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Introduction

This ray tracer has been written as part of the course work for 4D4, a course on computer graphics,
it has since been expended for my own amusement. The assignment required the following features
to be implemented:

• Simple Objects such as Spheres and Planes.

• Point light sources.

• A simple camera model with no depth of field.

• Phong Illumination model, with simple shadowing.

• Recursive reflection and refraction.

• A simple input language/method.

• Output in PPM format.

These will be discussed in the order they were implemented, but first it is necessary to explain
the internal working of the code I decided on.

Also, the strengths and weaknesses of the implementation, the model and the features included
will be discussed.

1 Implementation

1.1 Overview

1.1.1 Structure of Object information

All the aspects of a scene have one common property, that is they must be read into the program
and stored. This suggests having a structure to represent each different aspect and a function
which can fill this structure. For this reason I decided to have separate modules for each object
type, providing the facility to read and fill the structure.

In the spirit of object orientation the structure should only be accessed directly by a small
subset of the code, so for each primitive, functions were included to do intersection and outward
normal calculation.

To then allow the use of these functions a table of all object types, with pointer to their read,
normal and intersection functions is provided for lookup within the program.

Objects which are not primitives (eg. light sources, the viewer and surface descriptions) have
their structures filled by the read function, and then are accessed directly by the ray tracing code.
This is reasonable as these are parameters of the ray tracing itself, though it leads to problems of
expendability.
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1.1.2 Structure of Scene information

When read in, the scene consists of several parts which are all linked to one structure. A list of
primitives, their surfaces and types are stored as a linked list. Also the list of light sources are
stored as a linked list. The viewer and other information which there is only one occurrence of
are just pointed to.

1.1.3 Rays

As rays are rather basic to the whole program a ray structure is used. It consists an origin and a
direction, which should be normalised by the creator of the ray. A length is also stored for rays of
finite length rays of infinite length are given the value C value DBL MAX.

1.1.4 Spectra

Lights and surfaces have spectra associated with them, and in the simple case the spectra have 3
components - Red, Green and Blue. For the sake of future expansion the number of components
has been made a definable value.

1.2 A simple input language

The input language I choose to use is not very human friendly, but quite machine friendly. It is
not the job of a ray tracer to pre-process the data it receives, that is the job of a pre-processor
(witness C).

Each object is assigned an ID at compile time. The input consists of a series of objects,
terminated by the end of file. An object is an ID followed by a list of numbers describing the
object and if the object is a primitive a surface.

For example, in the following input the first object is a viewer (ID 102), the code for reading
a viewer then reads the next 14 numbers. The next object is a point light source (ID 101). The
following 6 numbers describe it. Finally the last object is a plane (ID 2), the code for reading
planes reads the next 4 numbers. The 100 indicates a the most simple surface type, then the read
surface code is called to read 8 numbers.

102
0 2 3
0 0 0
1 0 0
0 1 0
256 256

101
-2 5 2
1 1 1

2
0
0 1 0
100
1 1 1
0.0 30
1.0 0 0

To understand the descriptions you must read the documentation for them. To ease the writing
of a preprocessor a summary of the what the numbers means if defined, eg a sphere might be:

radius 1 center 3
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This means that the description of a sphere consists of first a number (the radius) and then 3
numbers (the center).

1.3 Simple Objects & Primitives

Light sources, viewers, spheres and the like are all considered objects. Geometric objects with
which the light can interact are termed primitives. All objects can be read in, primitives can also
have rays intersected with them and normals to points calculated.

Surfaces are also implemented as objects, though an error will be produced if they are read in
alone. Various surface types provide a way of varying the shading parameters for a depending on
a given point. You may also set a default surface and tell an primitive to use the current default
object as its surface.

Lights can also vary their spectrum depending on the point they are illuminating - this allows
for lights which do not have a r−2 effect, spotlights, etc. They may also be sampled several times
to allow for non-point light sources.

1.3.1 Reading objects

The read function of any object simply reads some number of doubles from a passed file pointer,
and then fills out the structure for the object — possibly doing some useful precalculation first.
It returns a pointer to the filled structure.

1.3.2 Normals and Intersections with primitives

For primitives the intersection code takes a ray structure, an object structure (of the appropriate
type). It returns how far along the ray the closest intersection occurs. It may disgrade intersections
which are further away than the length of the ray. The normal code takes an object structure and
a point, and returns the normal to the object at that point.

1.3.3 Surfaces

A surface contains the information for the Phong illumination model, and other parts of the ray
tracer. It stores the reflection, transmission and spectral characteristics of an object. A call to a
surface is provided with the description of this instance of the surface type and the point that is
being illuminated — it returns the Phong illumination parameters for that point.

1.4 Lights

Lights have three parameters — how many times they are to be sampled their position and their
spectrum. The sample count function is given the point which it will illuminate and returns how
many samples should be taken. The sample function takes the point to be illuminated and returns
the position, and spectrum which should be considered for this sample.

1.5 Rasters and Output

The image is stored in a raster during generation, and is outputted to a PPM file when generation
is complete. The raster is created, filled and outputted without access directly to the structure.
This would allow normalisation/gamma correction of the values output, by monitoring what is
written into the raster as it is written.

The raster for an image of resolution XRES , YRES is stored as an array of XRES ∗ YRES ∗
(Number of spectral components) doubles. To get sensible memory accesses the spectral compo-
nents of each pixel are stored consecutively. The raster should be written left (X = 0) to right
(X = XRES) horizontally from the top (Y = 0) to the bottom (Y = YRES) of the image for linear
memory accesses.
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1.6 Camera Model, Viewer and Initial Ray Generation

The specification of the viewer consists of the viewers location, at what point they are looking,
two vectors to be used as the horizontal and vertical axes of the image, and horizontal and vertical
resolution.

The image is projected onto a plane going through a point at distance 1 along the ray from the
viewer to where they are looking. The plane is generated by adding multiples of the two vectors
to this point.

As the vectors need not be perpendicular to one another, nor to the ray from the viewer
“interesting” effects can be produced by choosing arbitrary vectors.

A function which takes a ray and then calculates the light shining back from that ray is called
once the ray has been generated, and the result is written into the raster. This function is also
the basis for recursion, and is called to follow reflected and transmitted rays.

1.6.1 Implementation Details

Let ~e be the location of the viewer and ~l be where they are looking at. Let ~x and ~y be our
horizontal and vertical vectors. Then the section of plane which is viewed is:

~v(α, β) = ~e+
~l − ~e
|~l − ~e|

+ α~x+ β~y,

where −1 ≤ α, β ≤ 1. For a point (X,Y ) in the raster we we simply take out initial ray to be
centered at ~e and to go toward

~v

(
2X −XRES

XRES
,−2Y − YRES

YRES

)
.

The minus in the Y direction is to account for computers having the Y on their screens pointing
the wrong way.

1.7 Phong Illumination Model

The Phong illutation model gives the basic contribution of light to the scene. It depends on the
light sources in the scene, the surface characteristics of the object and the location and normal of
the point on the object.

1.7.1 The Model

If there is an ambient light source the contribution for each part of the spectrum is:

Iakd,

where Ia is the intensity of the ambient light source and kd is the diffuse coefficient of the surface.
Then for each light source which the surface faces, and is not blocked by some object we add:

Il
kd(~d · ~s) + ks(~r · ~s)ke

l2
,

where Il is the intensity of the light, ~d is a unit normal to the surface, ~s is unit vector toward the
light, ~r is a unit vector in the reflected direction, ks, ke are spectral characteristics and l is the
distance to the light. 1

1The Phong model does not usually contain the 1
l2

term.
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1.7.2 Implementation Details

The determination of most terms in the model is trivial. Most are known, or provided by the
primitive functions. The remaining are calculated as follows.

l = |~xl − ~x|

~s =
~xl − ~x
l

Where ~xl is the location of the light and ~x is our point. To determine if a surface faces a light
source we simply check if:

~d · ~s > 0.

The reflected ray is calculated as shown later, we check that ~r · ~s, to see if the specular reflection
of the light is visible in this direction.

It is assumed that ~d has been chosen to give ~i · ~d ≤ 0, that is that ~d is the normal which points
to where the ray is coming from. (Where ~i is the direction of the incoming ray).

To determine if a light is shadowed, we find the ray from ~x to the light source and look for the
an intersection on the correct side of the ray, with distance less than l. If such an intersection is
found then we say the light is shadowed. 2

1.8 Reflection

If we have just found a point of intersection along a ray, we can find a second ray which, if light
were traveling along it, would be reflected along the first ray. We call this new ray the reflected
ray. Using the fact that the reflected and original rays make the same angle with the normal, it is
relatively easy to show the direction of the reflected ray is:

~r =~i+ 2(~i · ~d)~d,

where ~i and ~d are the incoming direction and normal to the surface respectively. To add recursive
reflection we simply calculate this ray, and evaluate the light coming along it and add this to the
illumination of the point (scaled by ks one of the spectral reflection coefficients).

1.9 Refraction

In a similar manner to reflection, a refracted ray can be calculated using Snell’s law, for a ray
moving from a material of refractive index n1 to n2, giving the following:

η =
n1

n2
,

η~i+
(
η(~i · ~d)−

√
1− η2(1− (~i · ~d)2)

)
~d,

providing 1 − η2(1 − (~i · ~d)2) >= 0. Otherwise total internal reflection occurs. In this case the
transmission coefficient is added to the spectral reflection coefficient. 3

1.9.1 Implementation Details

The only unknown quantity is η, and some assumptions must be made to find it. First the ray
tracer assumes the initial rays start in a medium of refractive index 1. Then as the program
recurses the refractive index is passed on. When transmission occurs the refractive index of the
transmitted ray is set to be 1 if leaving an object and the refractive index of the object otherwise.

2This is a bit simplistic if we have transparent objects. More sophisticated shadows can be achieved by tracing
rays from the light sources. This is beyond the scope of a simple ray tracer though.

3It would be more realistic to implement the Fresnel equations here.
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The test for leaving an object is based on (~i ·~n), where ~n is the outward unit normal. (As opposed
to ~d which is the normal pointing toward the ray’s origin).

As total internal reflection can affect the Phong and reflected shading the transmission should
be evaluated first, to determine if the spectral reflection coefficient should be augmented.

1.10 Other Implementation Details

This section contains other small details of implementation which don’t seem to fit under the
above headings.

1.10.1 Trapped Rays

Sometimes, due to numerical inaccuracy, a newly generated ray will hit the surface it has just left.
This produces random speckles on the surfaces, as if the surface has been grated with a cheese
grater.

The most simple way to get around this is to reject all hits which are either behind or a small
amount in front of the object. This is the solution currently used. A variation on this would be
to reject only intersections with the current object which are very close. A different scheme might
involve “shunting” the ray in the direction it is going a little before looking for intersections.

1.10.2 When to Stop Recursing

You cannot recurse indefinitely in a general scene, as if you have two parallel mirrors the light
may bounce back and forth between them indefinitely. For this reason we need a way out of the
recursion. There are 4 reasonable criterion for stopping. The first is if you hit a an object which
is either not transparent or not reflective, then it is not necessary to recurse on the the ray which
makes zero contribution. Second, if a ray escapes from the scene it can dropped, making either
no contribution, or that of the ambient light.

The third and forth reasons are more of a practical nature. Third, if the contribution the ray
would make is very small the ray need not be followed. This is implemented by keeping track
of the product of reflection and transmission coefficients involved in getting to this stage of the
recursion. The problem is to choose a suitable cut off4. I have chosen the reciprocals of the number
of colours in the output by some factor (currently 0.01).

Finally, if the recursion gets too deep then you can break out. This can produce block spots,
or lack of details in your image if you do not recurse to a deep enough level! This depth can be
given on the command line and currently defaults to 7.

1.10.3 The Main Program

The main program is really just a skeleton. A more complicated interface could be written if
desired, perhaps including reading a series of files and placing the output named files.
int main(int argc,char ∗∗argv)
{

struct scene ∗scene;
struct raster ∗raster;

set default options();
set arg options(argc,argv);
scene = read scene(Opt.input);
if( !Opt.read only )
{

raster = ray trace(scene);
raster2ppm(raster,Opt.output);

4This cutoff if called MIN WEIGHT in the code.
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}
rt unmalloc();
rt end("Finished OK!\n");

return 0;
}

2 Primitives

For each primitive in the ray tracer there are three major elements. First the mathematics of the
primitive which defines the surface, and allows us to calculate the intersections and normals and
also importantly how to define the object. This may suggest some preprocessing of the object’s
definition to make calculations shorter.

The second is the implementation of the mathematics. It may be quite straight forward to
code what has been derived, or maybe not. The code also has to include the third factor, which
is how the object will be specified in the input file, down to the order of the inputs.

What follows here is a description of the primitives included with the object, detailing the
three above factors.

2.1 Building on Simple Primitives

The most simple type of primitives are geometric objects such as spheres, planes or infinite double
cones, which are defined by some simple equation:

f(~x) = 0,

where f is some continuous well behaved function. The normal at ~x0 normal can then be found
by evaluating:

~∇~xf(~x)
∣∣∣
~x0

,

although the normal can often be found more easily by geometric arguments.
To make these objects independent of basis we would expect f to depend on ~x · ~x and ~x · ~p

where ~p is a vector relating to the primitive concerned (maybe a normal).
By using ~x = ~o+ t~d we make the problem of finding intersections into the problem of solving:

0 = F (t) = f(~o+ t~d).

By adding restrictions of suitable values of ~x we can form more primitives. Again the restric-
tions should depend on ~x · ~x and ~x · ~p. For example from a plane it is simple to form a disk by
only allowing values of ~x where: 5

(~x− ~p)2 ≤ r2

More complicated primitives can be built from these simpler ones.

2.2 The Sphere Primitive

A sphere is the set of points a given distance r from a center point ~c. This is easily expressed in
vector form as:

(~x− ~c)2 = r2

where ~x is some point on the sphere.
5This actually depends only on scalars and things of the form mentioned if you multiply it out.
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Using ~o+ t~d we get a quadratic for t:

(~o+ t~d− ~c)2 = r2

(~o− ~c)2 + 2t(~o− ~c) · ~d+ t2 ~d2 = r2

(~o− ~c)2 + 2t(~o− ~c) · ~d+ t2 ~d2 = r2

t2 + 2t(~o− ~c) · ~d+ (~o− ~c)2 − r2 = 0

Using the fact that ~d should be normalised. This is easily solved using:

t =
−b±

√
b2 − 4ac

2a
.

Small values should be rejected when choosing the smallest positive value t, as rays which are
being transmitted from one side if the sphere to the other may be subject to getting trapped, as
explained above.

Also note that r2 can be calculated at the time the object is read in, saving you a whole
multiplication!

The normal to the point ~x0 on a sphere is along the line from the center to this point. All we
have to do is normalise and return the surface normal:

~n =
~x0 − ~c
|~x0 − ~c|

.

A sphere is specified as a radius followed by the components of its center. The unit sphere
around the origin would be:

1
0 0 0

2.3 The Plane Primitive

Suppose you have a plane passing through ~x0 with normal ~n. Let ~x be any point in the plane then
~x− ~x0 is a vector along the plane, and so:

~n · (~x− ~x0) = 0,
~n · ~x = ~n · ~x0,

~n · ~x = D.

Filling in ~x = ~o+ t~d and solving for t we get:

~n · (~o+ t~d) = D,

t~n · ~d = D − t~n · ~o,

t =
D − t~n · ~o
~n · ~d

,

providing that ~n · ~d 6= 0. If it is, the line is along the plane, and in this implementation no
intersection in returned. The normal is simply ~n everywhere.

A plane is specified by D followed by the three components of ~n. For example the following is
the plane passing through (3, 4, 5) with normal (0, 0, 1)

5
0 0 1
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2.4 The Disk and Annulus Primitives

The disk primitive is just the plane primitive with the extra condition that an intersection only
occurs if ~x is within a distance r of some centre. The annulus is the same, but also check the
distance is greater than rin.

This actually adds quite a lot of extra work to the task of checking an intersection as:

~x = ~o+ t~d,

is evaluated. In the respective cases r2 and r2, r2
in may be precalculated at read time.

Disks are described by their centre, normal and radius. Annuli are the same, but with their
rin following the radius.

The following is a disk of radius 2.5 with centre (1, 1, 1) with its normal pointing along (4, 3,−1):

1 1 1
4 3 -1
2.5

And replacing the above with an annulus of inner radius 0.23 and outer radius 4

1 1 1
4 3 -1
4 0.23

2.5 The Triangle Primitive

A triangle with one vertex at the origin and the other two at ~a,~b can be thought of as the set of
points:

{α~a+ β~b : α, β ≥ 0 and α+ β ≤ 1}
If given a point we with to determine if α, β satisfy the inequalities given.

Given a vector ~x we suppose it it can be written in the form α~a+ β~b ( which it can be if it is
in the plane containing ~a and ~b ). Then by taking the dot product with both ~a and ~b we get:

~a · ~x = α~a · ~a+ β~a ·~b
~b · ~x = α~b · ~a+ β~b ·~b

We can know all these terms but α and β. Writing this in matrix form and inverting:(
~a · ~a ~a ·~b
~b · ~a ~b ·~b

)(
α
β

)
=

(
~a · ~x
~b · ~x

)
(
α
β

)
=

1

~a2~b2 − (~a ·~b)2

(
~b ·~b −~a ·~b
−~a ·~b ~a · ~a

)(
~a · ~x
~b · ~x

)
or

(
α′

β′

)
=

(
~b ·~b −~a ·~b
−~a ·~b ~a · ~a

)(
~a · ~x
~b · ~x

)
and we check α′ + β′ ≤ ~a2~b2 − (~a ·~b)2.

So how do we use this?
When reading we are given the three vertices ~v0, ~v1, ~v2 of a triangle. We select one of them to

be the origin for the calculations, say ~v0. We then let ~a = ~v1 − ~v0 and ~b = ~v2 − ~v0.
We easily find the normal to the triangle by taking the cross product ~a×~b and normalise, and

this with ~v0 gives us a plane. Also at this time we calculate ~a2,~a ·~b,~b2 and ~a2~b2 − (~a ·~b)2.
Now when intersecting ray ~o+ t~d we just do the plane intersection calculation to find t, work

out ~x− ~v0 and then by the matrix above α′ and β′ and test against 0 and ~a2~b2 − (~a ·~b)2.
A triangle is specified by its three vertices. The following is a triangle with vertices at

(1, 0, 0),(0, 1, 0) and (0, 0, 1):
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1 0 0
0 1 0
0 0 1

2.6 The Parallelogram Primitive

A parallelogram with one vertex at the origin and the adjacent two at ~a,~b can be thought of as
the set of points:

{α~a+ β~b : 0 ≤ α, β ≥ 1}.

So, if given a point we with to determine if α, β satisfy the inequalities given.
We may determine α and β (or even α′, β′) in the same way as for the triangle and adapt the

inequalities.
A parallelogram is specified by a vertex, and the directions of the two edges leaving that vertex.

The following is a square with vertices at (1, 1, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 0):

1 1 0
0 -1 0
0 0 -1

2.7 The Affine Primitive

Suppose you wish to specify a primitive in another co-ordinate system, say one whose origin is at
~O and whose x, y and z axes appear as ~X, ~Y , ~Z in our co-ordinate system. Let:

M =

 X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

−1

=

 ~X ~Y ~Z

−1

.

Then a ray ~o+ t~d in our old basis will be a ray in out new basis:

M(~o− ~O) + t′
M~d

|M~d|

where t′ = t|M~d|. This ray can now be fed to the primitive intersection code of the of the primitive
in the new basis giving t′ and hence t.

Next consider the normal. What the normal calculation code for any primitive allows us to
calculate is:

~∇~yf(~y)
∣∣∣
~y0

.

What we want to evaluate is:
~∇~xf(M~x)

∣∣∣
~x0

.

By the chain rule we can evaluate this in terms of what we have:

~∇~xf(M~x)
∣∣∣
~x0

= MT ~∇~yf(~y)
∣∣∣
M~x0

Or we may see it directly.

∂

∂ i
f(M~x)=

=
∂

∂ i
f(M11x1 +M12x2 +M13x3,M21x1 +M22x2 +M23x3,M31x1 +M32x2 +M33x3)

=
∂f(~y)
∂y1

M1i +
∂f(~y)
∂y2

M2i +
∂f(~y)
∂y3

M3i
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Curiously this means if we are given M instead of M−1 we do not need the matrix to be
invertible. This corresponds to our space appearing flat in the world the primitive lives in!

The implementation of this special primitive is quite straight forward. Multiplication of the
vectors in the ray by a matrix and its transpose is standard. The only catch is reading another
primitive - which is achieved by reading an object ID, searching the object type table, and then
calling the appropriate function.

An affine primitive is specified as ~O, then ~X, ~Y , ~Z and then the object ID and description the
the embedded primitive.

In the below example we have an affine transformation which stretches a sphere to be twice
the length in the y and z directions it normally would. This produces an ellipsoid. 6

0 0 0
1 0 0
0 2 0
0 0 2

SPHERE_ID
0.5
0 0.5 0

Similar primitives are provided for the affine distortion of surfaces and lights. However, lights
with the 1/r2 effect aren’t really suited to arbitary affine distortion, as the distance function will
depend on direction for a general affine transdorm. If the matrix given just scales distance then
all should be well.

2.8 The Cone Primitive

A cone with apex at ~c and axis ~a is the set of all points ~x for which the line from the apex to the
point is at some given angle θ to the axis. Normalising ~a this can be written in vector terms:

(~x− ~c) · ~a
|~x− ~c|

= cos(θ).

Let α = cos(θ). We can extend this to the double cone:

(~x− ~c) · ~a = ±α|~x− ~c|,

or
((~x− ~c) · ~a)2 = α2(~x− ~c)2

Filling in our ray ~o+ t~d: (
(~o− ~c) · ~a+ t~d · ~a

)2

= α2
(

(~o− ~c) + t~d
)2

((~o− ~c) · ~a)2 + 2t
(
~d · ~a

)
((~o− ~c) · ~a) + t2(~d · ~a)2 = α2

(
(~o− ~c)2 + 2t(~o− ~c) · ~d) + t2 ~d2

)
,

giving the quadratic for t:

t2
(
α2 − (~d · ~a)2

)
+ t2

(
α2(~o− ~c) · ~d−

(
~d · ~a

)
((~o− ~c) · ~a)

)
+ α2 − ((~o− ~c) · ~a)2 = 0,

which is solved in the normal manner. By calculating ~x afterwards, dotting with ~a and rejecting
certain values it is possible to get only finite cones.

Now to find the normal. Let ~x0 be a point on the cone. We may extend the normal at this
point back until it hits the axis, at a distance (say) l from the apex. Then l cos(θ) = |~x0 − ~c| is

6The SPHERE ID in the description should be replaced by whatever number has been assigned to the sphere
primitive.
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the distance from the apex to this point. However the normal, the axis and the line from the apex
form a triangle, giving:

~n = (~p− ~c)− l~a = ~p− |~x0 − ~c|
α

~a

This still must be normalised, and must be adjusted for the fact that for one half of the double
cone the normal points the other way !

The cone is a rather tough case where the only thing that can be precalculated is α2, and α
must also be stored for computing the normal.

A cone is specified by α, then where the cone starts and finishes along the axis (in terms of
the length of the axis), then the 3 components of the apex of the cone, and finally the three
components of the axis of the cone.

For example the following cone makes an angle of about 25o with its axis, starts at the apex and
goes to 2 times the length of the normal (in this case for a total of −10 units in the y direction).
Its apex is at (0, 2, 0) and its axis points along the y direction.

0.9
0 2
0 2 0
0 -5 0

2.9 The Cylinder Primitive

A cylinder is the set of points a given distance (the radius r) from a line. If ~c is a point on this
line, ~a points along the line and ~x is a point on the cylinder then we note by Pythagoras’ theorem
(providing ~a has been normalised).

(distance from ~c to ~x)2 = (radius)2 + (distance along axis from ~c to ~x)2

(~x− ~c)2 = r2 + ((~x− ~c) · ~a)2

Filling in our ray
(~o− ~c)2 + 2t(~o− ~c) · ~d+ t2 ~d2 = r2 + ((~o− ~c) · ~a)2 + 2t(~o− ~c) · ~a~d · ~a+ t2(~d · ~a)2

Giving a quadratic for t:

t2
(

1− (~d · ~a)2
)

+ t2
(

(~o− ~c) · ~d− (~o− ~c) · ~a~d · ~a
)

+ (~o− ~c)2 − ((~o− ~c) · ~a)2 − r2 = 0.

This can be solved in the usual manner, and r2 may be precalculated. Finite cylinder can be
formed by then working out ~x and dotting with ~a and then ensuring this lies within a certain
range.

The normal at ~x0 is found by examining this triangle further. One side is the normal, and it
is easily seen to be:

~n = (~x0 − ~c)− ((~x0 − ~c) · ~a)~a.

A cylinder is specified by its radius, its upper and lower values for the extent of the cylinder
(this cylinder starts at height 2 and goes down to height -8). Then you specify a point on the axis
and the direction of the axis.

0.5
0 10
0 2 0
0 -1 0

3 Assessment

Here is presented a list of the strengths and failings of the model, program structure and imple-
mentation.
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3.1 Models

3.1.1 Ray Tracing

Ray tracing can produce very convincing looking pictures, but they always seem too clean and
shiny if realism is your aim. Ray tracing is a very good model when it comes to smooth, non-
refracting objects, none of which contribute much to the general lighting of the scene.

Combining Ray Tracing with the Radiosity method can improve the results if you have a
strongly lit surface which contributes largely to the lighting of the scene.

The problem with refracting objects is two fold. First refracting objects, for the most realism,
should refract different coloured light in different directions. This means sampling the spectrum
at many points and tracing rays for all the different resultant rays. This pushes the computation
time up significantly.

Secondly, as light is traced from the eye out, you will not see “rainbows” projected onto things
by prisms. If you look into a transparent object you will see rainbows around things, but these
will not be visible at all on a diffuse surface. This also means you don’t see “caustic” effects when
light passes through transparent media.

This second can be partially resolved by tracing rays from the light out and merging the results
with that of a traditional ray trace.

3.2 Phong Illumination Model

The Phong Illumination model is a model not based on the physics of the situation, but rather a
model which produces reasonable results in reasonable time. As it stands it can be commended,
but some simple improvements can be made.

Also the model assumes all lights are “at infinity”. This ray tracer goes some way to fix this
by adding the inverse square law when evaluating the Phong illumination. A further improvement
may be to introduce the inverse square law fully, that is when adding up the illumination from
a traced ray to divide the specular part by the square of the total distance travelled since the
light left a light source, or a diffuse surface (where the beam becomes unfocused). There is some
ambiguity here though which needs to be addressed.

A third improvement would be to allow for objects which absorb light as it passes through
them. The standard physical model says light intensity will decay exponentially, with respect to
the distance travelled in the object. It is interesting to note that this can be represented by giving
objects complex refractive indices.

3.3 The Program

3.3.1 Program Structure

The program was designed with the prospect of adding new primitives in mind. As a result adding
a new primitive consists of writing read, intersect and normal code in the same style as the others,
and then adding your new object to the object table. This is very straight forward.

In addition to ray tracing several rendering methods have been written. These include shading
according to depth (gray level = r−1), shading by pure colour (colour is that of first point hit)
and shading by direction of normal (colour is given by dot product of normal and eye ray). None
of these methods are very pretty, but might they might help in the debugging of new objects or
surfaces.

If each object was given an “in” function which returned if a point was considered to be within
the object then it would be possible to implement object intersections. In a similar manner it
would be possible to implement a bounding volume or voxel system to improve the programs
speed.

The program was not originally designed with expansion of the light types, or surfaces in mind.
Both the surface and light code has now been modularised, in the same style as the primitive code.
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The surface objects seem quite satisfactory. It is not yet clear if the light objects are sufficiently
flexible.

3.3.2 Program Implementation

The program is written in ANSI C, and has been tested with on the following platforms.
Complier OS Machine
gcc 2.7.2 FreeBSD 2.2.7 Pentium PC
egcs 1.1 FreeBSD 2.2.7 Pentium PC
TenDRA-4.1.2 FreeBSD 2.2.7 Pentium PC
gcc 2.7.0 SunOS 4.1.3 U1 SunSparc 5
cc, gcc RISC/OS 5.01 Mips 4000
cc, gcc RISC/OS 4.51 Mips 3000
gcc OSF/1 DEC Alpha
gcc 2.6.3, sc 6.55 AmigaDos 3.1 Amiga 4000
gcc Linux Pentium PC

The only compiler errors it has produced (with options -Wtraditional -W -Wpointer-arith
-Wall -Wstrict-prototypes -pedantic -Wmissing-prototypes -Winline -Wmissing-declarations
-ansi -Wredundant-decls for gcc) are relating to broken system header files. I would recom-
mend the comp.lang.c FAQ to anyone interested in writing good C.

The speed of the implementation is quite good, all the test scenes take in the region of minutes
or less to render on all the above machines at a 512 by 512 resolution. A scene of the space shuttle
consisting of 1600 triangles takes in the region of half an hour.

It could be improved by making further use of typedef, currently some structures are used
without defining new types. Some of the code could be better commented.

Memory management is a bit weak7. All memory allocated forms a linked list, which can be
fully un-allocated. Deallocating part of it is not possible at the moment. This is also linked with
the weak error handling. If you hit a problem you call die which unallocates all memory and
exits.

The code is written as many fairly small bits, for the sake of expand-ability but some of the
header files make information available to the rest of the source code which should not be (for
example primitive structures can be seen — which should not be the case). With the addition of
modular surface code this should be more straight forward.

The object type array should be automatically sorted, and then binary searched - it is currently
unsorted and searches are linear. General investigation of compiler optimisation of the code, and
its effects on run time should be done. A compiler which can inline floating point square root code
speeds up rendering of many scenes significantly.

3.3.3 Preprocessor

The problem here is that there isn’t one. I’ve considered writing some macros for cpp (the C
pre-processor) or m4 to make the input language more readable, but the what is really needed is
a separate program to preprocess the input. Something written in Perl could be quite suitable.
Ideally a proper parser built with yacc/bison/flex/lex should be written.

The preprocessor, a fancy front end and the ray tracer could be merged, however I’d be in
favor of keeping these separate.

4 Summary & Conclusion

Ray tracing works. It produces shiny pictures which people go “woooow” at. The rather weird
perfection makes their look unreal. Implementing a ray tracer is fiddley in later stages, as it
becomes difficult to work out how light should behave in a test scene.

7For “a bit weak” read “almost nonexistent”.
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4.1 Features

• Primitives: Annulus Cone Cylinder Disk Parallelogram Plane Sphere Triangle Torus Polygon

• Special Primitive which allows affine transformation of other primitives.

• Point light sources with and without r−2.

• Ambient light source.

• A simple camera model with no depth of field.

• Phong Illumination model, with simple shadowing and simple inverse square law.

• Surface code for various different types of surface, including texture mapping.

• Recursive reflection and refraction and total internal reflection.

• A simple input language.

• Output in PPM format.

• Should be portable to all ANSI C platforms.

• Code for solving polynomials of degree less than 5.

• The ability to turn off parts of the illutation model for testing.

• Gnu autoconf used for finding system header files.

• Depth, colour and normal rendering.

4.2 Wish List

• Primitives: Prism, Pyramid - maybe Helix, quadratic forms, paraboloid.

• Special Primitives to allow CSG operations.

• Special Primitives to allow bounding volumes.

• Phong Illumination model, with absorption and proper inverse square law.

• Refraction with complex refractive indices.

• Complex input language and Preprocessor.

• Intersection code that takes advantage of the “best intersection yet”.
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