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1.

(a)

(i) The correspondence ® is not upper hemicontinuous at —2.
Indeed let
V={yeR:7T<y<13}

Then V' is open in R and ®(—2) C V. But 16 € ®(z) for
all real numbers x satisfying —2v2 < x < —2, and there-
fore there cannot exist any positive real number § with the
property that ®(z) C V for all real numbers z satisfying
|r 42| < 6.

(ii) The correspondence @ is lower hemicontinuous at —2. Indeed
let V' be an open set in R for which V N ®(—2) # (. Then
there exists some real number v belonging to V' which satisfies
8 < v < 12. Then v € ®(z) provided that —/v/2 < 2 <
14 —w).

(iii) The correspondence ® is upper hemicontinuous at 2. Indeed
let V' be an open set in R for which ®(2) C V. Then all
non-negative real numbers belong to the open set V. Now
the elements of ®(x) are non-negative for all real numbers z.
It follows that ®(z) € V for all real numbers x.

(iv) The correspondence ® is not lower hemicontinuous at 2. In-
deed let V={y €Y :0 <y <8} Then VN P(2) # 0 but
V N ®(x) =0 for all real numbers satisfying z > 2.

Let (p,q) be a point of the complement X x Y \ Graph(®) of the
graph Graph(®) of ® in X x Y. Then ®(p) is closed in Y and
q & ®(p). It follows that there exists some positive real number dy
such that |y —q| > dy for all y € &(p).

Let
V={yeY:|ly—dal>d}

and

W={xeX:d(x)CV}

Then V is open in Y and ®(p) C V. Now the correspondence
®: X =3 Y is upper hemicontinuous. It therefore follows from
the definition of upper hemicontinuity that the subset W of X is
open in X. Moreover p € W. It follows that there exists some
positive real number dx such that x € W for all points x of X
satisfying |x — p| < dx. Then ®(x) C V for all points x of X
satisfying |x — p| < dx. Let 0 be the minimum of dx and dy,
and let (x,y) be a point of X x Y whose distance from the point
(p,q) is less than . Then |x — p| < dx and therefore ®(x) C V.



Also |y — q| < dy, and therefore y ¢ V. It follows that y & ®(x),
and therefore (x,y) ¢ Graph(®). We conclude from this that
the complement of Graph(®) is open in X x Y. It follows that
Graph(®) itself is closed in X x Y, as required.



2.

(a)

[Bookwork.] Let V be collection of open sets in Y that covers
®(K). Given any point p of K, there exists a finite subcollection
W, of V that covers the compact set ®(p). Let U, be the union
of the open sets belonging to this subcollection W,. Then ®(p) C
Up. Now it follows from the upper hemicontinuity of ¢: X = Y
that there exists an open set IV, in X such that ®(x) C U, for all
x € Np. Moreover, given any p € K, the finite collection W, of
open sets in Y covers ®(N,). It then follows from the compactness
of K that there exist points

P1,P2,-.., Pk

of K such that
K C Np, UNp, U---UNy,.

Let
W =Wp, UWp, U---UW,,.

Then W is a finite subcollection of V that covers ®(K'). The result
follows.

[Bookwork.] Let ®: X = Y is a compact-valued correspondence,
and let p be a point of X for which ®(p) # 0.

First suppose that, given any positive real number ¢, there exists
some positive real number ¢ such that

®(x) C By(®(p),¢)

for all x € X satisfying |x — p| < 0. We must prove that ®: X =
Y is upper hemicontinuous at p.

Let V' be an open set in Y that satisfies ®(p) C V. Now &(p)
is a compact subset of Y, because &: X — Y is compact-valued.
It follows that there exists some positive real number ¢ such that
By (®(p),e) C V. There then exists some positive number § such
that

®(x) C By (®(p),e) CV

whenever |x — p| < 9. Thus ®: X =2 Y is upper hemicontinuous
at p.

Conversely suppose that the correspondence ®: X == Y is upper
hemicontinuous at the point p. Now ®(p) is a non-empty subset
of Y. Let some positive number ¢ be given. Then By (®(p),¢)



is open in Y and ®(p) C By (®(p),¢). It follows from the upper
hemicontinuity of ® at p that there exists some positive number §
such that ®(x) C By (®(p),e) whenever [x — p| < d. The result
follows.



3. (a) [Bookwork.] A simplicial map ¢: K — L between simplicial com-
plexes K and L is a function ¢: Vert K’ — Vert L from the vertex
set of K to that of L such that ¢(vy), ¢(v1), ..., ¢(v,) span a sim-
plex belonging to L whenever vg, vy, ..., Vv, span a simplex of K.

(b) [Bookwork.] Let f: |K| — |L| be a continuous map between the
polyhedra of simplicial complexes K and L. A simplicial map
s: K — L is said to be a simplicial approximation to f if, for
each x € |K|, s(x) is an element of the unique simplex of L which
contains f(x) in its interior.

(c) [Bookwork.] Every point of | K| belongs to the interior of a unique
simplex of K. It follows that the complement | K|\stx (x) of st (x)
in | K| is the union of the interiors of those simplices of K that do
not contain the point x. But if a simplex of K does not contain
the point x, then the same is true of its faces. Moreover the union
of the interiors of all the faces of some simplex is the simplex itself.
It follows that | K|\ stx(x) is the union of all simplices of K that
do not contain the point x. But each simplex of K is closed in
|K|. Tt follows that |K|\ stx(x) is a finite union of closed sets,
and is thus itself closed in |K|. We deduce that stx(x) is open in
|K|. Also x € stg(x), since x belongs to the interior of at least
one simplex of K.

(d) [Bookwork.] Let s: K — L be a simplicial approximation to f: |K| —
|L|, let v be a vertex of K, and let x € stx(v). Then x and f(x)
belong to the interiors of unique simplices ¢ € K and 7 € L.
Moreover v must be a vertex of o, by definition of sty (v). Now
s(x) must belong to 7 (since s is a simplicial approximation to the
map f), and therefore s(x) must belong to the interior of some
face of 7. But s(x) must belong to the interior of s(c), because
x is in the interior of o. It follows that s(o) must be a face of T,
and therefore s(v) must be a vertex of 7. Thus f(x) € sty (s(v)).
We conclude that if s: K — L is a simplicial approximation to
f:|K| = |L|, then f (stx(v)) C sty (s(v)).

Conversely let s: Vert K — Vert L be a function with the prop-
erty that f (stx(v)) C stg (s(v)) for all vertices v of K. Let
x be a point in the interior of some simplex of K with vertices
Vo, V1,...,Vy. Then x € stg(v;) and hence f(x) € stz (s(v;))
for j = 0,1,...,¢. It follows that each vertex s(v;) must be a
vertex of the unique simplex 7 € L that contains f(x) in its in-
terior. In particular, s(vy), s(v1),...,s(v,) span a face of 7, and
s(x) € 7. We conclude that the function s: Vert K — Vert L
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represents a simplicial map which is a simplicial approximation to
f:|K| — |L|, as required.



4.

(a) [Bookwork.] Let f(p,q) = p”Mq for all p € Ap and q € Ag.

Given q € Ag, let

pp(a) =sup{f(p,q) : p € Ap}

and let
P(q)={p € Ap: f(p,q) = pr(a)}.

Similarly given p € Ap, let

no(p) = inf{f(p,q) : q € Ag}

and let
Q(p) ={a€Aq: f(p,a) = 1o(P)}-

An application of Berge’s Maximum Theorem ensures that the
functions pp: Ap — R and pug: Ag — R are continuous, and
that the correspondences P: Ag = Ap and Q: Ap = Ag are
non-empty, compact-valued and upper hemicontinuous. These
correspondences therefore have closed graphs. Morever P(q) is
convex for all q € Ag and Q(p) is convex for all p € Ap. Let
X =Ap x Ag, and let &: X = X be defined such that

®(p,q) = P(q) x Q(p)

for all (p,q) € X. Kakutani’s Fixed Point Theorem then ensures
that there exists (p*,q*) € X such that (p*,q*) € ®(p*,q*).
Then p* € P(q*) and q* € Q(p*) and therefore

fp,a”) < f(p".q") < f(p",q)

for all p € Ap and q € Ag, as required.

(b) [Bookwork.] The set K is clearly non-empty. We may assume,

without loss of generality, that the set K is both compact and
convex, because if K were not convex, then it could be replaced
by a compact convex set containing it.

Let v: R® — R be the function defined so that, for each x € R",
v(x) is the maximum of the components of x, and let u: R" = A
be the correspondence defined such that

px)={peA:p.x=7(x)}

Now it follows, on applying Berge’s Maximum Theorem, that the
correspondence p: R™ = A is upper hemicontinuous, and that
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1(x) is a non-empty compact convex subset of A for all x € R™.
Moreover p.x < p’.x = y(x) for all p € A and p’ € u(x).
Let ®: A x K = A x K be the correspondence defined such that

®(p,z) = (u(2),((p))

for all p € A and z € K. The correspondences p and ( are upper
hemicontinuous and closed-valued, and every upper hemicontin-
uous closed-valued correspondence has a closed graph. It follows
that the correspondence ® has closed graph. Moreover ®(p,z)
is a non-empty closed convex subset of the compact convex set
A x K for all p € A and z € K. [t follows from the Kakutani
Fixed Point Theorem that there exists (p*,z*) € A x K for which
(p*,z*) € ®(p*,z*). Then p* € u(z*) and z* € ((p*).

Now the conditions of the theorem require that p* .z < 0 for all
z € ((p*). Combining this inequality with the definition of the
correspondence p, and noting that p* € u(z*) and z* € ((p*), we
find that

p.z"<p".z"<0

for all p € A. Applying this result when p is the vertex of A
whose 1th component is equal to 1 and whose other components
are zero, we find that (z*); < 0fori =1,2,...,n, and thus z* < 0,
as required.
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