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Abstract— Analysis of the 802.11 CSMA/CA mechanism
has received considerable attention recently. Bianchi [1]
presents an analytic model under a saturated traffic assump-
tion. Bianchi’s model is accurate, but typical network con-
ditions are non-saturated. We present an extension of his
model to a non-saturated environment. Its predictions are
validated against simulation and are found to accurately cap-
ture many interesting features of non-saturated operation.
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I. Introduction

THE 802.11 wireless LAN standard has been widely de-
ployed during recent years and has received consid-

erable research attention. The 802.11 MAC layer uses
a CSMA/CA algorithm with binary exponential back-off
to regulate access to the shared wireless channel. While
this CSMA/CA algorithm has been the subject of numer-
ous empirical studies, an analytic framework for reason-
ing about its properties remains notably lacking. Devel-
oping analysis tools is desirable not only because of the
wide deployment of 802.11 equipment but also because the
CSMA/CA mechanism continues to play a central role in
new standards proposals such as 802.11e. A key difficulty
in the mathematical modeling the 802.11 MAC lies in the
very large number of states that may exist (scaling expo-
nentially with the number of nodes). In his seminal paper,
Bianchi [1] addressed this difficulty by assuming that (i)
every node is saturated (i.e. always has a packet waiting
to be transmitted) and (ii) the packet collision probabil-
ity is constant regardless of the state or station considered.
Provided that every node is indeed saturated, the resulting
model is remarkably accurate. Unfortunately, the satura-
tion assumption is unlikely to be valid in most real 802.11
networks. Data traffic such as web and email is typically
bursty in nature while streaming traffic such as voice oper-
ates at relatively low rates and often in an on-off manner.
Hence, for most real traffic the demanded transmission rate
is variable with significant idle periods, i.e. nodes are usu-
ally far from being saturated. Our aim in this paper is to
derive a mathematical model of CSMA/CA that relaxes the
restriction to saturated operation while retaining as much
as possible of the attractive simplicity of Bianchi’s model
(in particular, the ability to obtain analytic relationships).
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II. Analysis

Bianchi [1] presents a Markov chain model where each
station is modeled by a pair of integers (i, k). The back-off
stage, i, starts at 0 at the first attempt to transmit a packet
and is increased by 1 every time a transmission attempt
results in a collision, up to a maximum value m. It is reset
after a successful transmission. The counter, k is initially
chosen uniformly between [0, Wi − 1], where Wi = 2iW is
the range of the counter. While the medium is idle, the
counter is decremented. Transmission is attempted when
k = 0.

We assume that each station can buffer one packet and
that there is a constant probability q of at least one packet
arriving per state. Thus we introduce states (0, k)e for
k ∈ [0, W0 − 1], representing a node which has transmit-
ted a packet, but another packet has not yet arrived for
transmission. Note that i = 0 in all such states, because
if i > 0 then a collision has occurred, so we must have a
packet awaiting transmission.

We will now derive a relationship between: p, the proba-
bility of collision; P , the transition matrix for the Markov
chain; b, the stationary distribution of the chain; and τ , the
transmission probability for any station. These relation-
ships can then be solved for p and τ . Predictions for the
network throughput can then be derived. It is important
to note that the evolution of the states in these models is
not real-time, and so the estimation of throughput requires
an estimate of the average state duration.

The simplest transitions are those where the counter is
nonzero. If we have a packet, then the only possible change
is that the counter decrements. If we do not have a packet,
the counter will decrement, but a packet may also arrive
with probability q. Thus, for 0 < k < Wi we have

0 < i ≤ m, P [(i, k − 1)|(i, k)] = 1,
P [(0, k − 1)e|(0, k)e] = 1 − q,
P [(0, k − 1)|(0, k)e] = q.

If the counter reaches 0 and a packet has arrived, then we
begin a transmission. We assume there is a probability p
that another node transmits at the same time, resulting in
a collision and an increase in the back-off stage. Thus for
0 ≤ i ≤ m and k ≥ 0 we have

P [(0, k)e|(i, 0)] = (1−p)(1−q)
W0

,

P [(0, k)|(i, 0)] = (1−p)q
W0

,

P [(max(i + 1, m), k)|(i, 0)] = p

Wmax(i+1,m)
.

The most complex transitions are from the (0, 0)e state,
where the count down is complete, but we have no packet



to send. If no packet arrives, we stay in this state. If a
packet arrives, the change of state depends on the current
state of the medium: if the medium is idle we may begin a
transmission, which may result in a successful transmission
or a collision; if the medium is busy, the 802.11 MAC begins
another stage-0 back-off. This gives

P [(0, 0)e|(0, 0)e] = 1 − q + q(1−τ)n−1(1−p)
W0

,

k > 0, P [(0, k)e|(0, 0)e] = q(1−τ)n−1(1−p)
W0

,

k ≥ 0, P [(1, k)|(0, 0)e] = q(1−τ)n−1
p

W1
,

k ≥ 0, P [(0, k)|(0, 0)e] = q(1−(1−τ)n−1)
W0

.

Note that we have used (1 − τ)n−1 as the probability that
the medium is idle, where τ is the probability that a node
is transmitting. As noted by Bianchi, 1 − p = (1 − τ)n−1,
thus our transition probabilities only depend on p and q.

Solving for the stationary distribution, b, of this Markov
chain yields (after lengthy algebra)

1/b(0,0)e
= (1 − q) +

q2W0(W0 + 1)

2(1 − (1 − q)W0 )

+ q(W0+1)
2(1−q)

(

q2W0

1−(1−q)W0
+ p(1 − q) − q(1 − p)2

)

+ pq2

2(1−q)(1−p)

(

W0

1−(1−q)W0
− (1 − p)2

)

(

2W0
1−p−p(2p)m−1

1−2p
+ 1

)

(1)

and

τ =
∑m

i=0 b(i,0) + b(0,0)e
q(1 − p)

= b(0,0)e

q2

1−q

(

W0

(1−p)(1−(1−q)W0 )
− (1 − p)

)

.
(2)

For given values of q, W0, n and m we may solve the re-
lationship (2) against 1 − p = (1 − τ)n−1 to determine the
corresponding values of p and τ . In the limit q → 1, our
model yields the same value for τ and p as Bianchi’s satu-
rated model, as expected.

The expression for throughput is the same as in [1],

S =
PsPtrE

(1 − Ptr)σ + PtrPsTs + Ptr(1 − Ps)Tc

,

where Ptr = 1 − (1 − τ)n, Ps = nτ(1 − τ)n−1/Ptr, E is
the time spent transmitting payload data, σ is the time for
the counter to decrement, Ts is the time for a successful
transmission and Tc is the time for a collision. Note that
the denominator of this fraction is the expected duration a
state in the Markov chain in real-time.

III. Validation

The model was verified against the ns2 based 802.11 sim-
ulator produced by TU-Berlin [2]. The MAC parameter
values (corresponding to 802.11b) and packet sizes used
are shown in Table I. Varying numbers of stations with a
small buffer were simulated. In the first set of simulations,
the arrivals at each station is Poisson traffic.

Figure 1 and Figure 2 show predicted and simulated
throughput as the arrival rate is varied and as the num-
ber of wireless nodes is varied (note that arrival rates are

W0 31 E 407us Ts 986us
m 5 σ 20us Tc 986us

TABLE I

Parameters values for model and simulation.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

no
rm

al
is

ed
 th

ro
ug

hp
ut

normalised total offered load

8 stations (sim)
8 stations (model)

6 stations (sim)
6 stations (model)

4 stations (sim)
4 stations (model)

2 stations (sim)
2 stations (model)

Fig. 1. Throughput as the traffic arrival rate is varied for small
numbers of nodes. For throughput rates below those shown there is
agreement between the model and simulation.
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Fig. 2. Throughput as the traffic arrival rate is varied for larger
numbers of nodes. For throughput rates below those shown there is
agreement between the model and simulation.
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Fig. 3. Collision probability as the traffic arrival rate is varied for
small numbers of nodes.
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Fig. 4. Throughput for various numbers of node-pairs sending 64kbps
on-off traffic streams.

normalized by the physical data rate of 11Mbs). For com-
pleteness, the collision probabilities corresponding to Fig-
ure 1 are also shown in Figure 3 (similar accuracy is ob-
tained for the conditions used in Figure 2). It can be seen
that the model accurately captures important features of
the CSMA/CA behavior. In particular,
• the linear relationship (with slope 1) between throughput
and offered load under low loads.
• the limiting behavior of throughput at high offered loads
(corresponding to saturation).
• the complex transition between under-loaded and satu-
rated regimes is accurately captured. For small numbers
of nodes, we see that the saturation throughput is the
maximum throughput. For larger numbers of nodes, the
throughput falls as we approach saturation and the maxi-
mum throughput is achieved before saturation. Moreover,
the offered load at which this peak occurs is relatively in-
sensitive to the number of nodes.

In the foregoing plots, packets arrivals are Poisson, yield-
ing independent arrivals at a specified mean rate. However,
we have found that similar results hold for a range of traffic
types. To illustrate this, we briefly present results for sim-
ulated voice traffic with silence suppression. Following [3],
we generate a 64kbs on-off traffic stream with on and off
periods exponentially distributed with mean 1.5s (subject
to the suggested minimum of 240ms). Traffic is between
pairs of nodes. To account for the two-way correlated na-
ture of voice conversations, the on/off periods of one node
correspond to the off/on periods of an other. We apply our
model to node-pairs when making predictions. Predicted
and simulated throughput versus the number of node-pairs
is shown in Figure 4, where it can be seen that our model
is remarkably accurate.

IV. Considerations

It is easy to consider small variations on this model, such
as disallowing packet arrival immediately after transmis-
sion, ignoring carrier sense in state (0, 0)e, or by limiting
the number of retransmission attempts at the maximum
back-off stage. We have investigated a number of these
possibilities and found that while they result in small nu-

merical changes, these changes are not significant.

Two important assumptions of the model are constant
probability of arrival per state and small interface buffers.
The accuracy of the model predictions for a range of traffic
types, as noted previously, suggests there is a useful robust-
ness with respect to the first assumption. We have found
that the model predictions are, however, more sensitive to
the presence of large interface queues. It is possible to in-
troduce extra states to model longer queues, and also to
allow variable packet arrival probabilities per state. Owing
to space restrictions this is beyond the scope of this paper.

V. Related Work

There are alternative approaches to non-saturated mod-
eling, though each has their own drawbacks. In [4] a modi-
fication of [1] is considered where a probability of not trans-
mitting is introduced that represents a station having no
data to send. The model is not preditive as this proba-
bility is not known as a function of the load, but must
be estimated from simulation. In [5] idle states are added
after packet transmission to represent bursty arrivals in a
simplistic way that does not account for postbackoff. In
[6] a model where states are of fixed real-time length is
introduced, but does not capture the key feature of a pre-
saturation throughput peak. In [7] a model incorporating
postbackoff is presented, but not solved explicitly. In [8]
a non-Markov model is developed, but uses assumptions
based on the saturated case that seem unlikely to always
hold, for example at low loads.

VI. Conclusion

This paper presents a model of the 802.11 MAC layer
in non-saturated conditions. The model is analytically
tractable yet remarkably powerful. The model is found to
be in quantitative and qualitative agreement with detailed
simulations, yielding accurate predictions of throughput
and collision probability. It also captures many important
features of non-saturated operation for the first time (e.g.
throughput may be significantly higher in non-saturated
operation than when saturated). The model is accurate
for a range of traffic types and this is illustrated with ref-
erence to voice calls (to the authors knowledge this is the
first demonstration of an analytic model of voice calls in
802.11). The model is interesting not only because of the
wide deployment of 802.11 equipment and the prevalence
of non-saturated operation in real wireless networks but
also because the CSMA/CA mechanism continues to play
a central role in new standards proposals such as 802.11e
[9] currently under development.
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