
A LATEX to OpenMath Phrasebook

David Malone <dwmalone@maths.tcd.ie>

December 6, 2000

This LATEX to OpenMath phrasebook is in essentially two parts. The first part (om2pl) is a
C program which uses the INRIA C library to read a piece of OpenMath and produce Perl code
which represents the OpenMath. The second part (pl2la) is a Perl program which reads this Perl
code and outputs LATEX.

A short Perl program (om2la) which runs om2pl and pl2la is sequence is also provided.
While designing the program I felt it was important that it should be possible to customise

the program relatively easily because:

• is likely that people will be using Content Dictionaries which the program doesn’t provide
for “natively”,

• the formatting of Mathematics is often a personal issue, and people may want to modify the
default behavior for standard Content Dictionaries.

This suggested to me that the converter should be written in a language such as Perl, which is
widely available, allows easy modification of existing code and is suited to text processing.

Perl5 also allows the representation of recursive data structures using references and anonymous
data. This allows for an encoding of OpenMath in Perl which is readable, similar in spirit to the
XML encoding and (most importantly) parsable as a valid piece of Perl. This means that once
you have a piece of OpenMath in its ‘Perl encoding’ you don’t need to write a parser to use it
from Perl.

In this encoding each node in the tree is represented by a Perl hash1. Each node has a key
type which tells you what sort of node it is (eg. binding, application, integer), and several other
keys corresponding to information corresponding to that type (eg. name and CD for a OpenMath
Symbol). Each Hash is delimited by { and }, and lists of things are delimited by []. Strings are
usually single quoted, but may be quoted in other ways if necessary. Figure shows the types of
nodes and the keys and values they include.

Om2pl takes OpenMath and outputs a Perl subroutine which returns a list of references to
OpenMath objects in this encoding. Figure 2 shows a short piece of XML and Figure 3 shows the
resulting Perl Encoding.

Pl2la is driven by generic code which should allow other phrasebooks to be written and plugged
in. It is based around the idea that format type will be called for each node in the tree, and that
the driver code2 will figure out what formatting code should be run. The idea is that simple types
are always formatted by the generic type and:

• symbols know how to format themselves,

• applications expect their head to know how to do the formatting,

• bindings expect their binder to know how to do the formatting,

• attributions expect the attributes to know how to do the formatting,

• errors expect the error symbol to know how to do the formatting.

1

Type Key Value
integer value value as numeric string
symbol name name of symbol as string

cd CD name as string
variable name variable’s name as string
float value value as numeric string
string value value as string
bytearray value value as string
application head reference to object you are applying

args reference to list of arguments
binding binder reference to object doing the binding

vars reference to list of possibly attributed variables
body reference to object in which variables are bound

attribution object reference to object to which attributes apply
attrs reference to list of atps

error symbol reference to symbol representing error
args reference to list of arguments to symbol

atp attribute reference to symbol for attribute type
value value of attribute

Figure 1: Keys, Values and Type names for Perl encoding

<OMOBJ>
<OMA>
<OMS name="plus" cd="arith1"/>
<OMI>6</OMI>
<OMV name="x"/>

</OMA>
</OMOBJ>

Figure 2: An example piece of OpenMath

{
’type’ => ’application’,
’head’ => {
’type’ => ’symbol’,
’name’ => ’plus’,
’cd’ => ’arith1’,

},
’args’ => [{
’type’ => ’integer’,
’value’ => ’6’,

},
{
’type’ => ’variable’,
’name’ => ’x’,

},
],

}

Figure 3: The Perl encoding of the sample OpenMath.

2

Type Calls function refered to by
integer $generic_format_type{’integer’}
symbol $cdformatter{$cd}->{$name}->{’symbol’} or

$cdformatter{$cd}->{’generic’} or
$generic_format_type{’symbol’}

variable $varaibleformatter{$name}->{’variable’}
$generic_format_type{$name}->{’variable’}

float $generic_format_type{’float’}
string $generic_format_type{’string’}
bytearray $generic_format_type{’bytearray’}
application If head is a symbol:

$cdformatter{$cd}->{$name}->{’application’}
$cdformatter{$cd}->{$name}->{’generic’}
$generic_format_type{’application’}
If head is a variable:
$varaibleformatter{$name}->{’application’}
$generic_format_type{’application’}
Otherwise:
$generic_format_type{’application’}

binding Similar to application, using the binder.
attribution Treated as list of single attributes.

Similar to application, using attribute in the atp,
error Similar to application, using the error.

For example, suppose that we are about to format a symbol. It will check if code is available
for formatting this specific symbol, and if it is not then it calls code which knows how to format
generic symbols. The rules used to decide what code to run are shown in Figure fig:howfmt.

Once a node has been formatted its formatting is stored, incase this node needs to be formatted
again. In the case of variables some generic functions are provided to deal with the binding of
variables, so that their formatting can be kept consistent across the binding.

Slotting into this generic frame work is a formatter written to output LATEX3 This formatter
has a basic set of rules for producing LATEX, which it uses if it cannot find specific formatters for
the symbols and variables it encounters. These basic formatting rules are as follows:

• Floats, strings and integers just use their value. Bytearrays are formatted as a string of hex
digits.

• Symbols are formatted as their name.

• Variables are formatted as their name, unless this formatting is already in use. In this case
we subscript the variable.

• Applications are formatted as head(a1, a2, . . .).

• Bindings are formatted as binder.v1, v2, . . .→ body, or just as the body.

• Attributions are formatted as a list of properties, or just the object.

• Errors are formatted as an “An error of type error occurred”.

When a variable or symbol is encountered the formatter will try to load a Perl file from
tex/-variable.pl or tex/cdname.pl. This code may be as simple or as complicated as necessary.
For simple example, the symbol gamma in the nums CD essentially returns \gamma.

1You can think of a hash as a list of keys and values
2The driver code is in format type.pl.
3See tex format.pl.

3

6 + x (1)

Figure 4: The LATEX version of the Perl.

A complicated example would be partial differentiation, which tries to extract the list of vari-
ables which it is differentiating with respect to, and then find the formatting of each of these
variables. Some code which can format functions of n variables, infix operators and binary rela-
tions is provided in tex/-useful.pl, and many of the CDs use this code.

The formatting information I am using within the LATEX phrasebook essentially contains 4
pieces of information:

fmt The full LATEX formatting of the object.

sfmt A simple formatting of the object. Usually this is the same as fmt. In the case of a binding
it will usually just be the body of the binding. In the case of an attribution this will be the
object without the “x has procerity blah”. The formatter usually uses this simple formatting
as opposed to the full formatting.

lpren What to use as a left bracket if someone wants to bracket this expression.

rpren What to use as a right bracket if some wants to bracket this expression.

The result of feeding our simple example into this LATEX phrasebook is shown in Figure 4.
Some futher enhancements to the design could be made, including attaching functions to

formatted objects which know how to format that object when it arises in a particular contexts.
It should be possible to use the generic framework with relatively little modification to produce a
phrasebook for something like Mathematica or Maple.

4

