d       1s       -       -       -       -         Slater integral       1.0       1.0       SO coupling       1.0       1.0       -       -         Crystal field parameters (eV)       Charge transfer parameters (eV)       Cree       Valence       -       -         Symmetry       Oh       CT       2.0       T(eg)       Temperature, K       - |

# Method

Simulations were carried out using software called

### CTM4XAS

which combined a number of programs to compute the different step required to simulate XAS and RIXS spectra.



### $\varepsilon_c$ $\varepsilon_c$ $\varepsilon_c$

This is followed by the excited state decaying by emitting an x-ray photon to fill the core hole.

This project aims to simulate XAS and RIX spectra for  $TiO_2$  with and without defects. Understanding the properties of defects in  $TiO_2$  may hold the key for advancing in certain technologies.

### Theory

In TiO<sub>2</sub> XAS, a 2p core hole is created. Thus, the final state contains a partly filled core state ( $2p^5$ ) and a partly filled valence state ( $3d^1$ ).



A strong overlap between the 2p-hole and 3d-hole radial wave functions split the XAS final states. These final states created through splitting are known as atomic multiplets.

For simulations in this project, atomic multiplets were calculated first using a quantum mechanical description, where only the interactions within the absorbing atom are considered.

#### **Octahedral Symmetry:**



### **Tetragonal Symmetry:**



Crystal field parameters 10Dq, Ds, and Dt are then incorporated to describe the breaking of degeneracy's of electronic orbital states due to a static electric field produced by a surrounding charge distribution.

Two types of symmetries were imposed by the crystal field parameters. The first was octahedral symmetry ( $O_h$ ) and the second was the more distorted tetragonal symmetry ( $D_{4h}$ ).

 $O_h$  symmetry is cubic in shape, however, as can be seen in the unit cell of TiO<sub>2</sub>, there is a stretching along the lattice vector indicated by the yellow line.  $D_{4h}$  symmetry allows one to describe this shape better.



Finally, charge transfer effects, which describe the effects of charge fluctuations in the initial and final states are taken into consideration. This allows the use of more than one configuration so that ligand bonds can be accounted for [3].  $\Delta$  below is the charge transfer energy.





#### **RIXS:**



Each graph contains the theoretical spectra calculated using the CTM4XAS program compared against the equivalent experimental spectra that one is modelling [2].

### Conclusions

As one can see, although simulated XAS spectra for  $Ti^{4+}$  compare well against experimental data, there appears to be little correlation between parameters used for  $Ti^{4+}$  and  $Ti^{3+}$ . Therefore, this is not an ideal approach to model sputtered  $TiO_2$ .

In the case of RIXS, the entire process can be considered as a set of atomic transitions from a ground state  $|g\rangle$  to an intermediate state  $|i\rangle$  to a final state  $|f\rangle$  of energies  $E_g$ ,  $E_i$ , and  $E_f$  respectively. The scattering cross section can then found by the Kramers-Heisenberg equation:

$$\sigma(\Omega,\omega) \propto \sum_{j} \left[ \sum_{i} \frac{\langle j|T|i\rangle \langle i|T|g\rangle}{E_g + \Omega - E_i - i\Gamma_i} \right]^2 \times \delta(E_g + \Omega - E_j - \omega)$$

*T* represents the radiative transition and  $\Gamma_i$  is the broadening due to the intermediate state core-hole lifetime [1].

RIXS simulations were able to model experimental data to a certain degree, however, they could be improved upon by a using a lower symmetry crystal field such as  $C_{4v}$ .

# Acknowledgements

I would like to express my thanks and sincere gratitude to my supervisor Dr. Cormac McGuinness, Declan Cockburn, Martin Duignan, Stephan Callaghan and the Physics Department of Trinity College Dublin.

#### **Refrences:**

[1] Akio Kotani and Shik Shin "Resonant Inelastic X-Ray Scattering Spectra for Electrons in Solids", Rev. Mod. Phys. 73, (2001), pp. 203-342.
[2] E. Stavitski and F.M.F. De Groot, "The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal *L*-edges", Micron 41, (2010), pp. 687-694.