Firewalling

David Malone

<dwmalone@maths.tcd.ie>

<David.Malone@nuim.ie>

10 June 2008
Introduction

- IPv6 Firewalling/Packet filtering.
- Ideas very similar to IPv4.
- First, cover some basics.
- Then, similarities and differences.
- Finally cover some examples.
Special address blocks

- ::1 — localhost.
 Just like 127.0.0.1.
- ::0:0:0:0/96 — (old) compatible.
 Was used to indicate tunnel.
- ::ffff:0:0:0:0/96 — mapped.
 Used in programs to represent IPv4.
- fe80::/10 — link local.
 Used extensively internally.
• fec0::/10 — (old) site local. RFC 1918ish, deprecated.
• fc00::/7 — Local unique unicast. New private addresses.
• ff00::/8 — multicast. No broadcast. Scoped.
Transition Mechanisms

- Dual stack
 Host speaks IPv4 and IPv6.

- (configured point2point) Tunnels
 Running IPv6 over IPv4.

- 6to4
 Automatic tunneling scheme.

- Teredo
 Tunneling through NAT over UDP.
Packet Filtering

Choose to allow or deny packets:

- TCP/UDP/ICMP.
- Port numbers/ICMP type.
- IP addresses.
- In/out which interface.
- TCP flags, sequence numbers, ...
- IP fragmentation/offset.
- Remembering state.
Allow access to your DNS
add permit tcp from any to $ip6 53 setup
add permit udp from any 53 to $ip6
add permit udp from $ip6 to any 53

Allow access to your website
add permit tcp from any to $ip6 80 setup
Addresses

• Use IPv6 not IPv4 address.

• Hardwiring autoconf and privacy addresses.

• (Best to filter per-subnet?)

• More special addresses: localhost, link-local, site-local, LUA, compatible, mapped.

• Multiple addresses (also 6to4/Teredo).

• Ingress/egress filtering (BCP 38).
Filter localhost
permit ipv6 from ::1 to any via lo0
permit ipv6 from any to ::1 via lo0
deny ipv6 from ::1 to any
deny ipv6 from any to ::1

Block mapped addresses on the wire.
deny ipv6 from ::ffff:0.0.0.0/96 to any
deny ipv6 from any to ::ffff:0.0.0.0/96

Denying automatically tunnelled traffic
deny ipv6 from ::0.0.0.0/96 to any
deny ipv6 from any to ::0.0.0.0/96
Filtering ICMP

- Remember no ARP.
- Or in-network fragmentation.
- **Allow neighbour discovery and PMTU discovery.**
- (Except on tunnels?)
- Cisco now implicitly allow ND.
- Unreachable (and other errors) for fast fallback.
- Make choice for each type.
(DAD)
permit icmpv6 from :: to ff02::/16
for NA, NS, RA and RS messages
permit icmpv6 from fe80::/10 to fe80::/10
permit icmpv6 from fe80::/10 to ff02::/16
allow PMTUD
permit icmpv6 from any to any icmptypes
packet-too-big
Extended Headers

<table>
<thead>
<tr>
<th>IPv6 header</th>
<th>Routing header</th>
<th>TCP header and data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Header = 43</td>
<td>Next Header = 6</td>
<td></td>
</tr>
</tbody>
</table>

- Headers for new features.
- Needed for mobility.
- Probably best to follow vendor advice.
- RH0 problem last summer.
Side Points

- Tunneling over other things.
- Common rules or separate?
- Portscanning much harder, discovery still possible.
- Keep an eye out for software ACLs.
- Home networks and NAT.
Cisco

- Implementing Security for IPv6 quite good.
- Features gradually expanding.
- Numbered in 200–299 range.
- Some feature quirks.

```
ipv6 access-list telnet-vty
  permit ipv6 2001:db8:18::/48 any
  permit ipv6 2001:db8:8::/48 any
  permit ipv6 2001:db8:88::/48 any
```
Juniper

Feature set similar to IPv4.

family inet6 {
 filter inbound6 {
 term telnet {
 from {
 source-address {
 2001:db8:18::/48;
 2001:db8:8::/48;
 2001:db8:88::/48;
 2001:db8:888::/48;
 }
 destination-port telnet;
 }
 }
 }
}
PF Example

macros
ext_if = "{ tun0, gif0, stf0 }
ok_if = "{ bfe0, lo0, rl0 }
all_if = "{ tun0, gif0, stf0, bfe0, lo0, rl0 }

tcp_services = "{ 113, 443, 80, 25, 53 }
udp_services = "{ 53 }

priv_nets = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }
int_nets = "{ 2001:db8:ccc1::/48, 10.0.0.0/8 }

scrub
scrub in all fragment reassemble

filter rules
block all
pass quick on $ok_if all keep state
pass in proto igmp all allow-opts
pass out proto igmp all allow-opts
antispoof for $ext_if
block drop in quick on $ext_if from $priv_nets to any
block drop out quick on $ext_if from any to $priv_nets

pass out on $ext_if from any to any keep state

Stuff going to me
pass in on $ext_if proto tcp from any to $all_if \
 port $tcp_services flags S/SA keep state
pass in on $ext_if proto tcp from any to $all_if \
 port 22 keep state
pass in on $ext_if proto udp from any to $all_if \
 port $udp_services keep state
pass in on $ext_if inet proto icmp from any to $all_if \
 icmp-type echoreq keep state
pass in on $ext_if inet6 proto icmp6 from any to $all_if \
 icmp6-type { echoreq, niqry } keep state

Stuff to other hosts
pass in on $ext_if proto tcp from any to $int_nets port 22 keep state
pass in on $ext_if inet proto icmp from any to $int_nets \
 icmp-type echoreq keep state
pass in on $ext_if inet6 proto icmp6 from any to $int_nets \
 icmp6-type { echoreq, niqry } keep state
Useful Reading

• Status of Open Source and commercial IPv6 firewall implementations

http://www.guug.de/veranstaltungen/ecaI6-2007/slides/
2007-ECAI6-Status-IPv6-Firewalling-PeterBieringer-Talk.pdf

http://www.bieringer.de/pb/lectures/
2007-ECAI6-Status-IPv6-Firewalling-PeterBieringer-Paper.pdf

• Survey of IPv6 Support in Commercial Firewalls

http://icann.org/committees/security/sac021.pdf
• IPv6 Deployment in European Academic Networks

http://www.apan.net/meetings/xian2007/presentations/ipv6/
apan24-deployment-chown.ppt

• The Security Implications of IPv6

• Irish IPv6 Task Force

Summary

• Similar to IPv4.

• A few new ideas (ND, PMTU, tunnelling, Extension headers).

• Can use similar policies.

• Somewhat subject to vendor whims.