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Abstract

In this paper we look at the problem of choosing a good
flow state lookup scheme for IPv6 firewalls. We want to
choose a scheme which is fast when dealing with typical
traffic, but whose performance will not degrade unneces-
sarily when subject to a complexity attack. We demon-
strate the existing problem and, using captured traffic, as-
sess a number of replacement schemes that are hash and
tree based. Our aim is to improve FreeBSD’s ipfw firewall,
and so finally we implement the most promising replace-
ment schemes. We show that even though they are more
costly computationally, they do not noticeably degrade IPv6
forwarding performance.

1 Introduction

In [6] the danger of using algorithms that are open to
complexity attacks was highlighted. In a complexity attack,
an attacker causes a system to perform poorly by choos-
ing particular inputs that cause the algorithms used by the
system to exhibit worst case rather than typical complex-
ity. The canonical example is a hash table: if the attacker
controls some of the data used as a key to the hash func-
tion, then they may choose the inputs so that there are many
hash collisions and lookup performance is poor. In particu-
lar cases, this may result in denial of service or incorrect op-
eration of the system. In the case of a firewall, if per-packet
processing becomes too expensive then maximum through-
put will be reduced and valid packets may be dropped.

In this paper, we are considering flow lookup for a
firewall supporting IPv6. A flow key will typically con-
sist of two IP addresses, two port numbers and a protocol
(TCP/UDP/ICMP). An attacker will typically control much
of the source address, some of the destination address and
some of the port numbers. In IPv4 this amounts to a modest
number of bits, however in IPv6 this may amount to hun-
dreds of bits, giving an attacker wide scope for generating
hash collisions.

The aim of this work is to assess several different op-

tions for IPv6 flow lookup that are resistant to complexity
attacks. This is with a view to replacing the lookup scheme
used in FreeBSD’s ipfw firewall, which currently uses an
xor based hash for flow lookup. In particular, we want to
choose a scheme that has good performance characteristics
under typical circumstances while also offering resistance
to complexity attacks. To understand typical performance
we have collected a trace of IPv6 traffic so we can assess
the performance of different schemes on it. Importantly, we
want to choose a scheme that has good performance on both
smaller CPUs (as might be found in small home routers) and
more powerful CPUs (that might be found in servers or high
end firewalls).

There are a number of choices for replacing the lookup
scheme. One is to replace the hash function with one that
is resistant to collisions. This is commonly achieved either
by using a cryptographic hash function or by choosing a
hash function randomly at system startup. The other op-
tion is to use algorithms that have bounds on their perfor-
mance that are independent of the inputs. In the first class
we will look at some hashes based on universal hashing [5]
and Pearson’s hash [10], which are essentially a collection
of parameterised or keyed hashes. In the second class we
will look at some tree based algorithms, such as treaps [2],
splay trees [13] and red-black trees[3]. We will compare
these to baseline results for an xor based hash and a binary
tree with no explicit balancing.

We note that we consider the problem of looking up state
for a specific flow, rather than the problem of finding a best-
matching firewall rule (e.g. [7, 11]) or doing a longest-
prefix route lookup (see the review in [1], but the literature
continues to grow). Our problem is somewhat easier: as it
does not involve matching a range of flows, and so should
be amenable to simpler algorithms.

The remainder of the paper is as follows. In Section 2 we
demonstrate the problem of hash collisions for a number of
commonly used hash functions using a number of simple
attacks. In Section 3 we will describe our method for as-
sessing the different lookup schemes. In Section 4 we will
describe our results. We summarise our finding and draw
conclusions in Section 5.
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Figure 1. Forwarding rate for a 50 pps stream
for a Soekris Net 4501 when subject to a at-
tack streak of 3000 pps. In one case the at-
tacking packets are randomly addressed, in
the other they are chosen to all hash to the
same value.

2 Simple Attacks on Hashes

In order to demonstrate the vulnerability of ipfw’s cur-
rent xor hash function we ran a basic proof of concept at-
tack. We set up a Soekris Net 4501 board as a router be-
tween two servers. We sent packets from one to the other,
and counted how many were received at the destination
server. After about 3s we began to send packets from a
third machine to the router: in the first case randomly ad-
dressed packets, and then packets maliciously designed to
collide under the xor-based hash. In both tests the packets
being forwarded from the first server to the second were be-
ing sent at a rate of 50 packets per second, and the packets
from the third machine were sent at the same rate of 3000
packets per second.

Figure 1 clearly shows that the router could handle this
rate of packets under normal circumstances. However, if
they are designed to collide then the forwarding capacity is
quickly diminished. As a result, packets are dropped and
throughput is limited.

Though we have demonstrated this attack using xor,
many hashes are likely to be subject to quite simple at-
tacks unless they have been designed with resistance to col-
lision based attacks in mind. To demonstrate this, consider
a hash table with 256 different chains. We will hash 36 byte
strings (enough space for two IPv6 addresses and two port
numbers) and insert them into this table with different hash
functions. The different hash functions used are shown in
Table 1. The low eight bits returned from the hash function
are used as the index into the hash table.

Name Description
Universal h← 0

foreach (byte[i]) h← h + K[i] ∗ byte[i]
returnh mod 65537

Xor h← 0
foreach (byte[i]) h← h⊕ byte[i]
returnh

XorSum h← 0
foreach (byte[i]) h← h + (byte[i]⊕K[i])
returnh

SumXor h← 0
foreach (byte[i]) h← h⊕ (byte[i] + K[i])
return h;

DJB2 h← 5381
foreach (byte[i]) h← 33 ∗ h + byte[i]
returnh

Pearson h1 ← h2 ← 0
foreach (byte[i]) h1 ← T1[byte[i]⊕ h1]

h2 ← T2[byte[i]⊕ h2]
returnh1 + h2 ∗ 256

MD5 return two bytes of MD5(bytes)

SHA return two bytes of SHA(bytes)

Table 1. Table of Hash Algorithms. Multipli-
cation is denoted by ∗, addition by + and xor
by ⊕. K[.] is an array of randomly selected
bytes. Ti[.] is a randomly selected permu-
tation of a byte. The constant 65537 in the
Universal hash is selected as a suitable sized
prime.
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Sequence Description ofith string
Sequential The usual binary representation ofi.
Hamming First all zeros, then each string with one bit

set, then each string with two bits set, . . .
xor zero The binary representation ofi with each byte

repeated twice.
xor ones As xor zero, but with ones compliment of ev-

ery second byte.
sum zero As xor zero, but with twos compliment of ev-

ery second byte.
random Filled randomly using the arc4 PRNG.

Table 2. Sequences of strings used as input
to hashes.
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Figure 2. The mean lookup chain length dif-
ferent combinations of hashes and inputs.
Note log scale.

This table shows some unkeyed algorithms (Xor and
DJB2), some keyed algorithms using simple operations
(XorSum and SumXor), some keyed algorithms that use
more complicated operations to mix in their key state (Uni-
versal and Pearson) and some algorithms designed with
cryptographic properties in mind (MD5 and SHA). More
details of these hashes can be found in Appendix A.

We use these algorithms to hash several different se-
quences of strings. The sequences are summarised in Ta-
ble 2. We insert a sequence of 36,000 of these strings into
the hash table. We then calculate the average number ele-
ments examined to do a lookup in the table. If the strings are
well distributed throughout the table, the lookup times will
be small. However, if the strings are unevenly distributed,
then the mean lookup time may be large.

Figure 2 shows the results of this experiment. We see
that the more complex hashes perform equally well on all
input sequences, achieving close to the optimal number of

approximately 70. Also, all the hashes perform close to op-
timally on random and sequential inputs.

However, all of the more simplistic hashes exhibit sub-
stantially higher lookup times for the other sequences. As
intended, the xor zero and xor one inputs actually perform
in the worst possible way for the simple xor hash, by putting
all entries in a single hash chain.

Even though these sequences are not specifically tar-
geted at XorSum, SumXor or DJB2, they clearly cause per-
formance problems for them. This is not any kind of in-
dictment of the DJB2 hash: it is targeted at typical ASCII
strings and was not designed to be resistant to collision at-
tacks. However, XorSum and SumXor demonstrate that
keyed hashes need to be designed carefully if they are to
be collision resistant. We also see that we do not need to
cause all the strings to hash to the same value to get bad
performance, it is sufficient to get the strings into a small
number of values with moderate probability.

While keeping the hash chains well-balanced is impor-
tant to hash table performance, the real CPU cost to the
system also includes the cost of calculating the hash itself.
While the exact cost depends on many factors, the cost of
calculating SHA could easily be more than an order of mag-
nitude greater than just xoring bytes together. When using
a hash table, we must always calculate a hash value, regard-
less of if the hash is under attack. Thus we would prefer to
choose a hash that is resistant to attack and not too costly.

3 Method for Assessment of Lookup Schemes

As described in Section 1, we aim to choose a lookup
scheme which is resistant to complexity attacks, but which
offers reasonable performance in usual circumstances. Of
course, usual performance is determined by inputs used, in
our case the IP addresses and port numbers from packets.
For this reason, we have based our assessment on a number
of collected packet traces from links with live IPv6 traffic.

We collected a trace from an IPv6 only link with a to-
tal of 4664565 packets. Not all of these were IPv6 packets
and we processed 4588721 packets corresponding to 30566
flows. The number of packets in thenth largest flow is plot-
ted againstn in Figure 3. We can see typical sorts of fea-
tures that we expect for Internet traffic: small numbers of
large flows and a large number small flows. For some of
our tests we used only subset of this data. This small trace
contains 386290 packets and 12229 flows.

In order to assess different lookup mechanisms we built a
simple framework that reads each packet in the trace, parses
the headers, looks up the corresponding flow and adds a
flow entry if the flow was not present. This provided a con-
venient environment for developing and assessing different
schemes, without the complexity of a testbed setup or kernel
development. Each scheme was assessed in terms of CPU
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Figure 3. Size of the nth largest flow against n.
Note log-log scale.

used per packet processed.
Note that in this framework we never remove flows, we

only lookup or add them. This is a deliberate choice as we
want to see how the lookup schemes behave as the number
of flows we are tracking state for increases. Unfortunately,
this will not exactly replicate the pattern of lookups for links
with different numbers of active flows, but it should provide
some indication of the likely performance.

The schemes that we chose to assess were: 65536 entry
hash tables using xor, Universal, Pearson, MD5 and SHA;
256 entry hash tables using xor and Pearson; splay tree,
unbalanced binary tree, red-black tree and treap. The xor
based hash tables and unbalanced binary tree are subject
to complexity attacks, but serve as a baseline to compare
the other schemes to. Again, some more details of these
schemes can be found in Appendix A.

Naturally, some aspects of this test framework are not
that realistic: reading pcap data from a file in a C environ-
ment is not that similar to receiving packets from an Ether-
net device in a kernel. Once we had performed an assess-
ment of the schemes, we implemented the more promising
ones in the ipfw kernel module. We then checked the impact
of these schemes on peak packet forwarding speed.

4 Results

Figure 4 shows the flow-lookup time per packet for a
modern processor (Pentium Core 2 Duo 2 GHz) for the full
trace. The value plotted is the cumulative CPU time divided
by the total time. The points shown are also averaged over at
least six runs. We can see how quickly startup costs (such as
the initialisation of keys for the keyed hashes) are amortised
over time. While startup costs are unlikely to be an issue for
a firewall initialised at boot time, this might be an issue for
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Figure 4. Mean cost of flow lookup over time
for high-end processor.

other applications that create tables of IPv6 flows on the fly.
The total number of flows is large relative to the 256 en-

try hash tables, so we can see the performance of the 256
entry tables degrade over time. The fastest lookup method is
always the 65536 entry hash table using just plain xor. How-
ever, the Universal hash is not far behind and the Pearson-
based 65536 entry hash table is not far behind that. The
MD5 and SHA based hashes are comparable, but slower
again.

Interestingly, the tree based methods are not that compet-
itive. The treap is most expensive, followed by unbalanced
trees and red-black trees, followed by splay trees. In fact
splay tree’s performance appears to be gradually increas-
ing, and is almost competitive with the hash based schemes
for large numbers of packets.

The fact that the unbalanced trees perform relatively well
indicates that the balancing is not often actually requiredin
practice. Treaps are quite likely to perform a lot of balanc-
ing steps, and this is proving to be wasted effort. Red-black
trees have some measure of how balanced a tree is, and so
probably perform less unnecessary balancing.

Splay trees do not directly balance the trees, but instead
move frequently accessed nodes towards the top of the tree.
For this sort of application, where some flows have many
packets and packets are likely to occur in bursts, we expect
quick access to these flows to be helpful. Indeed, we find
that towards the end of our trace, the number of packets at-
tributable to the top 10% of flows is increasing, which may
explain the improved performance of splay trees towards
the end of the test.

In summary, for a high-end CPU, it looks like using the
Universal hash would be a reasonable choice for an attack
resistant lookup method. However, we would like to check
the cost on a lower-end CPU. Our lookup schemes exhibit
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different memory access patterns (for example, Pearson will
accessTi randomly while Universal will accessK sequen-
tially) and instruction mixes. As the relative cost of mem-
ory accesses, cache lookups and more complex operations,
such as multiplication, can vary greatly from CPU to CPU,
the relative performance of the lookup schemes may vary.

Figure 5 shows the results of the same tests for a Soekris
Net 4501 board on the smaller trace. The Net4501 is a de-
vice that has been popular choice for building embedded de-
vices using FreeBSD. This board has an AMD Elan SC520
microcontroler as a CPU. This is a much more modest CPU
with no L2 cache and with low power consumption, which
can be found in small router products. While the abso-
lute cost per-packet is higher, we see basically the same
results as for the fast CPU. Note that since we have only
used the smaller trace, we can not see the full large-dataset
behaviour, but we expect the trends to be the same.

We conclude that Universal hashing is likely to be our
best choice for a collision resistant hash, with Pearson’s
hash as a backup choice. We now aim to check the per-
formance of these in comparison to the present xor hash in
a more realistic setting.

We implemented variants of the ipfw module using each
of these hashes and tested them on the Soekris Net 4501
board running FreeBSD 7.0. We configured the Net 4501
as a router between two high-end servers, with ipfw config-
ured to keep and check flow state. When forwarding small
packets, the Net 4501 is limited by its CPU. To test the im-
pact of the different hashes, we sent 67-byte UDP packets
from one server to the other at different rates and observed
the behaviour of the Net 4501. To bring out the difference
in cost between calculating the hashes, we use a single flow
for this test.

Figure 6 shows the results of this experiment. We can
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Figure 6. Packets in versus packets out for a
single IPv6 flow on a Soekris Net 4501 using
different hash functions.

see that when the firewall is not active, the Net 4501 can
forward about 1700 packets per second. When the firewall
is active it can forward just less than 1400 packets per sec-
ond using either xor or the Universal hash. Pearson slightly
trails the performance of Universal and xor, reflecting our
earlier results. The larger gap for Pearson’s hash can possi-
bly be attributed to the larger key size which is not accessed
sequentially.

If we offer more packets than the peak forwarding, the
performance of all schemes degrades. This is due to re-
ceive livelock [12] issues and can be mitigated using known
techniques, such as enabling FreeBSD’s interface polling,
implemented by Luigi Rizzo.

We note that this highlights that a device may be over-
whelmed by an attacker with sufficient resources, even
when using algorithms that are resistant to complexity at-
tacks. However, using attack resistant algorithms increases
the resources required by an attacker.

5 Conclusion

In this paper we considered the problem of IPv6 flow
lookup that is efficient in typical situations, but also resis-
tant to complexity attacks. Our aim was to replace the xor-
based hash lookup in FreeBSD’s ipfw firewall. We found
that despite the more complex operations involved in our
universal hashing, it seems to offer good performance on
both the hardware platforms considered.

There are some closely related questions still to be an-
swered. We have begun looking at some other traffic traces
and see similar results. Looking at performance on traces
containing a mix of IPv4 and IPv6 traffic would be useful,
as in practice a firewall will often be tracking state for both.
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It would also be interesting to look at the BSD C macro
based implementations of splay trees and red-black trees to
see if they offer different performance characteristics: our
initial tests indicate that these macros are more efficient than
our implementations, but do not change our results. Finally,
it may be interesting to consider lookup schemes based on
Cuckoo hashing [9] and related innovations.

Finally, it would be useful to have a way to assess the
suitability of a hash function for situations where complex-
ity attacks might occur. For example, after a discussion with
Pearson, we believe that the 1-byte Pearson hash has struc-
ture that may leave it open to attack. We would like to study
this further to understand which hashes may be open to sim-
ilar attacks.
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A Algorithm Details

Let us briefly comment on the background of hashes
used in Section 2. The Xor hash is often used as a cheap
hash function. The DJB2 hash is attributed to Dan Bern-
stein and was designed as a quick-to-compute hash func-
tion of C strings [4]. XorSum and SumXor are not well de-
signed hash functions, but are intended to be keyed hashes
built from cheap operations. The Universal hash implemen-
tation is based on the CW hashes described in [6] and is in
the class of hashes described in [5]. Our MD5 and SHA
implementations are from the OpenSSL library. They are
unkeyed, but could easily be keyed by, say, xoring input
bytes with the key.

Pearson’s hash uses a randomly generated permutation
table of the integers{0, 1, . . . , 255}, denoted byT . We first
initialise h to 0. Then we iterate over each byte in the data
to be hashed, using the formula:h = T [h ⊕ xn], wherexn

is the nth byte of the data. The final value ofh is the hash of
the string. Clearly this hash function only has the range of
a single byte, which makes it unsuitable for some purposes.
In order to increase this range, we generate two permutation
tables,T1 andT2, hash the data in both (givingh1 andh2)
and then returnh1 + h2 ∗ 256. We refer to this as Pearson
(Word) and the former method as Pearson (Byte).

The Universal implementation also makes use of a ran-
domly generated table, which we refer to as K. In this case,
the table is the same length as the data we want to hash, and
each byte in the table is randomly generated. In this case,
h(x) =

∑
i
K[i] ∗ xi mod 65537.

Treaps, Splay Trees and Red-Black Trees are well
known, but for the sake of completeness we will briefly de-
scribe them. A Treap is a tree in which each node is also
assigned a random priority. Each node’s key then obeys the
tree property (the parent’s key is greater than the left child’s
key and less than the right child’s key) and each node’s pri-
ority obey the heap property (both children’s priorities are
less than the parent’s priority). Tree rotations are used to
enforce the heap property.

Splay trees invoke asplayoperation, which brings the
most recently accessed node to the top of the tree. This
helps to balance the tree, and decreases lookup time for fre-
quently accessed nodes.

Finally, Red-Black trees colour each node either red or
black according to certain rules. This results in the deepest
node being no more than twice as far from the root as the
most shallow node, hence balancing the tree. AVL trees
were originally used in OpenBSD’s pf firewall [8], however
these have been replaced by red-black trees. The pf firewall,
is also available in FreeBSD.
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