Theorem 0.1 (Rolles Theorem) Let f be a continuous real valued function
defined on some interval [a,b] & differentiable on all (a,b). If f(a) = f(b) =
0 then 3 some s € [a,b] s.t. f'(s) =0.

Proof f is continuous on [a,b] therefore assumes absolute max and min
values on [a, b]. These can only occur at :

1. Points on [a,b] where f'(z) doesn’t exist.

2. The end points a&zb.

3. Some internal point s where f'(s) =0
1. Void by hypothesis (f is continuous).
2. If either the end points a&b are a max or min then f is a constant function
and s can be taken anywhere in [a, b].
3. If a max or min occurs at some internal point s in [a, b] then f'(s) = 0
and we have a point for the theorem. |

Theorem 0.2 (Mean Value Theorem) Let f be a continuous real valued
function defined on some interval [a,b] & differentiable on all (a,b). Then 3
some s € [a,b] s.t. a < s<b & % = f'(s)

Proof Let g(x) : [a,b] = R be defined by

= g/(s) = 1) - L=
- f(bz:g(a) _ f’(S)

as required |

Theorem 0.3 ( Cauchy Mean Value Theorem ) Let f & g be continuous
real valued functions defined on some interval [a,b] and differentiable on all
(a,b). Then 3 somes € R s.t. (a<s<b) &

f() = fla) _ f'(s)
g(b) —g(a)  g'(s)

when ¢'(s) & g(b) — g(a) are both not 0.




Proof Considder h : [a,b] = R defined by

h(z) = f(z)(g(b) — g(a)) — g(x)(f(b) — f(a))
then
h(a) = f(a)g(b) — f(b)g(a) = h(b)
and h satisfies Rolles Theorem
The result follows imediately. |

Theorem 0.4 (Taylors Theorem) Let f be a continuous real valued function
defined on some interval containing s,s + h (s,h € R). Then

Fls ) = £(5) 4 3 o F(s) + 1 709+ 0m)

for some 8 € R s.t. (0<0<1).
Proof Let p: [a,b] = R be defined by

PO) = Fls ) = £(5) = 3 e

|
- -

F(s)
by calculation it is clear p™(0) =0 forn=0,1,...,k—1

= if q(t) = p(t) — p(1)t"
Vt € [0, 1] then ¢™(0) =0 & ¢(1) =0
Applying Rolles Theorem to q on [0, 1] we deduce the existence of t; € R
st. (o<t <1) & ¢(t1) =0.

Subsequently applying Rolles Theorem to ¢' on [0,t;] we deduce the exis-
tence of ty € Rs.t. (0 <ty <t) & ¢"(ta) =0

Continuing in this fashion, applying Rolles Theorem to ¢%,q¢", ... q*="
we deduce the existence of t1,ts,... ) st (0 < & < ... < t; < 1) &
q(")(tk) =0, Let 8 = t;. Then (0 <t < 1) &

0= 1) = Lo9) - p<1>=h—'ff<k><s+eh>—p<1)

K K?
— f(s+h) = +Z f(” +p(1)
k—1 1n
— f(s+h) = +th Hf(’“)(ereh) |



Theorem 0.5 Let a&b € R,(a < b). Then any continuous real valued func-
tion on [a,b] is Riemann Integrable.

Proof Let f be a continuous real valued function on [a,b]. Then f is
bounded above and below on [a, b].

Let € > 0 be given. Then 3 some § > 0s.t. |f(z)—f(y)| < eV x,y € [a, b
st jz—y|<d

Choose some partion P on [a,b] s.t. the length of each subinterval is
< |6]. Where P = {x¢,z1,...,z,}and a=2zo < 21 < ... < z,, = b.

If ;-1 <z <z then |z; —z| < §

= flz:) —e < f(z) < fz:) +¢
= fx;)) —e<m; < M; < f(z;)+e€

Where m; = inf{f(z) : zi1 < x < x;} amd M; = sup{f(z) : z;-1 <z < z;}

= if(xi)(xi—xi_l) e(b—a) < L(P, f) <U(P, f) < i i—Zi—1)+e(b—a)

=1

Where L & U are the upper and lower sums of P on [a, b].
=>o<u/ da:—[/ 2)dz < U(P, f) — L(P, f) < 2¢(b — a)
Solving the inequality for any € > 0
c / )z <U /
= f is Riemann Integrable. |

Theorem 0.6 (Fundamental Theorem of Calculus) Let f be a continuous
real valued function on [a,b] where (a < b) then is

then

Proof Let F(s) = [; f(t)dt. Now f is continuous at x = given any e > 0
dsome § > 0s.t. |f(t) — f(z)| < %e Vi, x € [a,b] s.t. |t — x| < § now




if0< |h| <0 & x+h€[a,b] then

[0~ sl < gelnl

F(z +h) — F(z)

—f@ﬂ<%e<e

= |
. F(z+h)—-F(x)
! . —
—= F/(z) = lim ) = f@) N
Theorem 0.7 Let fi, fo,... be a sequence of continuous real valued functions

that converge uniformly to some real valued funcion f on [a,b] Then

lim /b folz)dz = /abf(:v)dx

n—+oo Jq

Proof Let ¢ > 0 be given. Choose some ¢ s.t. 0 < €y(b — a) < e. Then 3
some N € N s.t. |fu(z) — f(2)| < & (Vz € [a,b] & n > N) now

~ [ 1l = sz < [ fu@yia~ [ @z < [ 1fule) - f@)lds

b b b
= |/ fn(a:)da:—/ f(z)dx| < / | fu(x)—f(2)|dz < €(b—a) < e whenn > N
The Result therefore follows. |

Theorem 0.8 (Bolzano Weierstrass Theorem ) Ewvery bounded series of
complex numbers has a convergent sub-sequence.

Proof Let 2z, 29, ..., 2z, be a bounded series of complex numbers & let z, =
T, + 1Yn

The Bolzano Weierstrass Theorem for sequences of real numbers guaran-
tees the existence of a sub-seqence 2,1, 2,9, ... of the given series s.t. the real
parts x1, Ty, ... converge.
A further application of this theorem allows us to replace this sub-sequence
with a further subsequence to ensure that the imaginary parts y1, ys, . .. con-
verge aswell.
If

n1—1>I—II—looZn =l& n1—1>mooxn =A& ngI—II—looyn =K

then l= A+ pu
=> Zn1,Zn2,--. 1S @ convergent subsequence of zi,29,...,2, |}



Theorem 0.9 (Cauchy’s Criterion for Convergence ) An infinite series of
complex numbers is convergent IFF it is a Cauchy Sequence

Proof 1% show that convergent sequences are Cauchy Sequences
Let 21, 29, ... be a convergent sequence of complex numbers &
Let limy, 100 2, = {
Let € > 0 be given. Then 3 some NinN s.t. |z, — | < ¢ when(n > N). If
m&n > N then |z, — | < 3€ and |z, — | < 3¢

1 1
= \zm—zn\:|(zm—l)—(zn—l)\<§e+§e:e

= |zm — 2| < €= 21, 29, ... isaCauchySequence.

274 show that and Cauchy Sequence is convergent

Cauchy Sequences are bounded therefore have convergent subsequences,
ie 21, 29,... has a convergent sub-sequence 2,1, 22, ... & lim;_, o0 25 =1
We claim lim,, o0 2, =1
Let € > 0 be given. Then 3 some N € N s.t. [z, — 2,| < 3¢ V m& n > N)
Let j be chosen large enough s.t. n; > N& |z,; — | < %6

1 1
= |zn—l|§|zn—znj|+\znj—l|§§e+§e =¢
= |z, — 1l <e€ =>nli>1}rloozn=l [

Theorem 0.10 Let D be a subset of C & let fi, fo,... be a sequence of of
continuous functions mapping D = C which is uniformly convergent on D
to some f: D = C. Then f is continuous.

Proof Let w € D. R.T.P f is continuous at w.

Let € > 0 be given then 3 some § > 0 s.t. [f(2) — f(w)| < eV z,w € D s.t.

|z —w| <.

Now we can find some N € N s.t. |f.(2)—f(2)| < 3¢V n > N (nisindependant of N).
Choose any n s.t. n > N now we can find some § > 0 s.t.

1
‘fn(z) _fn(w)| < gEVZ,w € D|Z_w| <o

But then

[f(2)=f ()| < [f(2)=ful2) [+ ful2) = fu(w) [+ fulw) = f (w)[ < %e%e %e =

= |f(2) — f(w)| < e when |z —w| < §
= f is continuous at w. |



Theorem 0.11 (Alternating Series Test) Let aq, as, ... be non-negative real

numbers. Suppose a1 > as > ... & limy, 0, =0 Then,
—+00
> (-1)""'a, is convergent
n=1

Proof For each m € N let s, = ¥ (—1)""a,

n=

NOW Sok 41 = Sok — Gok — A2p+1 < Sok—1
and Sopyo = So + Qokt1 — Qokt2 > Sok V k€N

Therefore the sub-sequence s1, s3, s, . . . is non-increasing,

And the sub-sequence ss, s4, Sg, . . ., is non-decreasing.
But s < s9r < s9p—1 < 1 . Therefore these subsequences are bounded,
thus convergent, and also share same limit. Because

kgr-{loo 2k kll)r—{l—’loo Sok-1 7= kEr—Poo(82k B S2k_1) - kll)l-fI-loo G2k = 0

We Claim E;ﬁ(—l)"‘lan =S, 8§= 1lmk_)+oo So = hmk_H_oo So2k—1

Let € > 0 be given. Then 3 K, K, € N s.t.

|sor — 8| < € when k > Ky & |Sox_1 — 8| < € when k > Ky

Choose N s.t. N> 2K, —1& N > 2K — 2 Then

|Sm — 8| < e whenm > N

= YN (-1)"ta, =lim, 100 8m =3 |

Theorem 0.12 (Cauchy Product) The Cauchy Product 312 ¢, of two ab-
solutely convergent infinite series Y42 a, & 3729 b, is itself absolutely con-
vergent and

+o00 +o0 +o0
e (£4) (£

n=1 n=1 n=1
Proof OMITTED

Theorem 0.13 Let >7%9(z — )™ be a Power Series with radius of conver-
gence Ry & let s(z) be the sum of the power series at those complex numbers
z for which the series converges. Then

1. If Ry = 400 then s(z) is a continuous function defined on the complex
plane.

2. If Ry < +oo then s(z) is a continuous function defined over the entire

disk {z € C : |z— 2| < Ry} bounded by the circle of convergence of the series.
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Proof Let z; € C satisfy |21 — 29| < Rp. Then we can choose R st.

|21 — 20] < R < Ry (R < +00)

= Jsomew €C s.t. R<|w| < Ry & Y12 apw™ converges
Choose some A >0 A € R s.t. [a,w"| < AVn
Setp:WR‘ & M, = Ap"
If |2 — 20| < R then |a,(z — 20)"| < |an|R* < Ap" = M, V n
Also Y°,,—; +ooM,, converges to 1TAp
By the Weierstrass M-test the P-series 3,7 a,, (2 — )™ converges uniformly
on disk {z € C: |z — z| < R}
= therestriction of the function s tothe disk is continuous & in particular
is continuous arround z.
= we deduce s is continuous in all C when Ry = +00
= and is continuous inside the circle of convergenceif Ry < +oo |}



