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0.1 The Artificial Neural Network

In the last twenty years, machine learning has exploded in popularity, and from
behind the scenes, it drives much of the modern economy. Machine learning encom-
passes a broad range of methods, but perhaps the most well known is the artificial
neural network and, in particular, deep learning, which employs the use of extremely
large neural networks for data classification, analysis and forecasting. Neural net-
works surfaced in force the 1980’s and had ’died’ by the end of the decade. Two
major problems beset them: the lack of computing power and the absence of huge
sets of labelled and unlabelled data. Such problems no longer exist and so they now
present realistic solutions to many problems that are usually extremely difficult for
computing machines.

0.1.1 What Neural Networks Do

One way of thinking about the function of an artificial neural network is as a method
of curve fitting for a set of noisy data. This idea is easily visualised for two dimen-
sional numerical data where, for example, we could be trying to find a function
that, given a set of inputs, would reliably reproduce a set of experimental results.
Experimental results come with inherent measurement errors so it often makes sense
to perform a least squares fitting in order to find the curve that best describes the
data.

Figure 1: Typically the datapoints will not lie along the line of best fit, but they
will lie very close to it. Reduction in experimetnal error can bring them closer but
this is often difficult.

If we train the network for long enough, it is possible that we can come arbitrarily
close to matching the datapoints exactly. Such training often takes a very long
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time, however. It is also equally likely that we might not, that we might get trapped
in a situation where we do not come close to a good fit, especially if the function
describing the data is a highly non-linear function of its arguments.

Convergence to a good solution is not guaranteed and even if it is, it might take so
long that we may know the outcome of a process that we wanted to predict before
the network can predict it. It therefore makes sense to ask ourselves: why exactly
are neural networks so useful and successful if we could use older, quicker methods
to find these best fit curves? The answer is that although neural networks are com-
putationally expensive to train, they can quickly and cheaply produce predictions
when they have been trained well. They can be made to be extremely insensitive to
noisy data and so can predict outcomes that they have never experienced to a high
degree of accuracy. Neural networks are also extremely good at picking up on non-
linear relationships that humans find difficult to see and so can tell us about aspects
of data that would otherwise go unnoticed. Perhaps the most important use of the
neural network is that they can process numerical representations of non-numerical
data and identify patterns. This concept extends to the idea of natural language
forecasting, image recognition, image colorisation and video editing. Indeed, even
for purely numerical data, neural networks deal with high-dimensional data with
little more difficulty than they do with data we can represent in two dimensions.

Figure 2: An example of a network overfitting to a data set. The fit may represent
this particular set well, but it will not in general be able to give good predictions for
values that it has never encountered which lie between the known ones. This occurs
when a neural network has been trained for too long.

Of course, we have to be careful. Neural networks have been popularised in the me-
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dia as the general solution to a very broad class problems and the answer to general
artificial intelligence. Although they are highly adaptable systems, deep artificial
neural networks are plagued with many problems and it is a veritable skill to employ
them, to structure the information that the network needs to learn in a way that
it can learn it. We noted before that these networks converge painfully slowly and
this problem is exacerbated further when the networks become deeper and deeper.
One has to be careful too that the networks are not over-trained, for if they are, we
meet the problem of over-fitting.

These problems are only the beginning. Many different structures of neural network
have been invented to overcome the various shortcomings of what we will see as the
feedforward network. Such structures allow us to analyse different types of data.
Recurrent Neural Networks, for example, often deal with time-series data, whereas
Convolutional Neural Networks were constructed to efficiently process images.

Progress in the field of neural networks has, in a sense, slowed once more and there is
no guarantee that it will start again. Of course there are now more machine learning
papers being published than ever before, and, even if the progress for now is slow
and incremental, there have been great strides made in the research in recent years.

0.1.2 How (Small) Neural Networks Work

The best place to start is with the concept of a perceptron. Perceptrons were the
earliest model of an artificial neural network, indeed they are the representation of
the ’neuron’ in the neural network. The classical idea of a perceptron is of an object
that takes a weighted sum of values as an input. If the input reaches a particular
threshold, then the neuron will ’activate’ or ’fire’. The neuron therefore has two
choice, to fire or not fire, which lends itself well to a binary representation.
We say then, that the neuron is a function f(x) that fires if the sum of the inputs
Bj, which are each assigned a ’weight’ aj, a number that designates how ’important’
that input is, is greater than some threshold γ. That is:

f

( n∑
i

aiBi

)
= f(α) =

{
1 α ≥ γ

0 α < γ.
(1)

A good example I have seen to explain this is essentially the decision a person would
take whether or not to go out and buy an ice cream. Consider that we have three
inputs, whether or not it is raining, how expensive the ice cream is and whether
we have recently broken up with someone. Some factors will be more important
than others. Imagine that it is not raining, and we have not recently broken up
with someone, but we don’t like spending money at all. Then the perceptron would
assign a large weight to the cost and we would not buy the ice cream. Now consider
that ice creams are expensive and it is still not raining, but we have recently been
broken up with. Perhaps this break-up is the most important factor so we assign
it extremely high importance, more than the cost of the ice cream, then when we
sum up how important each of these is, it exceeds the threshold and we buy the ice
cream.



0.1. THE ARTIFICIAL NEURAL NETWORK 5

Figure 3: We can think of the perceptron as a machine that can make a binary
choice depending on the information it is fed.

We can make factors very unimportant by giving them large negative weight values
and we can assign them high importance by assigning them large, positive weight
values. The perceptron as a decision function is a step function. Only if we exceed
the threshold will it activate, otherwise it will always be zero.

Figure 4: The traditional perceptron step activation
function.

We can take this idea fur-
ther, by using new ’activation
functions’. The activation
functions are important, since
they make the network non-
linear, which allows it to cre-
ate non-linear approximations
to functions that describe the
input data. In most practical
applications the data will be
extremely non-linear and even
if it is not, non-linear acti-
vation functions can describe
linear data. One of the first
alternatives to the step acti-
vation function that was pro-
posed was the sigmoid activa-
tion function, which is given
by the expression:
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f(x) =
1

1 + e−x
. (2)

There are a variety of reasons that this function was chosen, but most of all because
it resembles the step function, it has an easily computable derivative and it forces
the output to lie in the range [0, 1]. This is extremely useful because now we are
able to do more than just classify data into two categories. We can now use the
perceptron to learn to reproduce any normalised output. Other choices exist, such
as the hyperbolic tangent activation function and the now standard ReLU, or rec-
tified linear unit, activation function. The latter is one of the innovations that was
developed to combat the problem of vanishing gradient in deep neural networks that
we mentioned earlier.

Figure 5: The sigmoid activation function.

But now what do the outputs
of the perceptron even mean?
Well, it’s up to us how we in-
terpret them and it will de-
pend on how the input data
is structured, but let us think
back to the ice cream exam-
ple from before. The percep-
tron output could now repre-
sent the probability that given
a set of conditions we go out
and buy an ice cream. This is
perfectly reasonable because
probability values can only
take values between 0 and 1.
We must now choose weights to reflect these probabilities. Probability is fundamen-
tal to forecasting, so it is no surprise that we chose an activation function to cast
our input space into the range [0, 1].

Now if we think about it, we’ve reached a problem. Consider that somehow we know
how likely it is that we’ll buy an ice cream, given specific inputs, for all possible
combinations of conditions in the input space, how do we know what the values of
the weights should be? This is the where the learning comes into play. We must
find a way to teach the perceptron to teach itself the correct weights. To do this,
we start with random initial weights and teach the network to correct them until it
correctly guesses the probability that we buy the ice cream.

0.1.3 Perceptron Learning

It is a little more difficult to develop the method in the case of the sigmoid activation
function, as opposed to the Heaviside activation function, but it is perfectly manage-
able and will give us a better starting point for proper backpropagation. Consider
then that we have a sigmoid perceptron with n inputs and m training vectors, that
is m sets of outcomes for which we know the probabilities. Then if we initialise
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the weights randomly using the Gaussian distribution N (0, 1), the output of the jth

input vector is:

f

( n∑
i

wia
j
i

)
= αj where βj represents the actual probability. (3)

We now use the standard notation wi to refer to the ith weight and ai the ith input
value. In order to quantify how close we are to the correct answer, we need to define
what is called a cost function. The most common choice is the mean square error
function, for it has a convenient derivative:

E =
1

2
(αj − βj)2 (4)

Now that we know how close we are to the correct solution, we need to establish
how much a change in the value of the weight would change the value of the output.
This will give us an idea of how to alter the weights and, importantly, whether to
make them bigger or smaller. Another way of looking at this is that this allows us
to see how important or unimportant certain inputs are to the result of the output.
We now use the method of gradient descent. Using Taylor’s theorem, we investigate
how a small perturbation of the activation function affects the error. Up to first
order:

E(wk + ∆wk) = E(wk) +
dE(wk)

dwk

∆wk (5)

Hence we aim to evaluate the derivative of the cost function with respect to the
weight. To do this we will need to use the chain rule.

dE(wk)

dwk

=
dE(wk)

f(wk)

df(wk)

dwk

=
dE(wk)

f(wk)

df(wk)

dg(wk)

dg(wk)

dwk

, g(wk) =
n∑
i

wia
j
i (6)

dE(wk)

dwk

=

(
f(wk)− β

)(
f(wk)(1− f(wk))

)(
ajk

)
(7)

where we obtain the term in the last bracket by performing the differentiation:

d

dwk

n∑
i

wia
j
i =

n∑
i

δkia
j
i

Each of the three bracketed terms are easily computed. Indeed, we chose the sigmoid
activation function because, as we see in the second bracket, its derivative is simply
a function of itself. This afford easy implementation without the need to worry
about numerical differentiation. We mentioned earlier that problems arise with
over-fitting and indeed they can obviously arise from under-fitting. It is actually
the case that for good accuracy we want the network to train relatively slowly, so
we now introduce a training rate ε to slow down our improvement. This can help
avoid both fitting problems. Finally then, we update the weights according to:
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wk → wk − ε
dE(wk)

dwk

= wk − εδkajk (8)

Typically a good initial value for the training rate is 0.01 although varying it may
be necessary to achieve good convergence.

Using these basic principles we’ll develop the Backpropagation algorithm for updat-
ing deep neural network weights. Stated rather simply, we train a sigmoid perceptron
as follows:

Algorithm 1 Sigmoid Perceptron Training Algorithm

1: Initialise weights according to N (0, 1).
2: Push data vector through the perceptron.
3: Compute δk.
4: Compute the new weight wk → wk − εδkak
5: Repeat with each input vector until required accuracy is achieved.

0.2 Deep Neural Networks

When we make decisions about things, we often make decisions based on decisions
we have already concluded given some collection of information. This is where the
power of neural computing becomes clear. We more often call the sigmoid perceptron
a neuron. Each neuron can make a single decision when it is fed finitely many pieces
of information. Consider the ice cream situation again, where now a separate neuron
will use the same information to decide where we get the ice cream from. Perhaps
if it is raining we will be more likely to go to the nearest shop if it is raining, but
maybe if the person we have recently broken up with works there we would prefer to
avoid it. Now we can make two decisions based on the information that we originally
had. Now, some shops have a better selection of ice creams than others so let us now
feed our two decisions into another neuron. This neuron might tell us how likely we
are to be somewhat happy by the end of the day. If we go to the nearest shop we
can get our favourite ice cream for sure so perhaps we will be very happy, especially
if we have not recently broken up. Perhaps if it is raining very heavily, and we do
not want an ice cream, then maybe we won’t be very happy. We structure these
decisions with the following network:
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Figure 6: A neural network with three layers. We consider the inputs to be the
outputs of unseen neurons, which the two neurons in the middle layer take as inputs.
The last layer has a single neuron.

This neural network then has three layers. There are two layers of computing neu-
rons, one with two neurons and one with a single neuron that takes as inputs the
outputs of the previous two neurons. We consider the original three inputs to be
neurons in some sense, but there are no weights that relate them to a previous
layer, so we use dots instead to highlight that they are different. Now that we re-
late multiple neurons in one layer to multiple neurons in the next, we must use a
matrix to contain the weights. A network can have any number of layers that we’d
like, limited of course in practicality by the computing power that we have available.

Consider then that a deep neural network has m layers and the ith layer of the
network has ni neurons. We store the weights between relate the outputs αi of the
ith layer to the kth input ai+1 of the (i+1)th layer with an ni×ni+1 matrix of random
weights W i+1.

ni∑
j=1

W i+1
jk αi

j = ai+1
k (9)

We can improve this relationship a little bit more by introducing something called
the bias. The bias is a another weight that we introduce for each layer. It functions
much like the constant term in a linear equation by allowing us to shift the value of
the weighted sum up or down. This is extremely important for convergence to a good
solution, so we must always remember to include the bias. There is one bias neuron
for each layer. The output of the bias term is always one, so the input for each
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neuron in the ith layer has an extra constant bi. We then update our relationship
to:

ni∑
j=1

W i+1
jk αi

j + bi = ai+1
k . (10)

Figure 7: We can have many, many layers in a neural network. Each layer has a
single bias neuron which contributes once to the input of each neuron in that layer.
This is represented by the purple neuron in the image above.

We should now be careful to use the correct terminology. We call the first layer the
input layer, the last layer the output layer and everything in between is called a
”hidden layer”. When we add neurons to a network, we have two choices, we can
add neurons to a new layer or we can add them to an existing one. Consider that we
have a three-layer neural network, so one hidden layer. We might want to improve
the accuracy of the network, since adding more neurons allows us to identify more
patterns. How do we choose where to put them? Well putting them in the one ex-
isting hidden layer will help us ’remember’ more patterns but putting them in new
hidden layers will help us to identify more abstract patterns, but the convergence
will be much slower. We can decide to do one, or both of these procedures but
we must be careful. If we only have three layers, adding many neurons to the one
hidden layer encourages the network to only learn what it has been given and make
it unable to produce good results when it encounters new inputs. Adding too many
layers can be counter-productive, since highly abstract features may not really exist
in the data. In such a case we add a lot of computing time for little gain.

In physics, one always tries to reduce the number of free parameters in a model.
Indeed the Standard Model has been reduced to a mere nineteen parameters nec-
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essary to measure experimentally. Neural networks are then anomalous in a sense,
since they rely on maximising the number of free parameters. Many modern neural
network models now employ massively deep and dense networks with millions of
neurons and hence millions of free parameters, the weights, that must be tuned. It’s
easy to see how they can quickly become black boxes, the meaning of their opera-
tions difficult or even impossible to decipher. Training these networks is therefore
very time consuming.

0.2.1 The Backpropagation Algorithm

It was mentioned earlier that interest in neural networks had died by the end of the
eighties. This was largely the result of the inability to train networks with more
than two layers. It was obvious how to train multiple Heaviside perceptrons when
the input was connected directly to the output through one layer of functions, but
no one knew how to correct the weights in the previous layers. The reason for this
is obvious: we know what we want the output to be, since we want the network to
reproduce some data that we know. It is a subtler problem however, to adjust the
weights for a hidden layer because we don’t actually know what the outputs of the
hidden layer should be. When the backpropagation algorithm was invented, which
allowed us to perform exactly that kind of training for any number of layers. Fortu-
nately it is, in concept, extremely simple. All we need to know is how to compute
the necessary weight changes for the output layer, and how to use the chain rule
recursively.

Now, computing the necessary change for the outer layer is a little bit different this
time, since we will no longer assume the presence of a sigmoid activation function
or that the output layer has only one neuron. We will also account for other cost
measures.

dE(Wm
jk)

dWm
jk

=
dE(Wm

jk)

df(Wm
jk)

df(Wm
jk)

dg(Wm
jk)

dg(Wm
jk)

dWm
jk

(11)

=
dE(Wm

jk)

df(Wm
jk)

df(Wm
jk)

dg(Wm
jk)

d

dWm
jk

( nm∑
i=1

Wm
ik α

m−1
i + bm−1

i

)

=
dE(Wm

jk)

df(Wm
jk)

df(Wm
jk)

dg(Wm
jk)

αm−1
j = δmk α

m−1
j

Now that we have the δmk , which is a measure of error for the outer layer, we
can calculate the δm−1

k , δm−2
k , ..., δ1k recursively in that order. Since we know the

functional dependence of all of the outputs of one layer on all of the outputs on the
previous layer, we need merely use the chain rule. Consider then that we know the
error of the kth neuron in the (l + 1)th layer, δl+1

k . Then we relate to it the error of
the ith in the lth layer, δli, using:

δli =
dE(W l+1

ik )

df(W l+1
ik )

df(W l+1
ik )

dg(W l
ji)

=
dE(W l+1

ik )

dg(W l
ji)

=
dE(W l+1

ik )

dg(W l+1
ik )

dg(W l+1
ik )

dg(W l
ji)

(12)
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=
dE(W l+1

ik )

dg(W l+1
ik )

(
d

dg(W l
ji)
g(W l+1

ik , f(g(W l
ji)))

)
=
dE(W l+1

ik )

dg(W l+1
ik )

(
W l+1

jk

df(W l
ji)

dW l
ji

)
(13)

=⇒ δli = δl+1
k

(
W l+1

jk

df(W l
ji)

dW l
ji

)
(14)

Now that we can compute the error for any given layer, we may compute the neces-
sary change of weight for the neurons in each layer to train the network. We state
the backpropagation algorithm as follows:

Algorithm 2 Backpropagation Algorithm

1: Initialise weights according to N (0, 1).
2: Feed data through the network.
3: Compute the outer layer error δk..
4: Compute the hidden layer errors δli.
5: Compute the gradient of the error δl+1

i alk.
6: Determine the change in the value of the weights W l

ki → W l
ki − εδl+1

i alk.
7: Determine the change in the value of the bias weight blj →→ blj − εδlj.
8: Repeat until required accuracy, or maximum accuracy, is achieved.

The backpropagation algorithm is most useful for collections of independent data
vectors and is most effective for shallower networks. By using stochastic anneal-
ing and dropout methods, among others, one can achieve better convergence. For
time series we would achieve better results using what are called Recurrent Neural
Networks and their particularisation, the Long Short-Term Memory network.


