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Defining random loose packing for nonspherical grains
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The concept of “random loose packing” (RLP) has evolved through extensive study of loose packings of
spheres, which has resulted in an accepted definition as the loosest packing that can be obtained by pouring
grains. We extend this consideration to packings of nonspherical grains (ellipsoids) formed by slow settling in a
viscous liquid, and perform a detailed analysis of the structural properties of the resulting packings. We find that
as in the case of spheres the loosest ellipsoid packings are generated for grains with high interparticle friction.
However, unlike spheres, these packings cannot be considered random as they have a significant degree of
orientational ordering that increases with the grain’s aspect ratio. This demonstrates that applying sedimentation
or pouring techniques that have become part of the commonly held definition of RLP, will not generate random
packings of ellipsoids. The consequences for the accepted definition of RLP and its applicability to nonspherical
grains is discussed.
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When a set of spherical grains is allowed to settle into
a packed state, a random packing will generally be formed,
with the density of the final assembly lying between the
so-called “random loose packing limit” (RLP) and “random
close packing limit” (RCP) [1–5]. Though these two limits
have been extensively studied, establishing their exact def-
initions has been a difficult challenge [6]. The concept of
the random close packing limit has been synonymous with
the idea of a densest random packing and is found to lie
at around 64% for spheres. An exact definition is made
complicated by the competition between order and density,
that allows one to generate increasingly dense packings at
the expense of increasing the order within the system. The
maximally random jammed state (MRJ) has been proposed
as a means of resolving these two competing effects, and
has a precise definition for frictionless hard particles as the
jammed packing that minimizes a chosen order parameter
[6].

The topic of random loose packing has previously been
examined in terms of packings of spherical grains, with several
very different definitions of RLP proposed. Bernal and Scott
simply considered RLP to be the random packing with the
minimum density and employed various methods in attempting
to achieve this, including tipping a cylindrical vessel on its
side and rotating it before slowly returning it to a horizontal
position [7,8]. It was found that friction played a key role
in achieving low-density packings and that a density of 0.57
could be achieved for nylon spheres with a rough surface
[9]. Onoda also considered RLP in these terms and more
precisely stated the definition as the “loosest possible random
packing that is mechanically stable” [3], finding a value of
�RLP = 0.555 ± 0.005, obtained when glass spheres were
sedimented in a gravity matched liquid (here mechanically
stable simply refers to the grains being at rest in mechanical
equilibrium, with the total net force on each grain being
zero). These definitions inherently assumed that the spheres
being considered were cohesionless. Dong et al. proposed a
definition of RLP that included systems of cohesive grains and
thus argued that due to the stability provided by the cohesion
forces, �RLP can range from 0 to 0.64 [4]. While more recent

work instead focused on a definition related to the actual
preparation method, with �RLP being defined as the “loosest
possible random packing that is mechanically stable that one
can achieve by pouring grains” [10] (this again inherently
assumes that the grains are cohesionless). Jerkins et al. also
consider the problem in terms of pouring or sedimenting grains
and found a value of �RLP = 0.550 ± 0.001 for glass spheres
sedimented via a fluidized bed technique [5]. This definition
which is based on preparation method has lead to a proposed
definition of a “random very loose packing” (�rvlp), as the
loosest mechanically stable random packing generated by any
preparation method [10].

In this paper we will extend this consideration to packings of
nonspherical grains (ellipsoids) and investigate the applicabil-
ity of these definitions. Based on previous definitions of RLP,
a clear first consideration is: does pouring (or sedimenting)
nonspherical grains result in a random packing? This is an
important question, as if in general it does not, then any
definition of RLP with such a basis may be of no use beyond
the idealized case of spheres. To be exact, we will refer in
this article to a sedimented loose packing density �SLP as the
lowest packing density generated by sedimenting (or pouring)
a noncohesive infinitely frictional set of grains. Some previous
studies utilizing spherical grains [5,10] have considered that
�SLP = �RLP. We will examine how �SLP for ellipsoids
depends on the grain’s aspect ratio and consider the structural
properties of the generated packings.

The properties of dense random packings of frictionless
elliptical grains have been studied both experimentally and
computationally [11–13]. Loose packings have however re-
ceived little attention. We employ the discrete element method
(DEM) to simulate the interactions between a set of three-
dimensional ellipsoids [14–16]. The normal force between
two contacting particles is given by

Fn = −knξn + Cnvn, (1)

where kn is a spring constant determining the stiffness of
the particles, ξn is the linear overlap of the particles, vn

is the relative normal velocity and Cn is a constant related
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to the coefficient of restitution. The tangential force is
given by

Ft = min

{
μFn,kt

∫
vtdt + Ctvt

}
, (2)

where the force vector Ft and velocity vt are defined in the
plane tangent to the surface at the contact point [16,17]. The
total tangential force, Ft , is limited by the maximum Coulomb
friction μFn, at which point the surface contact shears and
the particles begin to slide over one another. The grains are
sedimented in a viscous fluid, where the fluid is modeled using
the Stokes equations. The fluid drag force on each particle, FD ,
is given by

FD = −V ∇p + 1
2ρ|u − v|2CDA⊥(u − v), (3)

where V is the particle volume, p the fluid pressure, ρ the
fluid density, u the fluid velocity, CD the fluid drag coefficient,
and A⊥ the particle cross sectional area perpendicular to the
flow, which is numerically calculated [18]. We use a drag
coefficient given by Hölzer and Sommerfeld for nonspherical
particles [19]. A rotational drag term is also imposed, τD =
8πηr3[ 1

2 (∇ × u) − ω], where ω is the angular velocity of the
particle.

Our simulations are performed in a tall rectangular box,
with a fixed base and periodic boundary conditions at the sides.
Ellipsoids are placed at random locations and with random
orientations within the box (Fig. 1). The box has a height
h = 0.8 m and a width and depth of w = 0.1 m. Packings
were generated for prolate ellipsoids with aspect ratios α

ranging from 0.3 to 1.0, where for an ellipsoid defined by
the equation x2/a2 + y2/a2 + z2/b2 = 1, the aspect ratio α is

FIG. 1. (Color online) (a) Schematic of initial setup and final state
of simulation. (b) Illustration of a frictionless elliptical grain (top)
and a frictional grain (bottom) settling onto a surface composed of
elliptical grains. The frictionless grain slides into the position where
its center of mass is lowest, causing its axis to align in the plane
normal to gravity. The frictional grain is held in place at a random
angle due to frictional forces.

given as a = αb. The ellipsoids in each setup have the same
volume, which is chosen to be equal to the volume of a 2 mm
radius sphere. The base of the simulation box has a layer of
ellipsoids fixed in position at random orientations, so as to
ensure that the grains are settling onto a disordered surface.
This ensures that no ordering effects are caused by particles
simply aligning on a flat base.

The parameters chosen for the simulation are kn =
105 N/m, a restitution coefficient of e = 0.5, a particle density
D = 2.7 × 103 kg/m3, and values of interparticle friction
μ = 0 and μ = 1000. Values of viscosity ranging from η = 0
Pa s to η = 1 Pa s are examined. The fluid has a density
ρ = 103 kg/m3, giving an effective gravity for the particles in
the fluid of 0.63g. Slow settling of particles can be simulated
using a nearly gravity matched fluid and/or a high viscosity
value. As a gravity matched fluid mainly affects the vertical
motion of the particles, we employ a high viscosity fluid which
reduces both the vertical settling speed of the grains (their
terminal velocity) and also any lateral motions of the particles
as they settle. This ensures the minimal grain motion during the
settling process and leads to the loosest packing arrangements.

The packing fraction for the final static system is deter-
mined in a δ = 1 cm thick region centered in the vertical
direction. The final packing is around 5 cm high, so our sample
region is sufficiently distant from both the top and bottom of
the packing to be unaffected by any density variations at these
limits.

The final packing fractions plotted against aspect ratio for a
range of viscosities are shown in Fig. 2. The curves for both the
zero-friction and the high-friction case are shown. The final
packing fractions for zero-friction grains are independent of
the value of viscosity, even though the settling rate is greatly
reduced for higher viscosities. This is due to the ability of the
grains to freely slide against one another until they achieve
the required number of contacts necessary for mechanical
stability.

In the high-friction limit, the additional structural support
provided to the packing as a result of frictional contacts results
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FIG. 2. (Color online) Packing fraction variation with the el-
lipsoid aspect ratio for high-friction and zero-friction cases. The
zero-friction curves collapse onto a single line, with a maximum
packing fraction at an aspect ratio of around 0.7. For the high-friction
case, higher viscosities lead to looser packings across all aspect ratios.
The sedimented loose packing limit (�SLP) is reached at high viscosity
and high friction.
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in a reduction in packing fraction for all aspect ratios. As
the viscosity is increased, the packing fraction progressively
declines until the curves converge to a sedimented loose
packing limit �SLP. It can be seen that the curves for η =
1.0 Pa s and η = 0.5 Pa s are almost coincident, suggesting
that this is a sufficiently slow sedimentation rate to generate
packings that are representative of the loosest obtainable via
a sedimentation technique. Equivalent density packings are
also obtained for μ = 10 000, indicating that this is also
representative of the infinite friction limit.

The average number of grains in contact is one of the key
properties of granular packings that can be used to under-
stand both their geometrical properties and their structural
stability [20,21]. The early study of this quantity was due to
Maxwell [22], with more recent work by Bennet highlighting
its importance in understanding sphere packings [23]. The
standard isocounting conjecture, based on a simple application
of constraint theory, asserts that to constrain a system an
average of two contacts per degree of freedom df are required
(Z = 2df ) [12]. This would suggest a discontinuous jump
from Z = 6 to Z = 10 as we go from a sphere to a frictionless
uniaxial ellipsoids with an infinitesimal aspect ratio. However,
this has been shown to not be the case [24]. In Fig. 3, we see that
isocounting performs well for spheres with Z = 6, but there is
a smooth variation in Z with ellipticity from Z = 6 (spheres)
up to Z = 10 (large aspect ratio ellipsoids). It has however
been demonstrated that such underconstrained packings with
Z < 2df can in fact still be jammed [25].

When we introduce friction, again simple arguments based
on constraints suggest that for spheres a minimum number of
contacts Z = df + 1 (where df = 3 is the number of degrees
of freedom of a sphere) are required to constrain the system.
In Fig. 3 we see that this minimum number of contacts is
approached in the limit of high friction and high viscosity, with
our sphere packings having a value of Z � 4.2 for η = 1 and
μ = 1000. When we introduce ellipticity, the same number of
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FIG. 3. (Color online) Variation of the average contact number
Z with aspect ratio for the high friction-and zero-friction cases. The
average contact number for the zero-friction case varies smoothly
from Z = 6 to Z = 10 as the aspect ratio is varied, independent of
the viscosity used in the simulation. For the high-friction case (μ =
1000), Z decreases with increasing viscosity (η), tending toward a
value of Z � 4.2.

frictional contacts between grains are sufficient to constrain
any movement of the grains despite their additional degrees of
freedom. We find a minimum value of Z � 4.2 for ellipsoids
with aspect ratios over the full range from α = 1 to α = 0.3.
This is due to a frictional contact’s ability to constrain both
the rotational and translational degrees of freedom of a grain
at the contact point, providing additional mechanical stability
that allows stable packings to form at low densities.

We will now consider the ordering present in our packings
by quantifying the degree of orientational alignment of the
grains. The lowest energy position for a prolate ellipsoid
placed on a surface under the influence of gravity is for
its center of mass to be at the lowest possible height and
this will correspond to its semimajor axis lying flat in the
plane normal to the vertical direction. Monte Carlo pack-
ings of frictionless ellipsoids that incorporate a gravitational
energy have been found to have a considerable degree of
such ordering [26]. Here we examine the degree to which
gravity induces orientational alignment of the grains and
the roles that friction and liquid viscosity play. We quan-
tify the degree of orientational alignment using an order
parameter

χ
θ
= 3

2

{
1

N

N∑
i=1

cos 2

(
θi − π

2

)
− 1

3

}
, (4)

where θi is the angle between the semimajor axis of the
ith particle and the vertical axis [26]. If all grains have
random orientations, χ

θ
= 0, while if the grains all lie flat

χ
θ
= 1. We have also determined the more commonly used S2

order parameter [27], quantifying the degree of orientational
ordering of the major axes of the grains about their average
nematic director, and have found that this parameter follows
the same trends observed for χ

θ
.

Figure 4(a) shows the variation in χ
θ

for packings of ellip-
soids with μ = 0. For the zero friction case, all packings have
a significant degree of orientational ordering, with χ

θ
> 0.1

over the full range of ellipticities considered. Increasing
viscosity causes more orientationally ordered packings to
be formed for a given aspect ratio ellipsoid. This is due to
the larger degree of grain motion at low viscosities, which
leads to numerous collisions between grains before they have
dissipated their energy and come to rest. As the viscosity
is increased, the deposition of the grains becomes closer to
sequential deposition onto an already packed bed and thus
each grain is relatively unencumbered by interactions with
other grains that are depositing onto the packing surface. Each
grain can then slide into its equilibrium position corresponding
to the best available orientation nearest to pointing in the
plane normal to the vertical (see illustration in Fig. 1(b)).
Interestingly, although these packings have very high degrees
of orientational ordering, they have equivalent densities to
those obtained for MRJ packings of ellipsoids [27]. This shows
that when real granular systems are found to have densities near
to those in simulations of random packings, they may still
have a high degree of internal orientational ordering, which
can have a significant effect on their structural and mechanical
properties.

We see in Fig. 4(b) that for the high-friction grains the
opposite is true, with larger viscosities causing a decrease in
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FIG. 4. (Color online) Variation in the orientational order parameter χ
θ

for packings of ellipsoids with μ = 0 (a) and μ = 1000 (b).

the degree of orientational alignment. Higher viscosities cause
the grains to settle more gently onto the packing surface,
making it more likely that they obtain a statically stable
configuration where frictional contacts between grains support
a given grain at an orientation far from lying flat in the plane
normal to gravity. However, while friction does reduce the
degree of orientational alignment, a very significant amount
still remains. When we reach the sedimented loose packing
limit (�SLP) at high viscosities and high friction, the degree of
orientational ordering is small only for grains with low aspect
ratios, with χ

θ
< 0.1 for 1.0 � α � 0.7. As the ellipticity is

increased, a rapid increase in χ
θ

is observed with values of
up to χ

θ
= 0.4 found for the most elliptical grain considered

(α = 0.3). The high degree of ordering present in these
packings clearly shows that �SLP �= �RLP and thus definitions
of RLP based on a preparation method of slow pouring or

sedimenting are not applicable to systems of nonspherical
grains.

We have demonstrated that slowly settling a set of ellip-
soidal grains with high intergrain friction in a viscous liquid
produces a loose granular packing wherein the grains have a
high degree of orientational ordering. This settling technique
has been widely used both experimentally and computationally
to generate loose random packings of spheres and has become
part of the actual definition of RLP. These results demonstrate
that such a definition of RLP that is based on the preparation
method is not appropriate, as it at best has applicability only to
systems of perfectly spherical grains. We would thus propose
that a new definition of RLP is required that includes a reliable
measure of the degree of ordering present in the system
and in contrast to current definitions, is independent of the
preparation method used.
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