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How to Guess a Password?

Passwords are everywhere.
If you dont know the password, can you guess it?

1. Make a list of passwords.
2. Assess the probability that each was used.

3. Guess from most likely to least likely.

A dictionary attack, but with optimal ordering.

(Applies to computers and keys too.)



How long will that take?

If we knew probability P; of ith password.
Rank the passwords from 1 (most likely) to N (least likely).
Average number of guesses is:

N
G = ZiP,-.
i=1

Note, not the same as Entropy (Massey '94, Arikan '96).
Does this P; really make sense?
Is there a distribution with which passwords are chosen?



Outline

e |Is there password distribution?
Is knowing it better than a crude guess?

e Are there any general features?
Do different user groups behave in a similar way?

e Some distributions better than others.
Can we help users make better decisions?



Getting data

Want a collection of passwords to study distribution.
Asked Yahoo, Google.

o ...
Crackers eventually obliged.
e 2006: flirtlife, 98930 users, 43936 passwords, 0.44.
e 2009: hotmail, 7300 users, 6670 passwords, 0.91.
e 2009: computerbits, 1795 users, 1656 passwords, 0.92.
e 2009: rockyou, 32603043 users, 14344386 passwords, 0.44.

Good: cleartext!
Bad: Had to clean up data.



Top Ten

Rank hotmail F£users flirtlife Fusers computerbits Fusers rockyou Fusers
1 123456 48 123456 1432 password 20 123456 290729
2 123456789 15 ficken 407 computerbits 10 12345 79076
3 111111 10 12345 365 123456 7 123456789 76789
4 12345678 9 hallo 348 dublin 6 password 59462
5 tequiero 8 123456789 258 letmein 5 iloveyou 49952
6 000000 7 schatz 230 qwerty 4 princess 33291
7 alejandro 7 12345678 223 ireland 4 1234567 21725
8 sebastian 6 daniel 185 1234567 3 rockyou 20901
9 estrella 6 1234 175 liverpool 3 12345678 20553
10 1234567 6 askim 171 munster 3 abc123 16648

(c.f. Imperva analysis of Rockyou data, 2010)




Distribution?
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Zipf?

A straight line on a log-log plot points towards heavy tail.
Zipf?

PrO(F

Slope gives s.
Can check p-values (Clauset '09).

s is small, less than 1.
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Who cares?

o Algorithm Design — exploit heavy tail?
e Can we get close to optimal dictionary attack?

e Can we make dictionary attack less effective?

2 and 3 answer questions about common behavior and helping
users.



Suppose we use one dataset as a dictionary to attack another.
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Dictionary Attack — Same Story
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Dictionary Attack Gawker

December 2010, Gawker, 748090 DES Hashes, well salted.
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Helping Users

If users select passwords ‘randomly’, can we make them a better
generator?

e Banned list (e.g. twitter),

Password rules (e.g. numbers and letters).

Act like a cracker (e.g. cracklib),
Cap peak of password distribution (e.g. Schechter'10),

e Aim for uniform?

Metropolis-Hastings algorithm takes bad random number generator
and makes it good.



Metropolis-Hastings for Uniform Passwords

Keep a frequency table F(x) for requests to use password x.

1. Uniformly choose x from all previously seen passwords.
2. Ask user for a new password x’.

3. Generate a uniform real number v in the range [0, F(x')] and
then increment F(x'). If u < F(x) go to step 4 (accept),
otherwise return to step 2 (reject).

/4. Accept use of x’ as password.



How does it do?
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Rockyou-based test, 1000000 users, mean tries 1.28, variance 0.61.

Could be implemented using min-count sketch.
Doesn't store actual use frequencies.
No parameters, aims to flatten whole distribution.



Conclusions

Idea of distribution of password choices seems useful.
Zipf is OK, but not perfect match.

Different user groups have a lot in common (not peak).
Dictionaries not great for dictionary attacks.

Treat users as random password generators?

Future: Generalise beyond web passwords?

Future: Field test of Metropolis-Hastings?

Future: What does optimal banned list look like?



From Reviews

e So much cool literature from (at least) 1979-2012.

e In security, passwords are the gift that keeps on giving.



