Theorem 0.1 (Rolles Theorem) Let f be a continuous real valued function defined on some interval [a, b] & differentiable on all (a, b). If f(a) = f(b) = 0 then \exists some $s \in [a, b]$ s.t. f'(s) = 0.

Proof f is continuous on [a, b] therefore assumes absolute max and min values on [a, b]. These can only occur at :

- 1. Points on [a, b] where f'(x) doesn't exist.
- 2. The end points a&b.
- 3. Some internal point s where f'(s) = 0
- 1. Void by hypothesis (f is continuous).
- 2. If either the end points a&b are a max or min then f is a constant function and s can be taken anywhere in [a, b].
- 3. If a max or min occurs at some internal point s in [a,b] then f'(s)=0 and we have a point for the theorem.

Theorem 0.2 (Mean Value Theorem) Let f be a continuous real valued function defined on some interval [a,b] & differentiable on all (a,b). Then \exists some $s \in [a,b]$ s.t. a < s < b & $\frac{f(b)-f(a)}{b-a} = f'(s)$

Proof Let $g(x):[a,b] \Longrightarrow R$ be defined by

$$g(x) = f(x) - \frac{b-x}{b-a}f'(b) - \frac{x-a}{b-a}f'(a)$$

Applying Rolles Theorem to g on $[a, b] \exists$ some $s \in [a, b]$ s.t. g'(s) = 0

$$\Rightarrow g'(s) = f'(s) - \frac{f(b) - f(a)}{b - a}$$

$$\Rightarrow \frac{f(b) - f(a)}{b - a} = f'(s)$$

as required

Theorem 0.3 (Cauchy Mean Value Theorem) Let $f \ \mathcal{E} \ g$ be continuous real valued functions defined on some interval [a,b] and differentiable on all (a,b). Then \exists some $s \in R$ s.t. (a < s < b) \mathcal{E}

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(s)}{g'(s)}$$

when g'(s) & g(b) - g(a) are both not 0.

Proof Considder $h:[a,b] \Longrightarrow R$ defined by

$$h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a))$$

then

$$h(a) = f(a)g(b) - f(b)g(a) = h(b)$$

and h satisfies Rolles Theorem

The result follows imediately.

Theorem 0.4 (Taylors Theorem) Let f be a continuous real valued function defined on some interval containing s, s + h $(s, h \in R)$. Then

$$f(s+h) = f(s) + \sum_{n=1}^{k-1} \frac{h^n}{n!} f^{(n)}(s) + \frac{h^k}{k!} f^{(k)}(s+\theta h)$$

for some $\theta \in R$ s.t. $(0 < \theta < 1)$.

Proof Let $p:[a,b] \Longrightarrow R$ be defined by

$$p(t) = f(s+th) - f(s) - \sum_{n=1}^{k-1} \frac{t^n h^n}{n!} f^{(n)}(s)$$

by calculation it is clear $p^{(n)}(0) = 0$ for $n = 0, 1, \dots, k-1$

$$\implies if \ q(t) = p(t) - p(1)t^k$$

 $\forall t \in [0, 1] \text{ then } q^{(n)}(0) = 0 \& q(1) = 0$

Applying Rolles Theorem to q on [0, 1] we deduce the existence of $t_1 \in R$ s.t. $(o < t_1 < 1) \& q'(t_1) = 0$.

Subsequently applying Rolles Theorem to q' on $[0, t_1]$ we deduce the existence of $t_2 \in R$ s.t. $(0 < t_2 < t_1) \& q^{ii}(t_2) = 0$

Continuing in this fashion, applying Rolles Theorem to $q^{ii}, q^{iii}, \ldots, q^{(k-1)}$ we deduce the existence of t_1, t_2, \ldots, t_k) s.t $(0 < t_k < \ldots < t_1 < 1)$ & $q^{(n)}(t_k) = 0$, Let $\theta = t_k$. Then $(0 < t_k < 1)$ &

$$0 = \frac{1}{k!} q^{(k)}(\theta) = \frac{1}{k!} p^{(k)}(\theta) - p(1) = \frac{h^k}{k!} f^{(k)}(s + \theta h) - p(1)$$

$$\implies f(s+h) = f(s) + \sum_{n=1}^{k-1} \frac{h^n}{n!} f^{(n)}(s) + p(1)$$

$$\implies f(s+h) = f(s) + \sum_{n=1}^{k-1} \frac{h^n}{n!} f^{(n)}(s) + \frac{h^k}{k!} f^{(k)}(s + \theta h)$$

Theorem 0.5 Let $a \& b \in \mathcal{R}, (a < b)$. Then any continuous real valued function on [a, b] is Riemann Integrable.

Proof Let f be a continuous real valued function on [a,b]. Then f is bounded above and below on [a,b].

Let $\epsilon>0$ be given. Then \exists some $\delta>0$ s.t. $|f(x)-f(y)|<\epsilon$ \forall $x,y\in[a,b]$ s.t. $|x-y|<\delta$

Choose some partion P on [a, b] s.t. the length of each subinterval is $< |\delta|$. Where $P = \{x_0, x_1, \ldots, x_n\}$ and $a = x_0 < x_1 < \ldots < x_n = b$.

If $x_{i-1} < x < x_i$ then $|x_i - x| < \delta$

$$\implies f(x_i) - \epsilon < f(x) < f(x_i) + \epsilon$$

$$\implies f(x_i) - \epsilon < m_i < M_i < f(x_i) + \epsilon$$

Where $m_i = \inf\{f(x) : x_{i-1} < x < x_i\}$ and $M_i = \sup\{f(x) : x_{i-1} < x < x_i\}$

$$\implies \sum_{i=1}^{n} f(x_i)(x_i - x_{i-1}) - \epsilon(b - a) \le L(P, f) \le U(P, f) \le \sum_{i=1}^{n} f(x_i)(x_i - x_{i-1}) + \epsilon(b - a)$$

Where L & U are the upper and lower sums of P on [a, b].

$$\implies 0 \le \mathcal{U} \int_a^n f(x) dx - \mathcal{L} \int_a^b f(x) dx \le U(P, f) - L(P, f) \le 2\epsilon (b - a)$$

Solving the inequality for any $\epsilon > 0$

$$\mathcal{L} \int_{a}^{b} f(x) dx \le \mathcal{U} \int_{a}^{b} f(x) dx$$

 $\implies f$ is Riemann Integrable.

Theorem 0.6 (Fundamental Theorem of Calculus) Let f be a continuous real valued function on [a, b] where (a < b) then is

$$F(x) = \int_{a}^{x} f(t)dt$$

then

$$F'(x) = f(x)$$

Proof Let $F(s) = \int_a^s f(t)dt$. Now f is continuous at $x \Longrightarrow$ given any $\epsilon > 0$ \exists some $\delta > 0$ s.t. $|f(t) - f(x)| < \frac{1}{2}\epsilon \ \forall t, x \in [a, b]$ s.t. $|t - x| < \delta$ now

$$\frac{F(x+h) - F(x)}{h} - f(x) = \frac{1}{h} \int_{x}^{x+h} f(t)dt - f(x) = \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x))dt$$

if $0 < |h| < \delta \& x + h \in [a, b]$ then

$$\left| \int_{x}^{x+h} (f(t) - f(x)) dt \right| < \frac{1}{2} \epsilon |h|$$

$$\implies \left| \frac{F(x+h) - F(x)}{h} - f(x) \right| < \frac{1}{2} \epsilon < \epsilon$$

$$\implies F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x)$$

Theorem 0.7 Let f_1, f_2, \ldots be a sequence of continuous real valued functions that converge uniformly to some real valued function f on [a,b] Then

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n}(x)dx = \int_{a}^{b} f(x)dx$$

Proof Let $\epsilon > 0$ be given. Choose some ϵ_0 s.t. $0 < \epsilon_0(b-a) < \epsilon$. Then \exists some $N \in \mathcal{N}$ s.t. $|f_n(x) - f(x)| < \epsilon_0 \ (\forall x \in [a,b] \& n \ge N)$ now

$$-\int_{a}^{b} |f_{n}(x) - f(x)| dx \le \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f_{n}(x) - f(x)| dx$$

$$\Longrightarrow |\int_a^b f_n(x) dx - \int_a^b f(x) dx| \le \int_a^b |f_n(x) - f(x)| dx \le \epsilon_0(b - a) < \epsilon \ when n \ge N$$

The Result therefore follows.

Theorem 0.8 (Bolzano Weierstrass Theorem) Every bounded series of complex numbers has a convergent sub-sequence.

Proof Let z_1, z_2, \ldots, z_n be a bounded series of complex numbers & let $z_n = x_n + iy_n$

The Bolzano Weierstrass Theorem for sequences of real numbers guarantees the existence of a sub-sequence z_{n1}, z_{n2}, \ldots of the given series s.t. the real parts x_1, x_2, \ldots converge.

A further application of this theorem allows us to replace this sub-sequence with a further subsequence to ensure that the imaginary parts y_1, y_2, \ldots converge as well.

If

$$\lim_{n \to +\infty} z_n = l \& \lim_{n \to +\infty} x_n = \lambda \& \lim_{n \to +\infty} y_n = \mu$$

then $l = \lambda + \mu$

 $\implies z_{n1}, z_{n2}, \dots$ is a convergent subsequence of z_1, z_2, \dots, z_n

Theorem 0.9 (Cauchy's Criterion for Convergence) An infinite series of complex numbers is convergent IFF it is a Cauchy Sequence

Proof 1^{st} show that convergent sequences are Cauchy Sequences Let z_1, z_2, \ldots be a convergent sequence of complex numbers & Let $\lim_{n \to +\infty} z_n = l$

Let $\epsilon > 0$ be given. Then \exists some $Nin\mathcal{N}$ s.t. $|z_n - l| < \frac{1}{2}\epsilon$ when $(n \geq N)$. If $m\&n \geq N$ then $|z_m - l| < \frac{1}{2}\epsilon$ and $|z_n - l| < \frac{1}{2}\epsilon$

$$\implies |z_m - z_n| = |(z_m - l) - (z_n - l)| < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon$$

$$\implies |z_m - z_n| < \epsilon \implies z_1, z_2, \dots isaCauchySequence.$$

 2^{nd} show that and Cauchy Sequence is convergent

Cauchy Sequences are bounded therefore have convergent subsequences, ie z_1, z_2, \ldots has a convergent sub-sequence z_{n1}, z_{n2}, \ldots & $\lim_{j \to +\infty} z_{nj} = l$ We claim $\lim_{n \to +\infty} z_n = l$

Let $\epsilon > 0$ be given. Then \exists some $N \in \mathcal{N}$ s.t. $|z_m - z_n| < \frac{1}{2}\epsilon \ \forall \ m\& \ n \geq N$) Let j be chosen large enough s.t. $n_j \geq N\& \ |z_{nj} - l| < \frac{1}{2}\epsilon$

$$\implies |z_n - l| \le |z_n - z_{nj}| + |z_{nj} - l| \le \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon$$

$$\implies |z_n - l| < \epsilon \implies \lim_{n \to +\infty} z_n = l$$

Theorem 0.10 Let D be a subset of C & let $f_1, f_2, ...$ be a sequence of of continuous functions mapping $D \Rightarrow C$ which is uniformly convergent on D to some $f: D \Rightarrow C$. Then f is continuous.

Proof Let $w \in D$. R.T.P f is continuous at w.

Let $\epsilon > 0$ be given then \exists some $\delta > 0$ s.t. $|f(z) - f(w)| < \epsilon \ \forall \ z, w \in D$ s.t. $|z - w| < \delta$.

Now we can find some $N \in \mathcal{N}$ s.t. $|f_n(z) - f(z)| < \frac{1}{3}\epsilon \,\forall \, n \geq N \,(n \, is \, independent \, of \, N)$. Choose any n s.t. $n \geq N$ now we can find some $\delta > 0$ s.t.

$$|f_n(z) - f_n(w)| < \frac{1}{3}\epsilon \ \forall \ z, w \in \ D|z - w| < \delta$$

But then

$$|f(z) - f(w)| < |f(z) - f_n(z)| + |f_n(z) - f_n(w)| + |f_n(w) - f(w)| < \frac{1}{3}\epsilon + \frac{1}{3}\epsilon + \frac{1}{3}\epsilon = \epsilon$$

$$\implies |f(z) - f(w)| < \epsilon \text{ when } |z - w| < \delta$$

 $\implies f$ is continuous at w.

Theorem 0.11 (Alternating Series Test) Let a_1, a_2, \ldots be non-negative real numbers. Suppose $a_1 \geq a_2 \geq \ldots$ & $\lim_{n \to +\infty} a_n = 0$ Then,

$$\sum_{n=1}^{+\infty} (-1)^{n-1} a_n \text{ is convergent}$$

Proof For each $m \in \mathcal{N}$ let $s_m = \sum_{n=1}^m (-1)^{n-1} a_n$

$$now \ s_{2k+1} = s_{2k} - a_{2k} - a_{2k+1} \le s_{2k-1}$$

and
$$s_{2k+2} = s_{2k} + a_{2k+1} - a_{2k+2} \ge s_{2k} \ \forall \ k \in \mathcal{N}$$

Therefore the sub-sequence s_1, s_3, s_5, \ldots is non-increasing,

And the sub-sequence s_2, s_4, s_6, \ldots , is non-decreasing.

But $s_2 \leq s_{2k} \leq s_{2k-1} \leq s_1$. Therefore these subsequences are bounded, thus convergent, and also share same limit. Because

$$\lim_{k \to +\infty} s_{2k} - \lim_{k \to +\infty} s_{2k-1} = \lim_{k \to +\infty} (s_{2k} - s_{2k-1}) = \lim_{k \to +\infty} a_{2k} = 0$$

We Claim $\sum_{n=1}^{+\infty} (-1)^{n-1} a_n = s$, $s = \lim_{k \to +\infty} s_{2k} = \lim_{k \to +\infty} s_{2k-1}$ Let $\epsilon > 0$ be given. Then $\exists K_1, K_2 \in \mathcal{N}$ s.t.

$$|s_{2k}-s|<\epsilon \ when \ k\geq K_1 \ \& \ |s_{2k-1}-s|<\epsilon \ when \ k\geq K_2$$

Choose N s.t. $N \geq 2K_1 - 1 \& N \geq 2K - 2$ Then

$$|s_m - s| < \epsilon \ when \ m \ge N$$

$$\implies \sum_{n=1}^{+\infty} (-1)^{n-1} a_n = \lim_{n \to +\infty} s_m = s$$

Theorem 0.12 (Cauchy Product) The Cauchy Product $\sum_{n=1}^{+\infty} c_n$ of two absolutely convergent infinite series $\sum_{n=1}^{+\infty} a_n$ & $\sum_{n=1}^{+\infty} b_n$ is itself absolutely convergent and

$$\sum_{n=1}^{+\infty} c_n = \left(\sum_{n=1}^{+\infty} a_n\right) \left(\sum_{n=1}^{+\infty} b_n\right)$$

Proof OMITTED

Theorem 0.13 Let $\sum_{n=0}^{+\infty} (z-z_0)^n$ be a Power Series with radius of convergence R_0 & let s(z) be the sum of the power series at those complex numbers z for which the series converges. Then

- 1. If $R_0 = +\infty$ then s(z) is a continuous function defined on the complex plane.
- 2. If $R_0 < +\infty$ then s(z) is a continuous function defined over the entire disk $\{z \in \mathcal{C} : |z-z_0| < R_0\}$ bounded by the circle of convergence of the series.

Proof Let $z_1 \in \mathcal{C}$ satisfy $|z_1 - z_0| < R_0$. Then we can choose R st.

$$|z_1 - z_0| < R < R_0 \ (R < +\infty)$$

 $\implies \exists some \ w \in \mathcal{C} \text{ s.t. } R < |w| < R_0 \& \sum_{n=1}^{+\infty} a_n w^n \ converges$

Choose some A > 0 $A \in \mathcal{R}$ s.t. $|a_n w^n| \le A^{n-1} n$

Set $\rho = \frac{R}{|w|} \& M_n = A\rho^n$

If $|z - z_0| < R$ then $|a_n(z - z_0)^n| \le |a_n| R^n \le A \rho^n = M_n \ \forall n$ Also $\sum_{n=1}^{\infty} +\infty M_n$ converges to $\frac{A}{1-\rho}$

By the Weierstrass M-test the P-series $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$ converges uniformly on disk $\{z \in \mathcal{C} : |z - z_0| < R\}$

- \implies the restriction of the function s to the disk is continuous & in particular is continuous arround z.
 - \implies we deduce s is continuous in all C when $R_0 = +\infty$
 - \implies and is continuous inside the circle of convergence if $R_0 < +\infty$