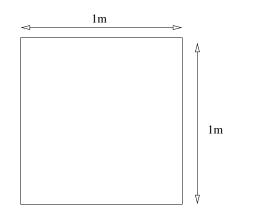
Odd Problems

David Malone Dept of Maths&Stats, Maynooth University.

2017-03-04 15:00:00 UTC

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?


Odd Problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

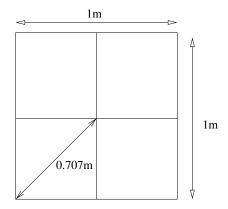
Problems where solution doesn't match problem.

- 1. Ponds,
- 2. Rainbows,
- 3. Shortest roads,
- 4. Regular Solids.

Ponds

5 ducks are in this pond. Show that there are at least two of them closer than $1/\sqrt{2}m$.

Pigeon Hole Principle

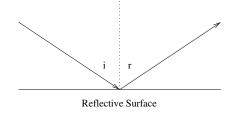

With *n* pigeon holes and n + 1 pigeons, two pigeons live in same hole.

https://en.wikipedia.org/wiki/File:TooManyPigeons.jpg

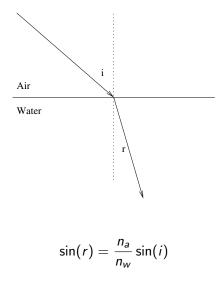
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Pigeon Hole the Ducks

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?


Rainbows

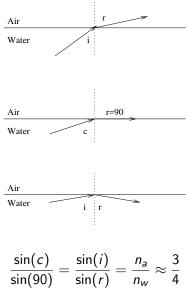
Try asking a physicist where rainbows come from.


Rainbow Angle: $\approx 42^{\circ}$. https://www.flickr.com/photos/bbusschots/32026575784/

Reflection

i = r

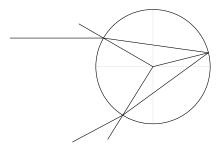
Refraction



・ロト ・個ト ・ヨト ・ヨト

æ

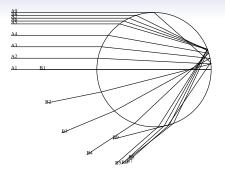
For water going to air, n_a/n_w is about 3/4.


Total Internal Reflection

So $c \approx 48.6^{\circ}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rainbows not related to TIR!

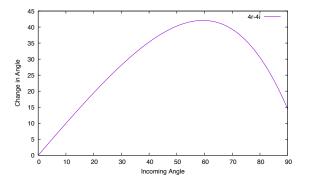


How much does the angle change?

$$\delta = (i - r) + r + r + (i - r) = 4r - 2i$$

Remember we know sin(r) = 3 sin(i)/4.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで



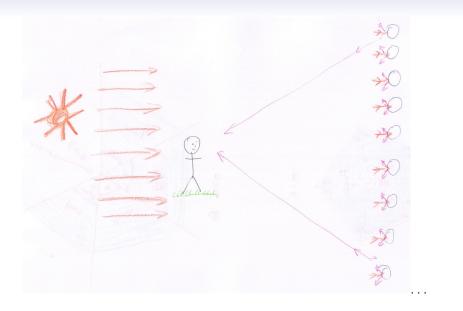
$$\delta = 4r - 2i$$

= $4\sin^{-1}\left(\frac{3\sin(i)}{4}\right) - 2i$

Because $\sin(r) = 3\sin(i)/4$.

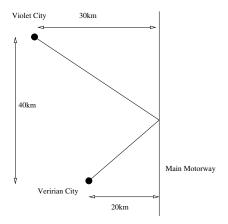
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

For water:

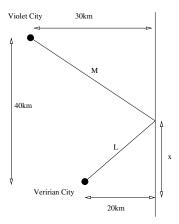


You can use differentiation

$$\sin(i) = \sqrt{\frac{4 - \left(\frac{n_a}{n_w}\right)^2}{3}}$$


If you figure out the turn $4r - 2i \approx 42.3^{\circ}$

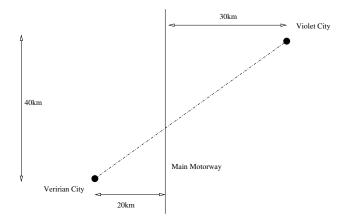
◆□> <畳> < Ξ> < Ξ> < □> < □</p>


Road Building

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Want to connect two cities to a motorway.

Road Building



Wrong way: $L^2 = x^2 + 20^2$ and $M^2 = (40 - x)^2 + 30^2$ and Algebra.

(a)

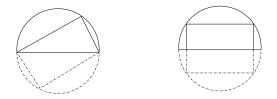
æ

Road Building

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now it's obvious!

Another Example


Show the biggest triangle you can inscribe has the same area as biggest rectangle.

・ロト ・個ト ・ヨト ・ヨト

э

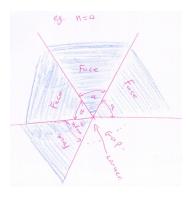
Can do trig and algebra and

Another Example

Complete the circle.

Regular Platonic Solids

Regular polygons in 2 dimensions:


In three dimensions the situation is very different. There are only 5!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

How could we count them?

Counting

Count n faces at a corner and m edges for each face.

a = 180 -

+ = > + @ > + =

360

э

na < 360.

We need:

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$n\left(180 - \frac{360}{m}\right) < 360$$
 So,
$$180 - \frac{360}{m} < \frac{360}{n}$$

with $n \geq 3$ and $m \geq 3$.

Odd Problems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- You can pigeon hole ducks.
- Rainbows are really a mathematical thing.
- Sometimes reflecting makes things easier.
- You can count the Platonic solids.