
Metasearch Engine

Siobhán Grayson

12254530

MSc. Computer Science

School of Computer Science and Informatics

University College Dublin

July 2013

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 1

2 Functional Requirements 2

2.1 Complex Search Ability . 2

2.2 Web-Based User Interface . 2

2.3 Results Display . 3

2.3.1 Non-Aggregated . 3

2.3.2 Aggregated . 3

2.4 Evaluation . 3

2.5 Clustering . 4

2.6 Query Re-Write Functionality . 4

2.7 User Evaluation Survey . 5

3 Implementation 6

3.1 User Interface . 7

3.2 Sending the Query and Collecting Results 9

3.2.1 Complex Search Ability . 10

3.3 Aggregation . 10

3.4 Query Rewrite . 12

3.5 Clustering . 14

3.5.1 Tokenisation . 14

3.5.2 TF-IDF . 14

3.5.3 K-Means Clustering . 16

4 Technologies Used 18

4.1 Languages Used . 18

4.2 Software Used . 19

5 Problems Encountered 20

i

Contents

6 Evaluation Details 22

6.1 MAP . 22

6.2 F-Measure . 23

6.3 User Evaluation Survey . 24

7 Conclusion and Future Work 27

Bibliography 27

ii

Chapter 1

Introduction

1.1 Overview

The purpose of this project was to create a working meta-search engine, that took in a

user’s query, retrieved results from Google, Bing, and Blekko, and displayed a maximum

of 100 results either aggregated, non-aggregated, or clustered.

1.2 Motivation

The purpose of designing a meta-search engine is to create a an engine that combines

the results of three engines to create a better list of results. It allows users to enter a

query once and search multiple engines simultaneously. It aims to improve on individual

search engines by utilising the fact that the web is too large for any one search engine to

fully crawl, so a combination of results should provide a more comprehensive results list.

Another advantage is that they don’t need to build up a physical database of documents.

1

Chapter 2

Functional Requirements

2.1 Complex Search Ability

Meta supports both boolean AND, and NOT searches completely, along with standard

basic keyword search ability. No matter what option the user has selected they are able to

use AND and NOT to help retrieve the required results. However, OR is not completely

supported by this engine. Unfortunately, although Google and Bing both support the OR

operator and return the desire results, Blekko does not. Blekko Help states that “There

is no way to express an OR with blekko; use multiple searches instead.” [1]. As such, OR

boolean queries requiring aggregated results may return non OR results from Blekko. For

non-aggregated results, The OR query can be seen to return the desired documents from

Google and Bine, but not Blekko.

2.2 Web-Based User Interface

The web-based user interface has been designed with easy of use in mind. Keeping the

engine simple and uncluttered was deemed vitally important in enhancing the user’s ex-

perience. The search bar is placed centrally on the page. Each of the nine radio option

buttons is labelled, and the options that a user can select kept to a minimum. This elim-

inates any sort of learning curve a user must overcome to use the engine at it’s best. As

providing a user with too many options may be overwhelming at times resulting in the

user giving up altogether and selecting a different engine to use. As such, the amount of

words returned for query re-write was kept to a maximum of 5. Results were displayed

on the same page for non-aggregated results and clustered results. This allowed the user

to avoid switching between multiple tabs or buttons every few seconds to compare each

list.

The structure and layout of the interface is designed using HTML, while CSS provide

2

2.3. Results Display Chapter 2. Functional Requirements

the colour scheme and design. A lime green, light-grey, and white colour scheme being

the predominate them. Links are coloured in a cyan blue, whilst visited links are coloured

purple. In keeping with the simplicity theme of the engine’s design, a minimal font style

was selected from Google Fonts API. Through out the whole course of using the engine,

the user should feel as though they have not changed page and nor should they feel the

need to change page or have axillary pages involved.

2.3 Results Display

As apart of this engine’s basic functionality, the user can select whether results are dis-

played aggregated or non-aggregated, for each search they commit. These options are

displayed beneath the search text box. Only one of these options can be selected at time.

2.3.1 Non-Aggregated

Non-aggregated results are returned from each engine separately, and displayed in their

original rankings. All three results lists are displayed at the same time, side-by-side,

within the results page. Allowing the user to conveniently choose and compare the results

from three different engines all at once.

2.3.2 Aggregated

Aggregated results, combine the results from all three underlying search engines, Google,

Bing, and Blekko, and displays the most relevant results first. Result rankings in the list

are determined using scores computed by Reciprocal Rank Fusion (RRF). An advantage

of using this method is that it does not require relevance scores, unlike combSUM and

combMNZ [2]. As well as this, RRF requires no special voting algorithm or global infor-

mation [3]. Unlike Borda Fusion which uses positional algorithms, and Condorcet Fusion

which uses majoritarian algorithms [4].

2.4 Evaluation

The performance of the meta-search engine was evaluated using a variety of Information

Retrieval evaluation metrics. PHP scripts were especially constructed for the retrieval of

search engine results to be used within the evaluation metrics. Using a static collection

of 50 queries provided on the UCD CSI Moodle website, 100 results were returned for

each of these queries under aggregated and non-aggregated conditions. These results were

then stored in a text file where another specially designed PHP script extracted them and

compared them to a second text file of results. This second text file of results being the

3

2.5. Clustering Chapter 2. Functional Requirements

‘Gold Standard’ of results. In other words, if the engine returned the perfect set of results

for a query, it would be them. The resulting MAP, Precision@10, Precision, Recall, and

F-measures scores were then computed using further self-coded PHP scripts. Statistical

analysis of these metrics were then conducted using paired T-tests in Microsoft Excel.

2.5 Clustering

The center radio option beneath the search text box is clustering. When the user selects

for results to be clustered, aggregated results are displayed to the user divided into four

groups, called clusters, instead of on combined list. Each cluster contains documents that

are similar to each other. The advantage of this being that one needs only read through

which ever list of results is most relevant to them. Without have to go through one long

list returned results, many of which could be irrelevant.

2.6 Query Re-Write Functionality

A second additional feature that is incorporated into the meta-search engine is query re-

write. Located to the left of the search text box, it is titled ‘Suggest Words’ so as to be

a clear as possible as to the function it provides. Two options are available, on, and off.

Whilst off, no query re-writing takes place upon the user’s submitted query, apart from

the boolean filter applied to queries going to Google and Blekko.

When ‘On’ is selected, the user’s query is re-written using tokenisation and stop-word

removal, the final product being condensed into a single word which is sent to a thesaurus

engine [5] as outlined in Chapter 3, Section 3.4. A maximum of five ‘suggested words’ will

then appear beneath the search text box along with the results of the the original query.

The user can then decide to either select one of the suggested words and re-submit their

query. Or they may dismiss the words entirely and enter a new query within the search

box.

This, however, does not the affect the query that has been sent to each of the search

engines to retrieve results, where only a boolean filter is applied. It was not deemed

necessary to apply a query re-write operation upon the query being sent to the search en-

gines, as each of the underlying engines themselves appear to incorporate a certain level

of query re-write functionality already with regards to stop-word removal and relevant

words etc.

4

2.7. User Evaluation Survey Chapter 2. Functional Requirements

2.7 User Evaluation Survey

There are two parts to a search engine’s user experience: the user interface, consisting of

the design of the search form and results pages. The second part being it’s functionality,

how well it finds and sorts relevant results. To find out how satisfied an end user is with

the overall meta experience, a survey was designed and linked to within the footer of

the index and result pages. Peers and colleagues were then linked to the engine itself

and encouraged to test and offer their feedback through submitting a complete survey.

The survey itself was built using a third party website called ‘Survey Monkey’ which also

collected and displayed all the results for easy analysis [6]. The questions used for the

user evaluation survey, as well as the results, can be found in Chapter 6, Section 6.4, of

this report.

5

Chapter 3

Implementation

An outline of the entire meta-search system implemented is depicted in the system archi-

tecture diagram of Figure 3.1 below.

Figure 3.1: System Architecture Diagram.

6

3.1. User Interface Chapter 3. Implementation

3.1 User Interface

The first part of the meta-search engine that was constructed was the form used to enter

and post queries. This form was created using a combination of PHP, HTML, and CSS.

It is apart of the index.php page, which links to meta2.css where the overall design of

the site is defined. It consists of a search text box, search button, and nine radio option

buttons for auxiliary search features. The search text box being the area where the user

enters their query and submits the entire form using the ‘Search’ button.

The first two radio buttons are to turn on/off the query rewrite functionality, located

to the left of the screen. By default it is checked to be off. The next three radio buttons

allow the user to decide whether they would like results returned as aggregated, clustered,

or non-aggregated. Aggregated is selected by default and the user cannot select more than

one of these options at a time. They are located under the search text box, in the center of

the screen. The final four radio buttons are used to allow the user to specify the number

of results they would like returned. The options being 10, 20, 50, or 100, with 10 selected

by default.

Figure 3.2: The user interface of the meta-search form.

One then needed a way to display the returned results. In this instance, the results.php

page is used. On this page the php function file get contents() was used as follows:

$contents = file get contents(’index.php’);

This function reads the contents of a file into a string [7]. Thus, since the entire contents

of index.php is read into this string, the function str replace() can be used to replaced

certain parts of the index.php page. HTML comments are used, which are hidden from

the interface itself, to identify and distinguish areas of the HTML code where results are

to be incorporated. For example:

$contents = str replace(’<!--AGG RESULTS-->’,$agg string, $contents);

Once the $contents string has been adjusted accordingly, it can then be ‘echoed’ back to

the user. This echo displays the entire index.php file via it’s string counterpart, along with

7

3.1. User Interface Chapter 3. Implementation

any modifications made to the string. The effect is that results appear to be displayed on

the same page the initial query was entered. Another effect is that any queries entered

after the initial query will now be submitted via the results.php page echoing the contents

of index.php, as opposed to the actual index.php page. Figures 3.3 to 3.5 depict the

display of how each result type is returned.

Figure 3.3: The meta-search engine interface for aggregated results.

Figure 3.4: The meta-search engine interface for non-aggregated results.

8

3.2. Sending the Query and Collecting Results Chapter 3. Implementation

Figure 3.5: The meta-search engine interface for clustered results.

3.2 Sending the Query and Collecting Results

For sending the query request to each of the individual search engines, Google, Bing, and

Blekko, the query is built into a url string. Each engine having it’s own type of URL

to be sent. The URL constructed for each, generally consisted of a search engine’s root

URL, an assigned API, the query itself, and result parameters stating how many results

to be returned or skipped, and what format to return them in. For instance, the Blekko

URL was initialised as follows:

$rootUri = ’http://blekko.com/ws/?’;

$requestUri5 = "$rootUri"."q=$query+";

$requestUri = "$requestUri5"."/json+/ps=$return no&auth=XXXXX";

$url = $requestUri;

Where $query enters the user submitted query into the url for parameter q, $return no

states the amount the results to collect (the amount chosen by the user through the form),

and auth being the parameter for where the API key is included. The parameter json+ is

the format that results are to be returned in. Note that before the query string is included

in the URL it is first URL encoded using the PHP function urlencode().

Once the query url has been constructed the URL transfer library ‘libcurl’ is then em-

ployed to send the URL and return the JSON formatted data into a string. The PHP

function json decode() is used to take the collected JSON encoded string and convert

9

3.3. Aggregation Chapter 3. Implementation

it into a PHP variable, in this case an array. The array is then parsed for the relevant

information, such as each result’s Title, URL, and Description, which are stored in a

returned results array.

The above processes are carried out for each individual engine on separate PHP pages en-

titled google engine.php, bing engine.php, and blekko engine.php as can be seen in Figure

3.1. Using the user defined variable $return no, the exact amount of documents required

could be retrieved from each engine. However, since Google only returns ten results for

each query, an increment by ten loop had to be incorporated into the code for collect

results. The retrieval of results from Bing also had to be repeated if the user required 100

document. The results arrays are then incorporated into the rank.php page to either be

passed straight to results.php for ‘Non-Aggregated’ results or processed for Aggregated

results and Clustering.

3.2.1 Complex Search Ability

As the meta-search engine is required to support not only standard basic keyword search

ability but also boolean AND, OR, and NOT searches, the user submitted query had to be

modified before being sent to Google and Blekko. Bing already supports all three boolean

operators [8]. This is why the query is sent directly to bing engine.php as opposed to

boolean.php initially, as it is for google engine.php and blekko engine.php.

Within the boolean page the query is URL encoded and then modified such that each

occurrence of ‘+AND+’ is replaced with ‘+’, and each occurrence of ‘+NOT+’ is replaced

with ‘+-’. However, no modification is included for OR. The first reason is because Google

already supports the OR operator [9]. The second reason being that Blekko does not sup-

port the OR operator at all, Blekko Help stating that “There is no way to express an OR

with blekko; use multiple searches instead.” [1]. Once the query has been modified it is

sent on to be included in each engine’s request URL.

3.3 Aggregation

For aggregation, the result arrays collected from each engine are sent to rank.php, where

they are compared and combined into a single array and displayed as a single list of re-

sults. Each document is listed in the order it was retrieved. In other words, it’s index

indicates it’s rank from the engine it was retrieved from. As well as a document’s rank

information, each document index corresponds to a sub-array. The first element of the

sub-array holds the document’s URL where ‘www’ has been trimmed from the start and

the final ‘/’ from the end. This is what will be used to compare each of the documents

10

3.3. Aggregation Chapter 3. Implementation

together and prevent replication of aggregated results. Hence, they are trimmed to cre-

ate a uniformity such that documents from different engines may be compared accurately1.

For example, a returned URL from Google written as:

http://website.com/home

is seen as equivalent to a result returned from Bing written as:

http://www.website.com/home/

With each becoming formatted and stored as:

website.com/home

The second element within each document array contains the URL link, Title, and De-

scription, formatted to for display.

The method used to define the order in which these results are listed is Reciprocal Rank

Fusion (RRF). RRF merges documents returned into a unified list using only the rank

positions of the retrieved documents to assign a simple score, which are essentially deter-

mined by the underlying search engines themselves [10]. To implement Reciprocal Rank

Fusion, one computed the rank score r of say document di, using the following formula:

r(di) =
1∑

j

1/k(dij)
(3.1)

where k = position information of di in all the systems j ∈ N.

As such, since each document is going to be compared to each other using their first

array element as opposed to their index. Each document’s index was switched with the

first element of it’s array. Thus, not only can documents now be compared to other engine

results using their index, but their ranking information is maintained from which a RRF

score may be computed using Formula 3.1.

Once switched, a score is then applied to each document, and documents are combined

together using the their trimmed URL indexes for comparison. If two identical documents

are retrieved from separate engines, they become one element in the aggregated array with

their rank scores added together. When the array of aggregated results is compiled, each

document’s score is then used as the denominator to divide a numerator of 1, completing

1Note, the formatting above takes place within each result array’s respective engine page, where they
are collected.

11

3.4. Query Rewrite Chapter 3. Implementation

the computation of each document’s reciprocal rank score.

Though an explicit weighting is not applied to any of the engine’s results. The order

in which arrays are combined together using the add to total array() function allows

one to implement a slight bias towards one engine over another. In this case, Google

results take preference, followed by Bing, and finally Blekko. Therefore, if two documents

from different engines have the same score, one document from Google, and the second

from Blekko. The Google document will precede the Blekko document within the list of

returned results.

Finally, the aggregated array is then sorted using the PHP function asort(), which

sorts the associative array in ascending order. I.e. sorts the array such that documents

with the lowest reciprocal rank score are displayed first. A new array is then initialised to

hold only the top $return no of results of the aggregated array, using the PHP function

array slice(). The array is then sent to either results.php to be displayed to the user,

or to kmeans clustering.php to be clustered.

3.4 Query Rewrite

An advanced feature that is incorporated into the meta-search engine is query rewrite.

The user decides whether to activate query rewrite functionality using the form contained

within index.php. If it is ‘switched on’, the original query that the user enters, not only

gets sent to the underlying engines to retrieve document results. But it also gets sent to

a thesaurus engine via the preprocessing.php page. The engine used to retrieve synonyms

from is Big Huge Thesaurus [5].

In much the same way as document results are retrieved, synonyms for the query are

returned from Big Huge Thesaurus using an URL request containing an URL encoded

query, an assigned API, JSON chosen as the format for results to be returned in, and

cURL being used to complete the URL transaction.

However, unlike the engine pages, preprocessing.php also ‘tokenises’ the query before it

is sent to the thesaurus. This is because the thesaurus only allows for one word to be

queried at a time. As such, to ensure that not only are results returned, but that the

results are relevant, the PHP function, explode(), is used to turn the query string into

an array. Each word within the array is then converted to lower-case, with non alpha-

numeric characters and surplus white-space removed. Stop-words are also removed2.

2The list of stop-words used was retrieved from Bonomo’s Blog [11].

12

3.4. Query Rewrite Chapter 3. Implementation

The resulting array is then filtered to remove any empty array elements that may have

arisen due to stop-word removal, and the array’s internal pointer is rewound to point at

the first element within the array. This is the word that gets sent to the thesaurus. It was

not deemed necessary to attain synonyms for all the remaining words within the array

as generally a user is more likely to type higher relevant terms first. It is also not the

engine’s primary function to act as a thesaurus. Thus, in an effort to not overshadow

the actual purpose of the meta-search engine by returning lengthy synonym lists for each

query rewrite request. The amount of returned ‘related words’ was limited to a maximum

of five words.

The returned list of synonyms is then displayed beneath the search text bar as can be

seen in Figure 3.6. A short javascript script is included within index.php to allow the user

to re-populate the search text box field of the meta-search form, with the desired query

re-write word, by just clicking on the word, within in the list, below the search box.

Allowing the user to quickly assess, select, and search again, using the new suggest word.

javascript on index page.

Figure 3.6: The suggested words that result from the query “word”. The user has selected
“tidings” which can be seen to have automatically filled the search text box.

If a query resulted in the no related results being returned, the following message “Sorry,

there are no related words for this query.” was displayed instead. As can be seen in Figure

3.7 below.

Figure 3.7: Try instead: displaying the message “Sorry, there are no related words for
this query” when a query does not retrieve any synonyms.

13

3.5. Clustering Chapter 3. Implementation

3.5 Clustering

Clustering refers to the partitioning of data into a number of groups, or clusters. It’s an

unsupervised technique, unlike classification, as there aren’t any examples to learn which

groups different types of data should go into [14]. Clustering of documents was performed

using a number of steps. The first step was to create a vector space model of the entire

aggregated results set. Each document being represented by a vector of n-dimensions if

it contains n amount of terms. Terms in this instance refers to the separate words that

make up a document. Terms were identified for each document by tokenising the strings

a document contained. Each term was then assigned a numeric value or weighting using

a method known as Term Frequency - Inverse Document Frequency. After which, the

K-means clustering method could then be applied.

3.5.1 Tokenisation

Documents are tokenised using functions within token.php. First, snippets and titles

for each result are amalgamated into one string, with html tags removed, using a func-

tion called snippet array(). This function utilises PHP functions preg replace() and

strip tags().

The function tokenise array() then converts letters into lower-case, removes all non

alpha-numeric characters, and replaces all stop-words with a space. Lastly, all surplus

white-space is removed from the string, including extra white space between words.

A third function, porter stemming, is also located within this page. It takes in the pre-

pared words, after they have been ‘exploded’ into an array, and stems the words contained

within using a Porter Stemming script obtained from tartarus.org [12]. This transforms

each word into it’s stem. Helping to reduce the amount of unique words contained within

the document set.

Note, that although array strings are not technically tokenised on this page. They are

prepared such that each string can be immediately ‘exploded’ into an array of tokens.

3.5.2 TF-IDF

The tf idf.php page takes in the aggregated array and applies the above functions. A

‘dictionary’ array is then initialised, along with a document count array. Each modified

document string is exploded into an array, $terms, where each element is an individual

word. A Porter Stemming function is then applied, calling a Porter Stemming script. The

variable $docCount, counts how many terms are contained within each document array.

14

3.5. Clustering Chapter 3. Implementation

The $dictionary array is used to store each term as it’s index. Each term holding an

array itself consisting of relating information. The overall structure of the $dictionary

array is as follows:

$dictionary =>

[df] = (increments for each document a term is found in.)

[appearsInDocs] =>

[document index] =>

[tf] = (increments each time a term is found within a document).

Once the dictionary array is populated, a new array called $index, is constructed with

the first element containing the $docCount array, and the second element containing the

$dictionary array. From this array the TF-IDF value for each term is computed and

stored in an array $tf idf, where each document’s ID is the index, holding the array

of TF-IDF values for each term within that document. Consequently, each document

snippet has now been transformed into a vector array whose dimension is equal to the

amount of terms it contains. To calculate each term’s TF-IDF value, formula 3.2 was

used in conjunction with formula 3.3.

tfijidfij = tjijlog2(N/dfi) (3.2)

The ‘tf’ value contained for each term in the dictionary of $index is normalised across

the entire corpus of document snippets, using formula 3.2 [13].

tfij = fij/max{fij} (3.3)

Where fij = ‘tf’ and max{fij} = the highest value for ‘tf’ across all document snippets.

The resulting code implementation of formulas 3.2 and 3.3 combined is as follows:

$tf idf = ($appearsInDocs[’tf’]/$max term freq)*(log($docCount / $entry[’df’],

2));

Where $max term freq holds the value found for maxfij.

A vector space model now exists in the form of an array of document vectors, held within

the array, $doc vectors. Each document vector is filtered to remove empty array ele-

ments in an effort to reduce each array’s dimensionality, and the remaining term indexes

are reset to start at zero and increment by one.

15

3.5. Clustering Chapter 3. Implementation

3.5.3 K-Means Clustering

K-means clustering is a process for grouping similar documents together. It works by

identifying the space of possible solutions, creates each of the K clusters and distributes

them randomly throughout an available solution space. For this project I decided to

create 4 clusters each time, k = 4. Since the choice of initial clusters may be of random

selection from the array of document vectors, the first four vectors were chosen. k was

set to equal 4 as from testing different values of k over the different amount of documents

that could be returned, it appeared to give the most adequate results when used for all

four different amounts.

Before the arrays are clustered, each of the document vectors is normalised by divid-

ing each component by the length of the entire vector, so that all vector documents have

a unit length. This simplifies the latter calculation of cosine similarity. Cosine similarity

is a formula which one to calculate the similarity between to documents. By taking the

dot product of two vectors, one is computing the cosine of the angle between the two

vectors. For vectors pointing in opposite directions this will be equal to -1, if they’re

at 90 degrees to each other it will be 0, and if they are identical, i.e. there is no angle

between them, it will be 1. Hence, documents with the highest values relative to a clus-

ter are the best matches, their vectors are pointing in the same direction as the cluster [15].

The k-means clustering takes place within the kmeans clustering.php page. Before the

data is clustered, a $doc set array is initialised and filled with the index of each docu-

ment, along with the value of their first TF-IDF weighting. This is so as to be able to

identify and match back up the documents with their vectors after clustering has taken

place. The function, kmeans(), is then applied to the normalised vector space. Firstly, it

initialise four clusters from the vector space. In this case, the first four vectors are used.

It then clusters the rest of the vectors based on these four clusters.

Taking one document vector at a time, the cosine similarity is computed between the

document in question and each of the four clusters. Whichever cluster gives the largest

result, is the cluster that the the document vector gets assigned to. Since the new doc-

ument has been added to the cluster, the position of the cluster’s centroid will have

changed. To find the new position of the centroid, the vector average is taken between

the original cluster and the newly added document cluster. The result being assigned as

the new centroid for the cluster in question, to which the rest of the document vectors in

the set are compared against.

16

3.5. Clustering Chapter 3. Implementation

Once the entire the document vector space is assigned to a cluster, vectors are then re-

combined with their matching document index and sent to results.php to be displayed.

Though originally, one had iterated the clustering process over the entire document vector

space multiple times, it seemed to inhibit rather than enhance the clustering results. With

each iteration placing more and more documents into the same cluster. As such, it was

reverted back to assigning vectors to clusters just once.

17

Chapter 4

Technologies Used

A selection of different technologies were used throughout this project. In particular, API

keys for each underlying engine of the meta-search engine were required to retrieve results.

Four API keys used were:

1. Google API

2. Bine API

3. Blekko API

4. The Big Thesaurus API

4.1 Languages Used

Languages used to build the meta-search engine included:

1. HTML, used to define the structure of the pages.

2. CSS, used to embed design into the engine.

3. PHP allowed one to incorporate all the behind the scenes coding, required to allow

the engine to work.

4. CURL was used to send request URL to retrieve results.

5. JSON was the format that results from engines were received in.

6. Finally, a modest amount of Javascript was used on the index page to allow for the

suggest words buttons to re-populate the search-text box form.

18

4.2. Software Used Chapter 4. Technologies Used

4.2 Software Used

Software used included:

1. Dreamweaver, the application where the code was written.

2. Wamp server, for compiling and testing pages locally on one’s laptop.

3. winScp for file transfers to the UCD server.

4. The UCD server which is used to host the site.

5. Google Chrome and Internet Explorer were used to view the site.

6. Survey Monkey was used to create the user evaluation survey and collect results.

19

Chapter 5

Problems Encountered

One of the first major challenges to overcome was in learning how to return results from

each engine. Although at first, it was hard to find a place to start, eventually, after

adequate research, results were returned using cURL. The next hurdle was in then ex-

perimenting with what exactly was important and not important within the JSON data

returned. In the end, one felt that only the Title, URL, and Snippet/Description were

needed for the purposes of the meta-search engine.

However, once results were returned, there were still problems. First, Bing returns a

maximum of 50 results, and Google only 10 results for each query at a time. To overcome

this the query was looped to be sent twice to Bing when over 50 results are required, and

the query for Google had to be looped whenever over 10 results were required. Testing

was further inhibited by Google’s 100 queries a day limit. Thus, five different Google API

accounts were activated to get 4 extra API keys. This allowed for 500 queries to be sent

it day instead.

When aggregating results, it was initially problematic in finding a solution as to how best

to combine each array in PHP whilst implementing Reciprocal Rank Fusion. Further-

more, during aggregation, it came to one’s attention that Bing and Blekko were returning

duplicate results when 100 results were requested. They also failed to consistently supply

100 results. Often returning fewer. To eliminate the duplication of results problem, the

PHP function array unique() was applied to the returned results arrays of Bing and

Blekko. This course of action was not necessary for Google.

One of the last, but not the least, major challenges of this project was in implement-

ing clustering of aggregated results. Initially, one had set the K-means clustering to

iterate over the clustering process until no further changes occurred. However, for larger

documents sets, such as when 100 results were required to be returned, all documents

ended up in the same cluster. A number of different methods were used to try and cor-

20

Chapter 5. Problems Encountered

rect this behaviour, such as changing the number of clusters, or changing how the first

clusters were initialised. In the end, once one changed the conditions such that k-means

only performed clustering once, these problems ceased to exist.

21

Chapter 6

Evaluation Details

When evaluating the meta-search engine, meta, a number of techniques were incorporated

to analyse different aspects of the engine’s functionality. Such aspects include how fast

the engine returns results, the quality of the results returned, and whether or not the user

interface is simple and intuitive to use. Not to mention end user’s satisfaction with the

overall user experience.

As mentioned in Chapter 2, Section 2.4, 100 results were collected for a list of 50 queries

(provided on the UCD Moodle website) for both aggregated and non-aggregated displays.

These results were then compared against a ‘gold standard’ list of results, to determine

the quality of the results returned, and in particular, whether the aggregated results were

superior in quality to the non-aggregated results or visa-versa.

6.1 MAP

MAP,or Mean Average Precision, for a set of queries is the mean of the average precision

score for each query. Where Average Precision refers to only a single query. MAP refers to

a set of queries. MAP is the most commonly used metric in IR literature to compare the

performance of two systems. A PHP script was written to compare the similarity between

two sets of results for all 50 queries. The script was run such that the ‘gold standard’ list

of results was compared against all the results returned from the meta-search engine for

Google, Bing, Blekko, and all three aggregated together. The script then computed and

outputted the following MAP values for each results set.

Search Engine MAP (%)

Google : 28.7

Bing : 28.4

Blekko : 22.2

Aggregated : 46.8

22

6.2. F-Measure Chapter 6. Evaluation Details

As one can see, Google appears to be the best performing engine out of all three, although,

admittedly only marginal better than Bing. Blekko having the lowest MAP scoring. Ag-

gregated is clear winner, it’s MAP score almost double that of each of the individual

underlying engines.

To demonstrate whether or not the difference in evaluation scores is significant, statistical

analysis in the form of a Paird t-test in Microsoft Excel were performed between each

individual engine compared against the aggregated engine. In this case, data consisted of

the Average Precision score returned for each query by an engine. Thus, 50 data points

for each engine were used altogether. A pair t-test was chosen, since all the queries are the

same. The results of each engine compared against the aggregated engine are as follows:

Search Engine P{T <= t} two-tail

Google : 8.34207151838647E-18

Bing : 1.39015851445012E-19

Blekko : 1.19661427188502E-23

Each value is significantly less than 0.05. As such, the difference is considered to be

statistically significant, at a 95% confidence level. Consequently, the aggregated is in fact

a returning superior results than each of the underlying search engines. A complete list of

each engine’s results, including Precision@10, Precision, and Recall can be found in the

Appendices of this report.

6.2 F-Measure

F-measure assesses the trade-off between precision and recall and is sometimes referred to

as the harmonic mean. If precision and recall are both high, the F-measure will be high.

The following table displays each engines Average F-measure score.

Search Engine Avg. F-Measure (%)

Google : 47.7

Bing : 49.9

Blekko : 40.5

Aggregated : 78.4

Interestingly, this time Bing has over-taken Google, meaning that although Bing scored

slightly lower in the MAP evaluation, it’s recall score must be a lot better than Google’s.

Hence, why it’s F-measure is higher. However, Aggregated is yet again the highest scoring

engine, scoring well in both precision and recall.

23

6.3. User Evaluation Survey Chapter 6. Evaluation Details

6.3 User Evaluation Survey

Twenty-one users altogether submitted the survey before the submission of this report.

One insightful response I got from a user is that they found the interface, not as intuitive

as it could be. Stating that they had never used a meta-search engine before and did not

know what ‘Clustered’ or ‘Aggregated’ referred to. As such, if I had further time, I would

have incorporated hover descriptions to appear over the nine option buttons. To explain

to the user what they are, and what they are used for.

The entire list of survey results is as follows:

[1] Have you ever used a meta search engine before?

Yes : 7

No : 14

[2] Which search engine do you normally use?

Google : 15

Bing : 2

Yahoo : 3

DuckDuckGo : 0

Other : 1 person entered ‘Tor’

[3] After submitting my query, the meta search engine relayed results

in a time comparable to that of my typical search engine of choice.

Strongly Disagree : 0

Disagree : 0

Neither Agree Or Disagree : 4

Agree : 11

Strongly Agree : 6

[4] I found that the quality of the returned results were superior to my

typical search engine of choice.

Strongly Disagree : 0

Disagree : 2

Neither Agree Or Disagree : 9

Agree : 9

Strongly Agree : 1

24

6.3. User Evaluation Survey Chapter 6. Evaluation Details

[5] In general, I found the quality of the aggregated results returned to

be superior to the non-aggregated results returned.

Strongly Disagree : 0

Disagree : 0

Neither Agree Or Disagree : 5

Agree : 12

Strongly Agree : 4

[6] I found the query suggestions feature to be very useful.

Strongly Disagree : 0

Disagree : 0

Neither Agree Or Disagree : 3

Agree : 15

Strongly Agree : 3

[7] I found the interface very intuitive to use.

Strongly Disagree : 0

Disagree : 1

Neither Agree Or Disagree : 2

Agree : 12

Strongly Agree : 6

[8] I liked how the results were displayed.

Strongly Disagree : 0

Disagree : 0

Neither Agree Or Disagree : 3

Agree : 13

Strongly Agree : 5

[9] I found it useful when the final results were clustered.

Strongly Disagree : 0

Disagree : 2

Neither Agree Or Disagree : 3

Agree : 11

Strongly Agree : 5

25

6.3. User Evaluation Survey Chapter 6. Evaluation Details

[10] If give the option, I would consider making this my default search engine.

Strongly Disagree : 0

Disagree : 2

Neither Agree Or Disagree : 6

Agree : 9

Strongly Agree : 4

26

Chapter 7

Conclusion and Future Work

I have learnt numerous new skills throughout this project. In particular, I learnt a lot

about PHP, cURL, and JSON. The foundation of this project is based upon PHP and it

was an interesting language to have engaged with. It was also interesting to have gained

knowledge into the workings of how search engines themselves function. How a query is

processed or not processed. Knowing when a query should be processed and in what way.

How to send a query and receive results.

Probably the most fascinating part of this project was in implementing the clustering

of documents using a vector space model and K-means clustering. An extremely prac-

tical use of linear algebra. Learning how a document could be easily translated into a

n-dimensional vector and then compared to over document in the same vector space to

quantify similarity between the two was extremely interesting and relevant to the needs

of today. Where information retrieval systems are playing a larger and larger role in our

society.

In future work, one would like to expand on the TF-IDF and K-Means implementation

within this project. To specialise the clusters more and assign the clusters more mean-

ingful names. I would also change the layout of the overall engine to be more compact.

Especially on the repetition of cURL throughout the pages. To increase the success rate

of the ‘Suggest Words’ feature, I would also like to incorporate spelling auto-correction.

This would also enhance the results returned. Perhaps even extend the suggest words

feature and combine it with TF-IDF to pull suggested words from the top K documents

returned from the original query.

27

Bibliography

[1] Greg. (2012, September 21). “Advanced Search Features”. Blekko Help. Retrieved

from http://help.blekko.com/index.php/advanced-search-features/.

[2] Aslam, J. A., & Montague, M. (2001, September). Models for metasearch. In Pro-

ceedings of the 24th annual international ACM SIGIR conference on Research and

development in information retrieval (pp. 276-284). ACM.

[3] Cormack, G. V., Clarke, C. L., & Buettcher, S. (2009, July). Reciprocal rank fu-

sion outperforms condorcet and individual rank learning methods. In Proceedings

of the 32nd international ACM SIGIR conference on Research and development in

information retrieval (pp. 758-759). ACM.

[4] Montague, M., & Aslam, J. A. (2002, November). Condorcet fusion for improved

retrieval. In Proceedings of the eleventh international conference on Information and

knowledge management (pp. 538-548). ACM.

[5] Watson, J. (2013). “Thesaurus”. Big Huge Thesaurus Tech Republic. Retrieved from

http://words.bighugelabs.com/

[6] Survey Monkey. (2013). Retrieved from http://www.surveymonkey.com/.

[7] The PHP Group. (2013). “File get contents.” PHP. Retrieved from

http://php.net/manual/en/function.file-get-contents.php

[8] Microsoft. (2013). “About Bing Query Language”. MSDN Library. Retrieved from

http://msdn.microsoft.com/en-us/library/ff795657.aspx.

[9] Google. (2013). “Search Operators”. Web Search - Help - How to search. Retrieved

from https://support.google.com/websearch/answer/136861?hl=en.

[10] Nuray, R., & Can, F. (2006). Automatic ranking of information retrieval systems

using data fusion. Information processing & management, 42(3), 595-614.

[11] Bonomo. “List of English Stop words hard coded in the php array”. (2010, February

23). Bonomo’s Blog. Retrieved from http://bonomo.wordpress.com/2010/02/23/list-

of-english-stop-words-hard-coded-in-the-php-array/

28

Bibliography

[12] Hayes, R. “PorterStemmer Class”. Retrieved from

http://tartarus.org/martin/PorterStemmer/php.txt

[13] Manning, D, C., Raghavan, P., Schutze, H. (2008). “Document Representation using

TF-IDF and Vectors”. Introduction to Information Retrieval. Cambridge University

Press.

[14] Barber, I. (2009, August 14). “K-Means Clustering”. PHP/ir - Clustering. Retrieved

from http://phpir.com/clustering.

[15] Barber, I. (2009, September 19). “Simple Search: The Vector Space Model”. PHP/ir

- search and boolean retrieval. Retrieved from http://phpir.com/simple-search-the-

vector-space-model

29

