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In textbook descriptions of Newton’s cradle, it is generally claimed that displacing one ball will
result in a collision that leads to another ball being ejected from the line, with all others remaining
motionless. Hermann and Schma¨lzle, Hinch and Saint-Jean, and others have shown that a realistic
description is more subtle. We present a simulation of Newton’s cradle that reproduces the break-up
of the line of balls at the first collision, the eventual movement of all the balls in phase, and is in
good agreement with our experimentally obtained data. The first effect is due to the finite elastic
response of the balls, and the second is a result of viscoelastic dissipation in the impacts. We also
analyze a dissipation-free ideal Newton’s cradle which displays complex dynamics. ©2004 American

Association of Physics Teachers.
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I. INTRODUCTION

A line of touching balls suspended from a rail by pairs
inelastic strings is often called Newton’s cradle~see Fig. 1!.
In introductory physics textbooks,1–6 it is generally intro-
duced as an illustration of the conservation of moment
and energy. When one ball is displaced from the other f
and released, it is claimed that the collisions will result in t
ball at the opposite end of the line being ejected, with
other balls remaining stationary. As the ejected ball swin
back, it will collide with the line of balls. According to the
common description, only the ball that was released initia
will be ejected, while all other balls remain stationary.

However, the actual experiment reveals a slightly differ
scenario. Careful observation shows that the first collis
will break up the line of balls with the effect that all bal
move. After further collisions all balls will eventually swin
in phase, with an ever decreasing amplitude. The obse
breakup of a line of balls after the impact of one ball w
analyzed recently by Hinch and Saint-Jean.7 We extend their
work to consider the multiple collisions that follow therea
ter. We believe that a closer examination of Newton’s cra
can enhance and extend the pedagogical value of the orig
demonstration.8–10

Newton’s cradle has a long history. In 1662, papers on
underlying physics were presented to the Royal Society
no less than three eminent researchers,5 John Wallis~known
for his presentation ofp as an infinite product!, Christopher
Wren ~mathematician, astronomer and architect of St. Pa
Cathedral in London!, and Christiaan Huygens~author of a
book on the wave theory of light and contributions to pro
ability theory!. Huygens pointed out that an explanation r
quired both conservation of momentum and kinetic ene
~He did not use the expression kinetic energy but referre
a quantity proportional to mass and velocity squared.!

However, two equations are not sufficient to describe
behavior of Newton’s cradle as was pointed out in Ref. 8
characterization of Newton’s cradle consisting ofN balls re-
quiresN velocities, but the conservation laws only give tw
equations. Herrmann and Schma¨lzle8 analyzed Newton’s
cradle in terms of elastic forces between the contacting b
They argued that a necessary condition for consistency
the simplified textbook description is that there be no disp
sion in the relation between frequency and wave number
1508 Am. J. Phys.72 ~12!, December 2004 http://aapt.org
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the vibrational motion of the chain of contacting balls. The
conclusion was based on their experiments with gliders on
air track, where each glider was equipped with a spr
bumper. These experiments effectively model the first se
collisions in Newton’s cradle. When all gliders are in co
tact, the gliders may be represented as a linear chain, al
ing for the calculation of eigenfrequencies and correspond
wave numbers. Only when the masses of the gliders and
spring constants were chosen to achieve a dispersion
linear relation, did the gliders behave as in the textbo
description.8,10

In a follow-up paper, Herrmann and Seitz9 re-examined
the actual cradle experiment and found in both the exp
ments and simulations that the first impact of a ball leads
a break-up of the line, contrary to the textbook descripti
In their simulations, they modeled the interaction betwe
balls as points of massm that are connected by~Hertzian!
springs. The force between two such masses is given by

F5k~yn2yn21!a, ~1!

whereyn is the displacement of balln from its equilibrium
position, k is a spring constant, and the exponenta53/2.
The comparison of the propagation time of a perturbat
through a line of balls obtained from both experiments a
simulations using a range of different values ofa showed
that the assumption of Hertzian springs in Eq.~1! is valid.
From their simulations of a five-ball cradle, Herrmann a
Seitz found that after the first collision, balls 1, 2, and
move backward, while balls 4 and 5 move forward with b
4 carrying about 12% of the initial momentum of the inc
dent ball.@We have labeled the balls in the direction from t
incoming ball~ball 1! to the ball at the opposite end of th
line ~ball 5!.# The momentum of ball 5 after the collision i
nearly as large as that of ball 1 before the collision.

Without performing further simulations Herrmann an
Seitz9 concluded that when ejected ball 5 swings back
would impact not on a compact line of balls~because the line
has been broken up by the first impact!, but rather there
should be a sequence of independent collisions. Howeve
general, there can be multiple collisions involving more th
two balls in contact during the collision as we will see
Sec. II. This issue will be examined further in relation to o
experimental results discussed in Sec. VI.
1508/ajp © 2004 American Association of Physics Teachers
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Hinch and Saint-Jean7 conducted an exhaustive numeric
and theoretical study of the fragmentation of a line ofN balls
by an impact. They find that some balls at the far end det
from the line and fly off, some in the middle hardly mov
and the impacting ball rebounds backward bringing with
some of its nearby balls. They reproduced the numerical
sults of Ref. 9 for the first impact, and also set their resu
into a wider context. For a linear contact force law (a
51), the number of balls that are detached from the line

Ndetach51.5N1/3, ~2!

while the majority of balls rebound. For the Hertzian for
law (a53/2) only a few balls rebound together with th
impacting ball, with a velocity greater than 1% of the impa
velocity. For example, for a line ofN55 balls, two balls will
leave in the forward direction, forN515 this number in-
creases to three. However, no power law analogous to Eq~2!
was established.

Despite the above studies and recent work in enginee
literature,11 there still is a need for further work on the natu
of Newton’s cradle for the following reasons. Because gr
ity was not included, the discussion was limited to the fi
impact. What happens in subsequent collisions? If we
sume a dissipation-free system, will the motion settle do
to a regular behavior or will it be chaotic? In what way w
dissipation affect the motion? We will discuss these qu
tions by presenting the results of theory, experiments,
simulations where gravity has explicitly been included,
gether with dissipative effects due to collisions and frictio
Our work by no means exhausts the possible corrections
might be added to the model, but it seems sufficient for
available data.

II. MODELING NEWTON’S CRADLE

We define the overlapjm,n between two ballsm andn as

jm,n5~2R2r mn!1 , ~3!

where R is the radius of the balls andr mn is the distance
between their centers~see Fig. 2!. The notation ()1 specifies
that the value of the bracket is zero if the expression insid
negative, as required for the representation of contact fo
that cannot be in tension. If we model the contact forces

Fig. 1. Newton’s cradle. Ball 1 on the right is released and swings dow
impact the line of stationary balls. It is generally suggested that only ba
on the left is ejected. However, both experiments and our simulations s
that all balls will move after the impact.
1509 Am. J. Phys., Vol. 72, No. 12, December 2004
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described in Sec. I, the force on balln may be written as

mẍn5k@jn21,n
a 2jn,n11

a #, ~4!

wherexn denotes the position of balln.
The introduction of gravity requires some discussion. A

though Eq.~4! holds for a one-dimensional line of ball
where the impact is in the same direction as the line, Ne
ton’s cradle is two dimensional. The balls are attached t
frame by an inelastic string of lengthL and can swing abou
their respective equilibrium positions (xo,n ,L) along arcs of
circles. This motion causes the collisions to become off c
tered if the balls are a finite distance away from their eq
librium positions. Our model neglects this effect. It is r
stricted to small angles or amplitudesuxn2xo,nu!L, in order
to maintain a one-dimensional description of the cradle.

In the same approximation, gravity can be modeled a
simple restoring force, that is, a harmonic spring which a
to move each ball back to its equilibrium positionsxo,n . The
gravitational spring constant is given bykg5mg/L.

The equations of motion for the dissipation-free Newto
cradle are thus:

mẍn5kjn21,n
a 2kjn,n11

a 1kg~xo,n2xn!, ~5!

wheren ranges from 1 toN. We solved Eq.~5! for N55
using the second-order velocity Verlet algorithm12 and the
initial conditions for xn(t50): x1(0)5A, xn(0)5xo,n for
2<n<5, andẋn(0)50 for all n, corresponding to one bal
being released with an amplitudeA on to a stationary line of
balls ~see Fig. 1!.

Modeling contacting spheres requiresa53/2 ~Hertz
law!.13 The spring constantk may be written in terms of
material constants as

k5A2RE/@3~12n2!#, ~6!

whereE is Young’s modulus,n is Poisson’s ratio, andR is
the radius of the balls.7

It is common to introduce dimensionless variables bef
solving the equations of motion numerically. However,
our problem there are two time and length scales. Althou
the swinging balls may best be described in terms of th
period T052pAL/g and string lengthL, individual colli-
sions occur on a much shorter time scalet05(m2/k2v)1/5

and displacement scalel 05(m2v4/k2)1/5. Here,v is the ve-
locity of the impacting ball, given byv5AAg/L.

Because Eq.~5! describes a conservative system, the a
propriate time stepDt for the numerical integration may b

o
5
w

Fig. 2. The overlap of two balls.
1509Hutzleret al.
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found by checking for energy conservation. Our chosen t
step of approximately 2.531023t0 lead to a relative error in
the energy of not more than 0.005% over a time of o
10 000T0 .

An initial test of our code was undertaken by settingkg

50 to model the impact on a line of balls in the absence
gravity. This simulation reproduced the results of Ref. 7
the final velocities of all balls after the impact.

III. RESULTS

For kg.0, we found that the first collision breaks up th
line of balls. As the balls move back toward their respect
equilibrium positions, however, they do not return to th
individual stationary starting positions. This difference lea
to a different scenario for the second set of collisions.

Fig. 3. Displacement from their respective equilibrium positions of each
the five balls as a function of time. Note that the first impact results i
fragmentation of the line of balls. Contrary to textbook explanations
Newton’s cradle, all balls are subsequently in motion. In the early stage
this dissipation-free simulation, the largest amplitudes of motion are ex
ited by balls 1 and 5.~The displacement is plotted as a fraction of the init
amplitude of the incident ball. Time is displayed in multiples of the per
of a single ballT052pAL/g.)
1510 Am. J. Phys., Vol. 72, No. 12, December 2004
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time evolves, an oscillatory motion becomes established
we will demonstrate in Sec. IV for the case ofN52.

Figure 3 shows the displacements of the balls forN55
where ball 1 has been released from an amplitudeA
50.27L onto a line of four balls. The collision~at time
p/2AL/g) results in the break-up of the line with balls 4 an
5 moving forward and balls 1, 2, and 3 rebounding. Bal
reaches its maximum displacement at timepAL/g. As it
swings back, it will no longer hit a stationary line at tim
3p/2AL/g. The second set of collisions, shown in Fig. 4~b!
is thus not antisymmetric to the first set@see Fig. 4~a!#. Fig-
ure 4~c! displays the third set of collisions, which is clear
different from the first set.

Due to the fragmentation of the line of balls at the initi
collision, there are no obvious symmetry considerations t
can explain the configurations in the latter collisions. T
question arises as to whether the system of five balls
develop any periodicity in its long-term behavior or will b
chaotic. Our data for a time of more than 10 000T0 is best
displayed by showing phase portraits at various times~see
Fig. 5!. Generally, there is one ball colliding with a line o
four slightly separated balls. However, the amplitudes of
first ball and the line of balls display very low-frequenc
oscillations between two modes of motion. In mode I, t
cluster of four balls moves much slower than the single b
while in mode II all balls move with a similar speed.

This behavior is particularly pronounced forN52, but
also is well pronounced forN54 andN55 as shown in Fig.
5.

IV. THEORY OF A TWO-BALL CRADLE

We now present an analytical treatment of the relativ
simple two-ball cradle, which leads to the identification
the behavior with the phenomenon of beats. We will sh
that the softness of the balls leads to an oscillation of
collision points. This variation of the phase portrait in time
also seen in our simulations of the three- and four-b
cradles.

Even if the balls are not infinitely hard, the standard te
book description is still valid in the sense that the impact
ball comes to a complete standstill while the impacted b

f
a
f
of
-

io
on. The
s

Fig. 4. A detailed view of the first three sets of collisions reveals the symmetry breaking that occurs due to the break-up of the line in the first collisn. Time
is displayed in multiples of (m2/k2v)1/5. We have chosen the time origin as the moment when the incident ball passes through its equilibrium positi
displacements are made dimensionless by dividing by the length scalel 0 . For visual clarity, they are shifted byn, where the balls are labeled from 1 to 5 a
in Fig. 1.
1510Hutzleret al.
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than the
Fig. 5. ~a! The long-time behavior of the dissipation-freeN55 cradle is characterized by a slow oscillation between two modes of motion. Both m
involve the collision of one ball against a group of four. In mode II all balls move with a similar speed, in mode I the cluster moves much slower
single ball.~b! Simulation results in the form of phase portraits.~c! A sketch of the evolution of these portraits.
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moves off with the same velocity as the impacting ba
However, what is generally ignored is the fact that the imp
does not take place instantaneously. During this finite in
action time, both balls have a nonzero velocity and th
point of contact will move a certain distance along the dir
tion of the impact.~For a discussion of the related case o
1511 Am. J. Phys., Vol. 72, No. 12, December 2004
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bullet shot into a hanging block, see Ref. 14.! The impacted
ball will move away from its equilibrium position by a dis
tanceDx and will consequently swing back after the col
sion. From our simulations, we find thatDx scales asDx
}m5/2v5/4k22/5, consistent with the displacement scale intr
duced in Ref. 7.15
1511Hutzleret al.
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The subsequent behavior, sketched in Sec. III, can be
lyzed as follows. If we denote the positions of each b
relative to their respective equilibrium position byx1 andx2 ,
the center of massXc is given by

Xc5
~x11x2!

2
, ~7!

while the relative positionXr is

Xr5x12x2 . ~8!

For simplicity, we shall assume a harmonic force la
~with spring constantKr), where the subscriptr signifies that
the interaction is due to the relative positions of the ba
The validity of the argument will however not be restrict
to this force law. The cradle will be seen to be equivalen
a pair of coupled oscillators that are coupled only when
two balls are in contact (Xr.0).

Each ball is subject to gravitation, modeled as a spr
with spring constantKc5mg/L, as in Sec. II.~Previously,
this constant was calledkg , but we shall useKc in the fol-
lowing discussion to remind us that the spring acts on
center of gravity of the two balls.! The potential energy o
each ball is given by12KcXc

2 . The potential energy of contac
is given by 1

2KrXr
2 for Xr.0 and is zero forXr<0. The

natural frequencies associated with the two spring const
for massm are given byV25Kc /m andv25Kr /m.

We consider the case where ball 1 is released fromx1

52A andx250. Then initially we have

Xc5
x11x2

2
52A, ~9a!

Xr52A. ~9b!

The center of mass motion is that of a mass 2m acted on by
external forces (F52Kcxc) only. Hence, the motion is
simple harmonic with frequencyV:

Xc52
A

2
cosVt. ~10!

The dependence of the relative positionXr on the time as
obtained from our simulation is shown in Fig. 6.

The cradle features two time scales, the collision time,t0

and the time between collisions,G0@t0 , given by

2G05
2p

V
, ~11!

corresponding to free motion under the action ofKc with
Xr<0.

We make the approximation that during a collision (Xr

.0), where the repulsive force due toKr dominates, we
neglectKc . Then, the motion is another~short! half-cycle
underKr , as is seen in Fig. 6. We find for the interactio
time t0

2t05
2p

&v
5
&p

v
. ~12!

Note that&v is the frequency of a single ball with
doubled spring constant.
1512 Am. J. Phys., Vol. 72, No. 12, December 2004
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To represent the resulting motion of the balls, it is help
to switch identities after every collision, so tha
ball 1↔ball 2 and thusXr↔2Xr . We may then approxi-
mateXr by

Xr52A cos
pt

G01t0
. ~13!

If we combine Eq.~13! with Eq. ~10! for Xc , we find
‘‘beats’’ for the motion of one ball~with the above role re-
versal implied!. For t0!G0 , we obtain

x̂52
A

2
cos

pt

G0
2

A

2
cos

pt

G01t0
'2A cos

pt

G0
cos

pt0

2G0
2 t,

~14!

wherex̂ denotes that the identity switches betweenx1 andx2
after each collision. Thus, we have high-frequency osci
tions with a frequencyV which are modulated by the low
frequencypt0/2G0

25V2/2&v.
We also can calculate the positions of the collisions. Wh

they occur, we haveXr50, and the position of the collision
is Xc . From Eq.~13!, we obtain

pt i

G01t0
5p i 1

p

2
, ~15!

where t i is the time of thei th collision. Hence, the corre
sponding position is given by

xi5Xc52
A

2
cosS p

G0
S i 1

1

2D ~G01t0! D
'

A

2
~21! i sin

pt0

G0
2 t, ~16!

where we have used the definition ofXc in Eq. ~10! and the
approximationG@t0 . Figure 7 shows the excellent agre
ment between the analytical expression in Eq.~16! and our
simulation.

The oscillation of the collision points forN52 is caused
by the finite elastic response of the balls. Plotting phase p
traits at different times, as shown in Fig. 8, reveals the sa
characteristics we had obtained for theN55.

Fig. 6. Plot of the relative positionXr for the N52 cradle as a function of
time plotted in multiples ofG01t0 ~time between collisions1 interaction
time!. The simulation was performed with a small ratioKr /Kc5100 to
increase the collision timet0 .
1512Hutzleret al.
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V. THE EFFECTS OF DISSIPATION

Although the study of a dissipation-free version of Ne
ton’s cradle is interesting in its own right, any realistic sim
lation of the experiment needs to include dissipation. T
obvious such mechanisms are the velocity-dependent vis
drag of air and the viscoelastic dissipation associated w
the collisions of the balls. We chose a simple linear dep
dence on the velocityF fr5hv ~Stokes law!.

The inelastic character of the collisions is modeled by
cluding a viscoelastic dissipation force of the form16

Fdiss52g
d

dt
~jb!, ~17!

into the equation of motion. Here,j is the overlap between
two balls as defined in Eq.~3! and b53/2 ~Hertz–
Kuwabara–Kono model!.16

The equation of motion for the dissipative Newton
cradle is then given by

mẍn5kjn21,n
a 2kjn,n11

a 1kg~xo,n2xn!2hv2g
d

dt
~jb!.

~18!

The Stokes term continually removes energy from the s
tem, while viscoelastic dissipation occurs only during co

Fig. 7. Two phase portraits that characterize the motion of theN52 cradle.
The system slowly oscillates between the case where both balls move
the same speed, and the case where one ball collides with a stationary
The axes are made dimensionless by dividing the velocity of each ba
the maximum velocity of the incoming ball and the position by the init
amplitude.

Fig. 8. ForN52, successive collisions take place in turn on the left~circles!
and on the right~triangles! of the center of the system. The numerical
determined points are well described by theory~continuous line!, Eq. ~16!.
1513 Am. J. Phys., Vol. 72, No. 12, December 2004
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sions. Due to the velocity-dependent forces in the system
utilize the Euler–Richardson method to solve the new eq
tion of motion@Eq. ~18!#.12 We use the same time step as f
our dissipation free simulations. The value of the time s
was tested using the Euler–Richardson method for
dissipation-free case and found to give excellent energy c
servation.

To demonstrate the effect of the viscoelastic dissipation
the behavior of the system, simulations were run where
Stokes term was neglected (h50). In Fig. 9, we plot the
distance between the two balls as a function of time. T
simulation demonstrates that the final collective motion
the balls that is reached experimentally is caused by the
ergy dissipation due to the collisions. The final amplitude
swing can be predicted in the following way.

Consider anN-ball cradle with initially only one ball mov-
ing with velocity v0 . The total initial kinetic energyS0

5 1
2mv0

2 may be written as the sum of the kinetic energy d
to the motion of the center of massSc plus the kinetic energy
relative to the center of mass,Sr ,

S05Sc1Sr , ~19!

with Sc5 1
2Nm(1/N ( i 51

N v i)
2. Because all velocities are zer

apart fromv15v0 , Sc reduces toSc5S0 /N . From Eq.~19!,
we immediately obtain

Sr5
N21

N
S0 . ~20!

Because all this relative kinetic energy will be dissipated
subsequent collisions, the final energy of the system is gi
by

Sfinal5S02Sr5
S0

N
. ~21!

The final energy of each ball, neglecting the Stokes te
is simply given byEinitial /N

2. Note that this value is inde
pendent of the coefficient of dissipation, which specifies o
the time it takes for the relative kinetic energy to be fu
dissipated and, thus, the time it takes for all balls to swing
phase.

ith
all.
y

Fig. 9. Due to energy dissipation during the collisions, the distance betw
the centers of the balls decreases in time and the balls will swing in ph
The data are forN52.
1513Hutzleret al.
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For a finite value ofh, the Stokes damping constant
removes energy from the system, causing the amplitud
all the balls to eventually diminish to zero. In Fig. 10, w
show the variation of the total energy with time for a fiv
ball cradle where both Stokes damping and viscoelastic
sipation are included in the simulation. Here, we see that
energy decays quickly to approximately one-fifth of the i
tial energy, where the collective motion state is reached
then continues to decay due to the Stokes damping.

VI. EXPERIMENTS

To examine the validity of our simulations, we have c
ried out experiments using a specially constructed la
Newton’s cradle consisting of four metal balls~diameter 6.8
cm, mass 0.7 kg! suspended from 1.3 m long wires.~The
balls we used were commercial sand-filled metal boule!

Fig. 11. Experimental data for Newton’s cradle withN52, 3, and 4 balls. A
single ball is released from an angleu0 . After many collisions, the balls
settle into a collective mode of motion where all move together with am
tudeuc . The data is well described byuc5u0 /N ~solid line!. We take the
error in the final angle of swing to be the accuracy of the protractors u
60.25°.

Fig. 10. Loss of energy due to the Stokes damping and viscoelastic d
pation for theN55 cradle. They axis is made dimensionless by dividing b
the initial energy of the system.
1514 Am. J. Phys., Vol. 72, No. 12, December 2004
of

s-
e

It

-
e

.

Specially constructed large protractors were used for ac
rate measurements of the angle of swing to an accurac
60.25°.

Our first set of experiments investigated our prediction
the amplitude of the collective motion of the balls describ
in Sec. V. A single ball was released from an angleu0 onto a
line of N balls. Once the state of collective motion wa
reached, we determined its amplitudeuc . The time required
for the system of balls to settle into the collective mode
between 1 and 2 min. This time compares with the time
about 1 h for the system to come to rest.

Figure 11 shows measurements ofuc as a function ofu0

for N52, 3, and 4. The data are well described byuc

5u0 /N, consistent with Eq.~21!, and our conclusion tha
the collisions will only remove energy of the relative motio
of the balls.

Our second set of experiments focused on energy diss
tion due to the collisions of the balls. Again, a single ball w
released from an angleu0 and collided with a line of 2, 3, or
4 balls. We determined its amplitude after every collisi

-

d,

Fig. 12. Variation of the amplitude of ball 1 in aN52 cradle with time.
Shown are experimental data and results from our simulations. The ex
mental data in Figs. 12–15 are averaged over ten runs of the experim
and the error in the amplitude is taken to be the accuracy of the a
measurement60.25°.

Fig. 13. Variation in amplitude of ball 1 for theN53 cradle. The simulation
used the same set of parameters as for the two-ball case.

si-
1514Hutzleret al.
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with its neighboring ball. The experimental data, shown
Figs. 12–14, reveal that the textbook explanation of Ne
ton’s Cradle with its prediction of a constant amplitude fai

To determine a value for the damping constanth, the time-
dependence of the amplitude was determined for a single
and fitted to umax(t)5u0 exp(2ht/2m) to give h56.8
60.13631024 kg s21. The constantk was calculated from
Eq. ~6! with E5231011 Pa andn50.33 for steel and was
found to bek51.3831010 kg m21/2s22.

The viscoelastic dissipation parameterg was then esti-
mated by adjusting it in the simulation to match the dissi
tion seen in the two-ball experiment. The value was found
be g51.473102 kg s21 m22. This value was then used i
the three- and four-ball simulations shown in Figs. 13 a
14.

We find from our simulations that the exact separation
the balls when a collision occurs has a very important in
ence on the behavior of the system. If balls 2–5 are initia
in their exact equilibrium positions when they touch, the su
sequent collisions will essentially be multiball collisions.
such collisions, the energy dissipated is less than in a se
of two-ball collisions. However, any experimental setup h
imperfections that will cause the system to deviate from t
idealization, for example, small differences in the oscillati
periods of the individual balls or the balls not hanging e
actly at their equilibrium position.

To incorporate these imperfections into the simulation,
varied the value ofkg for each of the balls so that the period
of the balls vary slightly, and thus all collisions after th
initial one are no longer multiball collisions. In Figs. 12–1
the periods of the balls vary byDT50.01 s or 1/240th of a
period. ~This variation has no noticeable effect in the tw
ball case because all collisions are two-ball collisions.! When
this effect is incorporated, we find good agreement betw
the simulations and the experimental data.

We have tested the effect of a range of differences in
periods of the balls. We found that there is little variation
the amplitudes obtained until we choose either very sm
values ofDT that approach the idealized case, or large v
ues ofDT that no longer represent an accurate description
the experiment. We tested removing the multiball collisio
by introducing very small gaps,Dx, between the balls in the
simulation. For small values ofDx'0.1 mm, the amplitudes

Fig. 14. Variation in amplitude of ball 1 for theN54 cradle. The simulation
used the same set of parameters as for the two-ball case.
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obtained in the simulations are almost identical to those
tained from the simulations that incorporate small variatio
in the period of the balls.

We also have considered the case where there is an ap
ciable gap between the balls. Figure 15 highlights the imp
tance of a careful experimental setup, where instead
touching, there is aDx51 mm gap between the balls whe
they are in their rest positions. Here, we see a ‘‘beatin
effect where the amplitude of ball 1 does not simply dec
but oscillates. This behavior is well replicated by our sim
lation.

VII. CONCLUSION

We have shown that the physics involved in Newton
cradle is far from trivial and that the standard textbook e
planation is only a first approximation. In the context
physics education, our study of Newton’s cradle might ful
two purposes. Students should see that apparently simple
periments, when closely examined, can raise a numbe
complicated questions. One also should be cautious a
fully accepting well-established explanations of physic
phenomena without carefully scrutinizing the arguments.
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Thermoelectric Battery. At about the turn of the twentieth century, thermoelectric batteries were used to charge storage batteries. The circuit cosists of a
number of copper and bismuth wires, connected in series. All the copper-to-bismuth connections~for example! are gathered together and kept at o
temperature, and the bismuth-to-copper junctions were kept at the other temperature. A gas burner placed in the center of the apparatus raises theperature
of the junctions collected at that point and the other junctions are kept cooler through the use of radiating fins. The overall EMF depends on thef
junctions. This piece of apparatus is at the physics department of Hobart and William Smith Colleges in Geneva, New York.~Photograph and notes by Thoma
B. Greenslade, Jr., Kenyon College!
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