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Talk outline

• Introducing the 802.11 CSMA/CA MAC.

• Finite load 802.11 model and its predictions.

• Issues with standard 802.11, leading to 802.11e.

• Finite load 802.11e model and its predictions.

• Beyond infrastructure mode networks.

• Why do these models work?
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The 802.11 MAC
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Figure 1: 802.11 MAC operation
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802.11 MAC Summary

• After transmission choose rand(0, CW − 1).

• Wait until medium idle for DIFS(50µs),

• While idle count down in slots (20µs).

• Transmission when counter gets to 0, ACK after SIFS (10µs).

• If ACK then CW = CWmin else CW∗ = 2.

Ideally produces even distribution of packet transmission.
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Modelling approaches

• P-persistent: approximate the back-off distribution be a geometric with the
same mean. Exemplified by Marco Conti and co-authors.

• Asymptotic full system analysis: Bordenave, McDonald and Proutiere +
Sharma, Ganesh and Key.

• Bianchi’s mean-field Markov model: treat stations individually; network
relationship between stations gives a set of coupling equations.

In simplest form: constant transmission probability τ gives throughput

S = nτ(1 − τ)n−1, (1)

and collision probability
1 − p = (1 − τ)n−1. (2)
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Mean-field Markov Overview

Mean field approximation: each individual station’s impact on overall network is
small. Assume a fixed probability of collision given attempted transmission p.

Each station’s back-off counter then a Markov chain. Stationary distribution
gives the probability the station attempts transmission in a typical slot τ(p).

Network coupling then gives a system of equations relating all stations’ p and τ ,
which determines everything.

Real-time quantities determined through a relation involving the average real-time
that passes during a counter decrement.

Following to appear in IEEE/ACM ToN (Duffy, Leith, Malone).
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Mean-field Markov Model’s Chain
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Figure 2: Individual’s Markov Chain
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Mean-field Markov Model Solution

Stationary distribution of Markov chain gives:

τ(p, q, W0, m) = η−1

(

q2W0

(1 − p)(1 − q)(1 − (1 − q)W0)
−

q2(1 − p)

1 − q

)

, (3)

where

η = (1 − q) + q2W0(W0+1)

2(1−(1−q)W0)
+ q(W0+1)

2(1−q)

(

q2W0

1−(1−q)W0
+ p(1 − q) − q(1 − p)2

)

+ pq2

2(1−q)(1−p)

(

W0

1−(1−q)W0
− (1 − p)2

) (

2W0
1−p−p(2p)m−1

1−2p
+ 1

)

.
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Network coupling

For given loads q1, . . . , qn, define τj = τ(pj, qj, W0, m) and then n coupling
equations:

1 − pi =
∏

j 6=i

(1 − τj).

Solve to determine (p1, τ1), . . . , (pn, τn).

If all packets are the same length, L bytes taking TL time on the medium, then

Si =
τi(1 − pi)L

∏n

i=1(1 − τi)δ + (1 −
∏n

i=1(1 − τi))TL

.
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Relating q to offered load

• Taking lim
q→1

models saturation.

• For small buffers, a crude approximation:

q = min(Expected slot length/mean inter-packet time, 1).

• If packets arrive a Poisson manner with rate λl, then ql is 1 −
exp(−λlExpected slot length).

• Possible to produce a relation of this sort that uses conditional information.
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Model Predictions
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Model Predictions
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TCP Upload Scenario

Stations with competing TCP uploads

Access Point

Figure 3: Competing TCP uploads.

Hamilton Institute, NUIM, Ireland 12



TCP Uploads
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Figure 4: Competing TCP uploads, 10 stations (NS2 simulation, 802.11 MAC,
300s duration).
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The 802.11e MAC

The three most significant 802.11e MAC parameters on traffic prioritization are
TXOP, W0 and AIFS.

• Four traffic classes per station.

• Station transmits for max duration TXOP (one packet without 802.11e).

• Per class, W0 is 2n, n ∈ {0, 1, . . .}.

• Per class, AIFS = DIFS + kδ, k ∈ {−2,−1, 0, 1, . . .}.
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The 802.11 MAC

0

SIFS SIFS

Decrement counter

Pause Counter Resume

Counter
Expires;
Transmit

AckData

AIFSAIFS

Select Random Number in [0,W−1]

Figure 5: 802.11 MAC operation
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Existing 802.11e models

Saturated 802.11e multi-class models.

• R. Battiti and Bo Li, University of Trento Technical Report DIT-03-024 (2003).

• J.W. Robinson and T.S. Randhawa, IEEE JSAC 22:5 (2004).

• Z. Kong, D. H.K. Tsang, B. Bensaou and D. Gao, IEEE JSAC 22:10 (2004).

Following (maybe!) to appear in IEEE Trans. Mob. Computing, with Clifford,
Duffy, Foy, Leith and Malone.
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Modelling 802.11e

Added complications: Need hold states for AIFS.

Ph =

(1 −
∏n1

j=1(1 − τ
(1)
j )

∏n2
j=1(1 − τ

(2)
j ))

D
∑

i=1

P−i
S1

1 + (1 −
∏n1

j=1(1 − τ
(1)
j )

∏n2
j=1(1 − τ

(2)
j ))

D
∑

i=1

P−i
S1

. (4)
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New coupling equations

1 − p
(1)
i =

∏

j 6=i

(1 − τ
(1)
j )(Ph + (1 − Ph)

n2
∏

j=1

(1 − τ
(2)
j )) (5)

1 − p
(2)
i =

n1
∏

j=1

(1 − τ
(1)
j )

∏

j 6=i

(1 − τ
(2)
j ). (6)
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How good is it?
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(c) D = 4

Throughput for a station in each class vs. offered load. 10 class 1 stations offering
one quarter the load of 20 class 2 stations. Range of D values, the difference
in AIFS between class 2 and class 1 (NS2 simulation and model predictions,
802.11e MAC, 11Mbps PHY, 100s duration. ).
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How good is it?
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How do you use it?
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10 stations (1500 byte packets) and AP transmitting (60 byte packets) at half
achieved data rate.
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Does it work?
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Competing TCP uploads, 12 stations experiment without and with prioritization
(802.11e MAC, 300s duration).
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Why stop with single infrastructure mode network?

Basic behavior of individual stations is independent of the network in which they
exist. Change the network coupling, change the network.
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Typical mesh issue
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Mesh

Following in IEEE Comms. Letters (2006), (Duffy, Leith, Li and Malone).

M distinct local zones on common frequency. For n ∈ {1, . . . , M} local stations
Ln = {ln1 , . . .} and relay stations Rn = {rn

0 , . . .}. Mean field gives for each
station c ∈ Rn ∪ Ln:

1 − pc =
∏

b∈Rn∪Ln, b6=c

(1 − τb). (7)

The stationary probability the medium is idle is pidle =
∏

b∈Rn∪Ln
(1 − τb). The

mean state length is En = pidleσ + L(1 − pidle), where each packet takes L
seconds and idle slot-length is σ seconds.

Added difficulty: for each n, l ∈ Ln, ql is given, but qr is not known a priori for
each relay station.
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Mesh

The parameter qr is determined through relay traffic.

• For each n, l ∈ Ln, a fixed route fl from its zone to a destination zone.

fl = {l, s1 . . . , sm, d}.

• If m = 0, then l and d are in the same zone and no relaying occurs.

• We assume routes are predetermined by an appropriate wireless routing
protocol.
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Mesh

For each s ∈ Ln ∪ Rn, let E(s) = En. For k ∈ {1, . . . , m} Let Ql,sk
be offered

load from l arriving at sk and Qsk
be the total load offered to sk. From these we

calculate:

Ssk
=

τsk
(1 − psk

)

En

and then assume:

Qsk+1
=

∑ Ql,sk

Qsk

Ssk

to calculate the load in the next network.
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Buffering

• Limitations of small buffers particularly apparent in mesh.

• Need to introduce queue empty probability to model queue: rn.

• Model queues as M/G/1.

E(B(p)) =
W0

2(1 − 2p)
(1 − p − p(2p)m). (8)

rn = min(1,−B(pn) log(1 − qn)) (9)

Simply replaces τ(p) relation.

To appear, IEEE Comms. Letters (2007), (Duffy, Ganesh).

Seeing some interaction between buffering and service.
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Unfairness
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Figure 6: NS packet-level simulation results and model predictions
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Understanding the Models

• Models are inexact in several ways.

• Constant p replaces complex Markov chain with direct sum.

• Throughput relationship assumes independent.

• Do assumptions hold or are stationary distributions similar?
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Is p constant?
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Independence of Transmissions
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Conclusions

• 802.11/802.11e CSMA/CA models that are simple, solvable, yet complex
enough to predict data throughput.

• Model gives insight into 802.11 MAC behavior.

• Model gives insight into effect of 802.11e parameters.

• Prioritization schemes can now be designed quickly based on the model.

• Extensible to network scenarios.

• Interesting questions on buffering and foundations remain to be answered.
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