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Abstract

Entropy is often considered as a measure of uncertainty. It is commonly
believed that entropy is a good measure of how many guesses it will take
to correctly guess a single value output by a source. This belief is not well
founded. We summarize some work in this area, explore how this belief
may have arisen via the asymptotic equipartition property. This leads us
to a large deviations type estimate of the guesswork for symbols forming
a Markov chain.

1 Introduction

Shannon entropy

h(p) := = >_pilogy pi (1)

is often considered as a measure of the number of bits of uncertainty associated
with a source which produces symbol i with probability p;. This use, which
began with Shannon’s work on Information Theory, has become widespread in
cryptology where it is often used outside its original context. For example, the
discussion of key-guessing attacks in [11] says:

We can measure how bad a key distribution is by calculating its
entropy. This number F is the number of “real bits of information”
of the key: a cryptanalyst will typically happen across the key within
2F guesses. F is defined as the sum of —pg log, pr, where pg is
the probability of key K.

Similar inferences are made in Section 17.14 of [10] while discussing Biases and
Correlations of random sequence generators. The quality of the random data
harvested by the Yarrow pseudo-random number generator is also referred to
as entropy [5]. The Entropy Gathering Daemon [12], a substitute for the Unix
/dev/random device, speaks for itself in this respect.

In all these cases entropy is being used to measure ‘guessability’. There are
many possible criteria for specifying ‘guessability’. The one we consider here
is the expected number of guesses required to get the correct answer. There
are various strategies which can be used for guessing. Commonly know are
brute force attacks where all symbols are guessed in no particular order, and
dictionary attacks where symbols which are deemed more probable are guessed
first. Well known software such as Crack [8] uses a dictionary attack.

The guessing strategy we consider is the optimal one, where symbols are
guessed in decreasing order of probability. If the symbols produced by the
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Figure 1: Samples of G(p) and H(p) for alphabets of < 20 symbols.

source are relabeled so that p; is the most likely and the sequence p; is non-
increasing then the expected number of guesses is

G(p) = ipi. (2)

i

In [9] this is referred to as the guesswork. For comparison with entropy we
define

2h(P) 41
Hp) =L Q
Note, on average it takes (n + 1)/2 guesses to guess from n equally likely pos-
sibilities. The popular notion entropy ~ bits of uncertainty suggests that we
look for some sort of equivalence between G(p) and H(p). Casual numerical
experiments suggest that 0.7H (p) < G(p) < H(p) (See Figure 1).

2 Bounds on G and H

In [7] it is shown that a lower bound for G(p)/H (p) is 2/e. This can be derived
by showing that a geometric sequence for p; produces an extrema, of h(p) while
keeping G(p) fixed. The value 2/e is obtained for an infinite geometric sequence
as the ratio goes to 1.

The upper bound, G(p) < H(p), suggested by numerical experiment is
shown to be incorrect in [7]. By taking a sequence where p; = 1 — §/n and
p2,...,pk = B/(n? —n) and letting n — oo we get sequences with arbitrary
G(p) but with h(p) tending to zero.

So H(p) is within a few bits of being a lower bound on the expected number
of guesses, but may be an arbitrary large underestimate. This is fortunate for
those designing cryptosystems where entropy is used as a measure of guess-
ability. In [3] Rényi entropy is used to give two-sided bounds on the expected
number of guesses.

3 Other measures of guessability

However, the example which dispels the possibility of an upper bound raises an
interesting issue. It produces distributions where the average number of guesses
is arbitrarily large, but it places almost all the weight on the first possibility so



the mode of the number of guesses will be 1. This suggests that the average
number of guesses may not be a good measure of guessability for cryptography.

As an alternative to G(p) another measure of guessability is the number of
guesses required so that probability of having guessed correctly is at least . In
[9] this is referred to as the a-work factor and denoted wf,(p). They examine
wf 1 and decide that again entropy does not provide a good estimate. However
they offer 1 — |[p — u|| as a more hopeful estimator, where u is the uniform
distribution and

lp —qll :== XCS{lllp . Ip(X) — q(X)| (4)

is the variation distance.

4 Guesswork and Asymptotic Equipartition

How did this perceived link between entropy and guesswork arise? One sug-
gestion in [9] is that it is a misapplication of the Asymptotic Equipartition
Property (AEP).

The AEP applies to a collection of n i.i.d sources of symbols and the words
of n symbols they produce. Roughly speaking, the AEP says that if you take
n large enough then there is a typical set of 271(P) words which all have ap-
proximately the same probability 2-"h(P)  and the remaining words have only
a small probability associated with them (see [2] for a precise statement).

A good estimate of the guesswork of these 27h(P) equiprobable typical words
would be (2""(?) +1)/2, and setting n = 1 we get the folklore that G(p) ~ H(p).
The first problem with this argument is that the AEP deals with large n; what
arises in the case n = 1 may be very different. Another difficulty is that terms
of low probability may contribute significantly because of the factor 7 in the
expectation Y i p;.

If one considers the case of independent identical distributions, G(p"), then
a straightforward application of the AEP for large n is not valid because, as
the probability of the atypical words becomes small, the weight associated to
them in the sum for G(p") grows exponentially.

We can also consider this in terms of the principal of the largest term and
typical sets. When calculating expectations for n i.i.d. sources we look at sums

of the form:
n 1 ‘'
L..phr ) 5
> (nl.__m)pl Py f(p) (5)
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If the function f(p) is relatively small, then the most important term in this
sum is the one which maximise the product of the multinomial coefficient and
the probabilities. This term will have ny/n = pg. These points corresponds to
the typical set of the AEP.

When calculating guesswork f(p) = rank(p) and the sum we consider is

closer to: X
n
5 ( )p’fl---p?’- Q
ny...nNy

niy..Ny

Here the largest terms will be those with ng/n = r,/px, where 7 is a normalising
constant. Thus the dominant terms for the guesswork problem are different
from those for the coding problem. In [1], Arikan employs clever inequalities



to produce estimates of the guesswork. We apply more direct calculations to
extend this result to Markov chains.

Let us now state precisely the problem we consider. For the probability
distribution {py,...,pm} and a > 0, the ot guesswork moment G is given b

m
*:=> i%pi (7)
i=1

Let A = {1,...,7} be a finite alphabet with r > 1 characters. Let P be a
stationary distribution on AN, with P, denoting the restrictions of P to A”. We
seek

.1 o
hgnﬁlgG (Py). (8)

Arikan [1] has shown that in the independent case in which P, is the product
Ofpla <y Pry

hm lgGa( (1+ ) ngza 1/(1+a), (9)

Notation. It is convenient to specify the notation we use for the irreducible
(possibly periodic) Markov chain P on AN. The restriction of P to A™ is denoted
P,,. We assume P has the stochastic matrix U = (uq) and invariant probability
(uq) so that for w € A™+1

n

Pn—|—1(w) = Uw, H uw¢w¢+1 (10)
i=1

Theorem 4.1 Let P be the irreducible Markov chain specified above. Then for
a>0
lim — lgGa( n) = (14 a)lgA, (11)

where X\ is the Perron-Frobenius eigenvalue of the matriz with entries ul/(Ha)

5 Proofs

From [6] we have the Perron-Frobenius

Theorem 5.1 Let C be an irreducible matriz on A X A with nonnegative entries.
Then C has an eigenvector (vg : a € A) all of whose entries are strictly positive.
The corresponding eigenvalue X is real and has the property that if X' is any
other real or complex eigenvalue of A, then |N| < A.

Lemma 5.1 Let C = (cq) be a nonnegative irreducible matriz on A X A with
corresponding Perron-Frobenius eigenvalue A and eigenvector (v, : a € A),
> b CabUb = AVq. Let (yap) be a probability distribution on A X A so that yg, = 0
whenever cqp = 0 and that for each a € A, with

Ya = Zyaba Zyba = Zyab = Ya- (12)
bea bea bea

Then

D> g, (13)
a
with equality, if, and only if, Yap/Ya = CapVs/(Avg) for all a,b € A.
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Proof. Since (12) implies > 45 Yab 18 Va = X ap Yab 1 Vb,

Ya Ya Cap U
Suals e = Su e el - w St w9

Cab Ya 2

Z Yo 18—

where D denotes the I-divergence of the conditional probability distributions on
A. The conclusions follow from the properties of D: D > 0 and D = 0 implies
equality for the probability distributions. Note that if some y, = 0, then there
is some a’ so that y,» # 0 and D > 0 for the distributions conditioned on a'.

lg)\+2yaZD (yab

Cab ya b Ya

Cab Vb
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en) )

Notation. Let w € AN. We define n4(n,w) and n,(n,w) by
ngp(n,w) :={i:1<i<n, wi=a, wiy1 = b}, ng:= Znab (16)
bea

with | - | denoting cardinality. When n, w may be deduced from context, we omit
one or both. Note these depend on (wi,...,wp+1). We also define probability
distributions yu,(n, w) and y,(n,w) by

Nab Ng

Yab ‘= 7, Ya = ; (17)

Given (ng), € (n, ¢, (gp) ) is defined by
e(n,c, (Map)) := ‘{w €AW = ¢, ngp(n,w) =g Vab e AQ}‘ . (18)
In estimates below, the multinomial coefficients
<n>—n'/Hna,<n )—n'/Hnab (19)
(a) ach (b abeh?

are significant.
Condition (12) corresponds to stationarity; in general (yq) coming from
ngp(n,w) does not quite satisfy (12).

Lemma 5.2 For fized w and n,
= mal L5 Yo — D Ypal < 1/n. (20)
b b

Proof. The distinction between ng and )y npg s that ng counts how often a
occurs in (wi,...,wn); YpMba, how often a is in (wa,...,wp4+1)-

Lemma 5.3 For fized w and n.

n+r2-1 - nay n
( . ) abl;[“y <(nab)> <1. (21)

Proof. The right hand inequality follows from the multinomial theorem, as
does the left, by noting that the leftmost term is the reciprocal of the number
of terms and that for given (y,;) the largest term of the expansion is the one
given in the inequality.



Lemma 5.4 Let wi = ¢ and ngy = ngp(n,w*). Then

[lona! [ n n
e(n,c, (na)) < m = <(ﬂab)>/<(na)>- (22)

Proof. Given w in the defining set, if one specifies the order in which the n,
characters which follow @ in (w1, . ..,wp41) for each a € A, then one can uniquely
reconstruct w starting from c. This means the total number of such w cannot
exceed the number of arrangements of the characters.

The basic definition of the o' guesswork moment of the stationary Markov
chain P with stochastic matrix U = (u,p) and invariant distribution (u,) is

GY(Pas1) = ) rank(w)Poii(w), (23)

weAntl

where the integer rank(w) runs from 1 to r"*!, and rank(w) < rank(w') if
Pyi1(w) > Ppi1(w'). In general, for a given w there are many w’ with P, 1 (w) =
P,i1(w'). This occurs if w; = w} and ng(n,w) = ngp(n,w’), but may occur
otherwise. We choose a non-reflexive linear ordering < on A X {(ng)} so that

(e, (map) ) < (5 (nly)) = e T ulse >t T ™. (24)

abeA? abeA?

Then we define g(c, (ngp) ) by

gld ()= D elne (nw)). (25)

Ca(nab) '<C’5(n;,b)

We have the following expression for the o' guesswork moment:

Pas)) =2 ).

c€h {(nap)}

PO

k=g(c,nqp)+1

ue [ upgt. (26)

abeA?

[g(cvnab)+e(nvcv (nab) )

Different choices of < satisfying (24) yield the same G*(P,41).

Lemma 5.5 Fora >0

1
G Foir) 2 7, max, {e(n’c ) ucHunab}'
Ga(PnJrl) < K1+a I{lﬁ.x) {e(nac nab ucHunab}a
Mab

where

n

21
Ky = r<”+r . 27)
Proof. The first inequality follows from
gte 1+a

e
k% > / Ydx = . 28

k=g+1




For the second inequality, note that each of the K,, summands of the form Zgii

in (26) is not greater than e(g + €)@, so
G* (Pn—|—1) < Kn mgx(gT + eT)aeTpTa (29)
where

7= (¢, (nap) ), er =e€l(c, (nap) ), gr = glc, (nap) )y Pr = uc H uret. (30)
abeA?

Let 7* be a value of the parameters which maximizes e, !t

Dr:
+ap’r* > 6T1+ap'r- (31)

Now the function g, satisfies (note pg > p; instead of g < 7)

gr ter < Z €3- (32)
B:pg>pr

Note that if pg > p, and eg > e, then ef e;p; < eé"’apﬂ < ei?'[apT*, S0

1/a /o
(g7 +en)erpn)!/® < 30 |egerns] " < KT T (33)
B:pg>pr
Then
(gr + er)aerpr < Kna Er* Ita DPr,s (34)

so the second inequality of this lemma follows from (29).

Proposition 5.1 For the stationary Markov chain P with stochastic matrizc
U = (ugp) and stationary distribution (u,),

lim sup lg GYP,) < (14 a)lgA, (35)
1/(1+a)

where X is the Perron-Frobenius eigenvalue of the matriz with entries )

Proof. Since (Igu.Ky,)/n — 0, starting from (26) we use Lemmas 5.4 and 5.5

to deduce that
(0%
lim sup lg G*(Fni1) (Pri1) lg |max H Ma uZﬁbKHa) . (36)
(nab Hab nab ab

l1+a
< limsu
n n+1 - n P

1/n

Since [y/¢*]Y/™ = y¥b and [yRa]Y/™ = y¥a, Lemma 5.3 implies

lge G*(P, @
lim supM < lim  sup (14a)lg lmax{ I y?/ab uzzb/(l—'— )}] . (37)
n n + 1 nab) Hab y ab

Now we take a subsequence {ny, ((ng)ap)} so that the right hand side converges

to a maximum at (y};). From Lemma 5.2 we have >, y¥, = >"; y;,, 50 Lemma
5.1 yields (35).



Proposition 5.2 For the stationary Markov chain P with stochastic matriz
U = (ugp) and stationary distribution (u,),

ll%lnf lgG*(P,) > (1+a)lgA, (38)
where X is the Perron-Frobenius eigenvalue of the matriz with entries u L/(+e)
Proof. Let X\ be the Perron-Frobenius eigenvalue of the matrix (ulé(Ha)) and
(vg) the corresponding eigenvector with > v, = 1. Define

1/(1+a)
- Ugh
Cab * o (39)

Let w*, with P,(w*) > 0 for all n, be a generic point (see [4]) of the ergodic
Markov chain with stochastic matrix (cqp). This implies that ( ya(n,w*)) con-
verges to the distribution (v4ce) on A%, Define

*

o :=wj, N“:={neN: wf =w;  =a"}. (40)

Now for n € N*, by the Theorem of Aardenne-Ehrenfest and De Bruijn (see

)

Ha (na — 1)
Hab nab

where ngp = ngp(n, w*). From Lemma 5.5, noting lim, (1gn,)/n = 0, we deduce

1 1 1 Fyite
liminfM > liminfn_l_ I Ig l ( 1o |> Hunab]

€ (nv a’*a (nab) ) (41)

neN* n+1 ~ neN* 1+ o \Il.pnab!

Then by Lemma 5.3,

15 G(P, 1
lim g 8 Frit) 5 gy g2 0 (Tl viae T st/ . (43)
+1 neN* n+1 | J R o

Then (38) follows from Lemma 5.1 provided we restrict to N*. To handle
n € N\ N*, we note that when n > 2r, there is some k, n —r < k < n+1,
and w™ € AN sothath( n) =w fori<k—r, w,(c)—a and Py y1(w™) > 0.
Then ngp(n, w™) > ngy(k—1,w ) Applying the above estimates to nqp(n, w™)
yields the same limiting value.

This completes the proof of Theorem 4.1. A special case is that for which
all the rows of the stochastic matrix U = (u4p) are equal, which corresponds to
independence. This yields

Corollary 5.1 Let P be the probability distribution on AN which is the product
of the single character distributions P({w; = a}) = uq, g > 0, Y 4ep = 1.
Then

hm ~1gG*(P,) = (1+a) Ig S ug/ (e, (44)

ach
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