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6 Perron-Frobenius Theory

6.1 Eigenvectors of Non-Negative Matrices
We establish some notation that will be used throughout this section.

Let m and n be positive integers. Given any m× n matrix T , we denote
by (T )i,j the coefficient in the ith row and jth column of the matrix T for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Also given any n-dimensional vector v,
we denote by (v)j the jth coefficient of the vector j for j = 1, 2, . . . , n.

Definition A matrix T is said to be non-negative if all its coefficients are
non-negative real numbers.

Definition A matrix T is said to be positive if all its coefficients are strictly
positive real numbers.

Let S and T be m× n matrices. If (S)i,j ≤ (T )i,j for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n, then we denote this fact by writing S ≤ T , or by writing
T ≥ S. If (S)i,j < (T )i,j for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, then we
denote this fact by writing S << T , or by writing T >> S.

Let u and u be n-dimensional vectors. If (u)j ≤ (v)j for j = 1, 2, . . . , n,
then we denote this fact by writing u ≤ v, or by writing v ≥ u. If (u)j < (v)j
for j = 1, 2, . . . , n, then we denote this fact by writing u << v, or by writing
v >> u.

A matrix T with real coefficients is thus non-negative if and only if T ≥ 0.
A matrix T with real coefficients is positive if and only if T >> 0.

Lemma 6.1 Let T be an m × n matrix with real coefficients. Then T is a
non-negative matrix if and only if Tv ≥ 0 for all v ∈ Rn satisfying v ≥ 0.

Proof Suppose that the matrix T is non-negative. Let v ∈ Rn satisfy v ≥ 0.
Then

(Tv)j =
n∑
k=1

(T )j,k(v)k ≥ 0

for each integer j between 1 and m, because (T )j,k(v)k ≥ 0 for k = 1, 2, . . . , n.
Therefore Tv ≥ 0.

Conversely suppose that T is an m × n matrix with with real coeffi-
cients which has the property that if and only if Tv ≥ 0 for all non-zero
n-dimensional vectors v with non-negative real coefficients. Let e1, e2, . . . , en
be the standard basis of Rn with

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , 0n = (0, 0, . . . , 1).
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Then Tek ≥ 0 for k = 1, 2, . . . , n, and therefore (T )j,k = (Tek)j ≥ 0 for
j = 1, 2, . . . ,m and k = 1, 2, . . . , n. The result follows.

Lemma 6.2 Let T be an m × n matrix with real coefficients. Then T is a
positive matrix if and only if Tv >> 0 for all v ∈ Rn satisfying both v 6= 0
and v ≥ 0.

Proof Suppose that the matrix T is positive. Then Tj,k > 0 for i =
1, 2, . . . ,m and j = 1, 2, . . . , n. Let v ∈ Rn satisfy both v 6= 0 and v ≥ 0.
Then

(Tv)j =
n∑
k=1

(T )j,k(v)k > 0

for each integer j between 1 and m, because (T )j,k(v)k ≥ 0 for k = 1, 2, . . . , n
and (T )j,k(v)k > 0 for at least one integer k between 1 and n. Therefore
Tv >> 0.

Conversely suppose that T is an m× n matrix with with real coefficients
which has the property that if and only if Tv >> 0 for all non-zero n-
dimensional vectors v with non-negative real coefficients. Let e1, e2, . . . , en
be the standard basis of Rn with

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , 0n = (0, 0, . . . , 1).

Then Tek >> 0 for k = 1, 2, . . . , n, and therefore (T )j,k = (Tek)j > 0 for
j = 1, 2, . . . ,m and k = 1, 2, . . . , n. The result follows.

Proposition 6.3 Let T be a non-negative n×n (square) matrix. Then there
exists a well-defined non-negative real number µ (referred to as the Perron
root of T ) that may be characterized as the greatest real number ρ for which
there exists a non-zero vector v with real coefficients satisfying the conditions
v ≥ 0 and Tv ≥ ρv.

Proof Let

∆ = {v ∈ Rn : v ≥ 0,
n∑
j=1

(v)j = 1},

and, for each non-negative real number ρ, let Eρ be the subset of ∆ defined
so that

Eρ = {v ∈ Rn : v ≥ 0,
n∑
j=1

(v)j = 1 and Tv ≥ ρv}.

Clearly E0 = ∆. Also if ρ exceeds the largest coefficient of the matrix T then
clearly Eρ is the empty set. Let

I = {ρ ∈ R : ρ ≥ 0 and Eρ 6= ∅}.
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Then I is a non-empty set of real numbers which is bounded above. It
follows from the Least Upper Bound Principle that the set I has a least
upper bound sup I. Let µ = sup I.

Let ρ be a real number satisfying 0 ≤ ρ < µ. Then there exists ρ′ ∈ I
satisfying ρ < ρ′ ≤ µ. The set Eρ′ must then be non-empty, and moreover
Eρ′ ⊂ Eρ. It follows that Eρ 6= ∅, and thus ρ ∈ I. It follows that

{ρ ∈ R : 0 ≤ ρ < µ} ⊂ I,

and thus the subset I of R is an interval. We next prove that µ ∈ I.
Now the characterization of the non-negative real number µ as the least

upper bound of the interval I ensures the existence of an infinite sequence
ρ1, ρ2, ρ3, . . . of real numbers belonging to I for which lim

s→+∞
ρs = µ. Then

Eρs 6= ∅ for all positive integers s, and therefore there exists an infinite se-
quence v1,v2,v3, . . . of vectors belonging to the simplex ∆ such that vs ∈ Eρs
for all positive integers s. Then Tvs ≥ ρsvs for all positive integers s. Now
the sequence v1,v2,v3, . . . of vectors belonging to the simplex ∆ is a bounded
sequence of vectors, because ∆ is a bounded set. The multidimensional
Bolzano-Weierstrass Theorem (Theorem 1.2) now ensures the existence of a
subsequence vs1 ,vs2 ,vs3 , . . . of the sequence v1,v2,v3, . . . which converges to
some vector u. Moreover u ∈ ∆, because ∆ is a closed set.

Now
Tu = lim

r→+∞
Tvsr .

Also
Tvsr − ρsrvsr ≥ 0

for all positive integers r. Taking limits as r → +∞, we find that

Tu− µu ≥ 0,

and thus Tu ≥ µu.
The vector u is then a non-zero vector with non-negative coefficients, and

Tu ≥ ρu for all real numbers ρ satisfying 0 ≤ ρ ≤ µ.
Now every non-zero n-dimensional vector with non-negative real coeffi-

cients is a scalar multiple of some vector belonging to the simplex ∆. We
conclude therefore that if ρ is a non-negative real number, if v is a non-zero
vector with non-negative coefficients, and if Tv ≥ ρv then ρ ≤ µ. The result
follows.

Definition Let T be a non-negative square matrix. The Perron root (or
Perron-Frobenius eigenvalue) of T is the unique non-negative real number µ
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of T that can be characterized as the greatest real number for which there
exists a non-zero vector v with real coefficients satisfying the conditions v ≥ 0
and Tv ≥ µv.

Remark Proposition 6.3 ensures that every non-negative square matrix has
a well-defined Perron root. The alternative name Perron-Frobenius eigen-
value for the Perron root seems to imply that the Perron root of a non-
negative square matrix is an eigenvalue of that matrix. This result is indeed
true. It will be proved for positive square matrices in Proposition 6.4, and the
result will be extended to non-negative square matrices in Proposition 6.5.
The eigenvalues of a square matrix over the field of complex numbers are the
roots of the characteristic polynomial of that matrix.

Proposition 6.4 Let T be a positive square matrix, and let µ be the Perron
root of T . Then µ > 0, and there exists b ∈ Rn satisfying the conditions
b >> 0 and Tb = µb. Moreover, given any u ∈ Rn satisfying Tu ≥ µu,
there exists a real number t for which u = tb, and thus Tu = µu.

Proof The definition of the Perron root µ of T ensures that there exists a
non-zero vector b with the properties that b ≥ 0 and Tb ≥ µb. Suppose it
were the case that Tb 6= µb. Let v = Tb. Then

Tv − µv = T (Tb− µb) >> 0,

because Tb− µb ≥ 0, Tb− µb 6= 0 and T >> 0 (see Lemma 6.2). But then
there would exist real numbers ρ satisfying ρ > µ that were sufficiently close
to µ to ensure that Tv− ρv >> 0 and thus Tv ≥ ρv. This would contradict
the condition on the statement of the proposition that characterizes the value
of µ. We conclude therefore that Tb = µb.

Moreover Tb >> 0, because T >> 0 and b ≥ 0. It follows that µ > 0
and b >> 0.

Next let u be an n-dimensional vector with real coefficients for which
Tu ≥ µu. If s is positive and sufficiently large then then sb−u >> 0. On the
other hand if s is negative and |s| is sufficiently large then then sb−u << 0.
It follows from this that there exists a well-defined real number t defined so
that

t = inf{s ∈ R : sb− u ≥ 0}.

Then tb− u ≥ 0, and moreover there exists some integer j between 1 and n
for which t(b)j − (u)j = 0. Now

T (tb− u) = µtb− Tu ≤ µ(tb− u),

68



and therefore (T (tb − u))j ≤ 0. If it were the case that tb − u 6= 0 then
the inequalities tb − u ≥ 0 and T >> 0 would ensure that T (tb − b) >> 0
(Lemma 6.2), from which it would follow that (T (tb − b))j > 0. Because
this latter inequality does not hold, it must be the case that tb−u = 0, and
thus u = tb. The result follows.

Proposition 6.5 Let T be a non-negative square matrix, and let µ be the
Perron root of T . Then µ is an eigenvalue of T , and there exists a non-
negative eigenvector b associated with the eigenvalue µ.

Proof Let T be an n × n matrix. Then there exists an infinite sequence
T1, T2, T3, . . . of positive n × n matrices such that Tr >> T for all positive
integers r and Tr → T as r → +∞. Let µr be the Perron root of Tr and let
br be the associated positive eigenvector, normalized to satisfy the condition
n∑
j=1

(br)j = 1.

The multidimensional Bolzano-Weierstrass Theorem (Theorem 1.2) en-
sures the existence of an infinite subsequence Tr1 , Tr2 , Tr3 , . . ., a real num-
ber µ′ and a vector b ∈ Rn such that µrs → µ and brs → b. Replacing the
original sequence T1, T2, T3 by a subsequence, if necessary, we may assume,
without loss of generality, that µr → µ′ and br → b as r → +∞. Then
µ′ ≥ 0, (b)j ≥ 0 for j = 1, 2, . . . , n and

n∑
j=1

(b)j = 1. Then

Tb− µ′b = lim
r→+∞

(Trbr − µrbr) = 0.

Thus µ′ is an eigenvalue of T , and b is a non-zero non-negative eigenvector
of T associated to the eigenvalue µ′.

It remains to show that µ′ = µ. Let ρ be a non-negative real number.
Suppose that there exists a non-zero vector v ∈ Rn such that v ≥ 0 and
Tv ≥ ρv. Then, for each integer r, Trv ≥ ρv, because Tr >> T , and
therefore ρ ≤ µr. It follows that ρ ≤ µ′, because µ′ = lim

r→+∞
µr. Also

Tb = µ′b. It follows that µ′ is the largest real number for which there exists
a non-zero vector v ∈ Rn such that v ≥ 0 and Tv ≥ ρv. Thus µ′ = µ. The
result follows.

Lemma 6.6 Let T be a non-negative n×n (square) matrix, let λ be a com-
plex number, let u be an non-zero n-dimensional vector with complex coef-
ficients, and let v be the n-dimensional vector with non-negative real coeffi-
cients defined such that (v)j = |(u)j| for j = 1, 2, . . . , n. Suppose that u is
an eigenvector of T with eigenvalue λ, so that Tu = λu. Then Tv ≥ |λ|v.
Moreover if T >> 0, and if Tv = |λ|v, then λ is a positive real number, and
there exists some complex number ω satisfying |ω| = 1 for which u = ωv.
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Proof There exist real numbers θ1, θ2, . . . , θn and ϕ such that uj = eiθjvj for
j = 1, 2, . . . , n and λ = eiϕ|λ|, where i =

√
−1. (Here eiα = cosα + i sinα

for all real numbers α.) The identity Tu = λu ensures that

|λ|vj = e−iϕ−iθjλuj = e−iϕ−iθj
n∑
k=1

Tj,kuk =
n∑
k=1

e−iϕ+iθk−iθjTj,kvk.

Taking real parts, we see that

|λ|vj =
n∑
k=1

cos(−ϕ+ θk − θj)Tj,kvk ≤
n∑
k=1

Tj,kvk.

It follows that Tv ≥ |λ|v. Moreover if Tv = |λ|v then cos(−ϕ+ θk− θj) = 1
for all integers j and k between 1 and n for which vk > 0 and Tj,k > 0.

Now suppose that T >> 0 and Tv = |λ|v. Then v 6= 0, because u 6= 0.
Also v ≥ 0. Therefore Tv >> 0 (Lemma 6.2). It follows that λ 6= 0 and
v >> 0. Then Tj,k > 0 and vk > 0 for all integers j and k between 1 and n,
and therefore cos(−ϕ + θk − θj) = 1 for all integers j and k. Applying this
result with j = k, we find that cos(−ϕ) = 1, and therefore ϕ is an integer
multiple of 2π. It then follows that θj − θk is an integer multiple of 2π for
all j and k. But these real numbers ϕ, θj and θk are only determined up
to addition of an integer multiple of 2π. Let ω = eiθ1 . Then eiϕ = 1 and
and eiθj = ω for j = 1, 2, . . . , n. It follows that λ is real and positive, and
u = ωv, where ω is a complex number satisfying |ω| = 1, as required.

Proposition 6.7 Let T be a non-negative square matrix, and let µ be the
Perron root of T . Then every eigenvalue λ of T satisfies the inequality |λ| ≤
µ.

Proof Let λ be an eigenvalue of T , and let u be an eigenvector of T with
eigenvalue λ. The number λ and the coefficients of the vector u may be real
or complex. Let v ∈ Rn be defined such that (v)j = |(u)j)| for j = 1, 2, . . . , n.
Now Tu = λu. It follows from Lemma 6.6 that Tv ≥ |λ|v. The definition
of the Perron root µ then ensures that |λ| ≤ µ, as required.

Proposition 6.8 Let T be a non-negative n× n (square) matrix, and let µ
denote the Perron root of T . Let I denote the identity n× n matrix. Then,
given any σ is a non-negative real number satisfying µσ < 1, the matrix
I − σT is invertible and (1− σT )−1 is a non-negative matrix.

Proof We use some basic results of linear algebra and complex analysis. Let
z be a complex number. Then the eigenvectors of the matrix I − zT are the
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same as those of the matrix T , and therefore the eigenvalues of I − zT are
of the form 1− zλ as λ ranges of the eigenvales of T .

Now the modulus of any eigenvalue of the non-negative matrix T is
bounded above by the Perron root of T (Proposition 6.7). Therefore the
eigenvalues of I − zT have real part not less than 1− |z|µ. A square matrix
is invertible if zero is not an eigenvalue of that matrix. It follows that the
matrix I − zT is invertible for all complex numbers z satisfying µ|z| < 1.

The determinant of the matrix I − zT is a polynomial function of z. It
follows that if µ > 0 then all coefficients of the matrix (I − zT )−1 are holo-
morphic functions of the complex variable z throughout the disk {z ∈ C :
|z| < µ−1}, and if µ = 0 then all coefficients of the matrix (I − zT )−1 are
holomorphic functions of the complex variable z throughout entire complex
plane. A basic theorem of complex analysis therefore ensures that each coef-
ficient of the matrix (I − zT )−1 may be represented as a power series in the
complex plane z that converges for all complex numbers z satisfying µ|z| < 1.

Now

(1− zT )(1 + zT + z2T 2 + z3T 3 + · · ·+ zkT k) = 1− zk+1T k+1,

and thus

(1− zT )−1 = 1 + zT + z2T 2 + z3T 3 + · · ·+ zkT k + zk+1T k+1(I − zT )−1

when µ|z| < 1.
Now it has already been shown that (1− zT )−1 can be represented by a

power series in z that converges whenever µ|z| < 1. we can therefore conclude
that

(1− zT )−1 = 1 + zT + z2T 2 + z3T 3 + · · ·
for all complex numbers z satisfying µ|z| < 1. In particular

(1− σT )−1 = 1 + σT + σ2T 2 + σ3T 3 + · · ·

for all non-negative real numbers σ satisfying µσ < 1. But each summand
on the right side of this power series representation of (1 − σT )−1 is a non-
negative matrix. It follows that I − σT is invertible and (1 − σT )−1 is a
non-negative matrix for all non-negative real numbers σ satisfying σρ < 1,
as required.

Proposition 6.9 Let T be a non-negative n×n (square) matrix, let µ denote
the Perron root of T . Then the Perron root of the transpose T T is equal to
the Perron root µ of T , and there exists a non-zero vector p ∈ Rn satisfying
p ≥ 0 and pTT = µpT , where pT , the transpose of p is the row vector
components are the components of the column vector p.
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Proof The transpose T T of the non-negative square matrix T is itself a non-
negative square matrix with the same characteristic polynomial as T , and
thus with the same eigenvalues as T . The Perron root of the transpose T T of
T is a non-negative real eigenvalue of T T (Proposition 6.5), and moreover it
is an upper bound on the modulus of every eigenvalue of T T (Proposition 6.7.
It follows that the non-negative square matrix T and its transpose T T have
the same Perron root. Moreover the Perron root is an eigenvalue of T T ,
and therefore there exists a non-zero vector p ∈ Rn for which p ≥ 0 and
T Tp = µp. Taking the transpose of this equation, we find that pTT = µpT ,
as required.

Proposition 6.10 Let T be a non-negative n × n (square) matrix, let µ
denote the Perron root of T , and let σ is a non-negative real number. Then
there exists a non-zero vector w ∈ Rn satisfying w ≥ 0 and w >> σTw if
and only if µσ < 1.

Proof Let v ∈ Rn satisfy v >> 0, and let w = (I−σT )−1v, where I denotes
the identity n×n matrix. It follows from Proposition 6.8 that if µσ < 1 then
(I − σT )−1 a non-negative matrix, and therefore w ≥ 0. Also

w − σTw = (I − σT )w = v >> 0,

and therefore w >> σTw. We have thus shown that if µσ < 1 then there
exists a vector w with the required properties.

Conversely suppose that σ is a non-negative real number and that w ∈ Rn

is a non-zero vector for which w ≥ 0 and w >> σTw. It follows from
Proposition 6.9 that there exists a non-zero vector p ∈ Rn satisfying p ≥ 0
and pTT = µpT , where pT denotes the transpose of p. Then

(1− σµ)pTw = pTw − σµpTw = pT (w − σTw) > 0.

It follows that pTw > 0 and σµ < 1, as required. This completes the
proof.

6.2 Perron’s Theorem for Positive Matrices
In 1907 Oskar Perron (1880–1975) proved a fundamental theorem concern-
ing the eigenvalues and eigenvectors of a positive square matrix, in particular
showing that the positive real number now referred to as the Perron root (or
Perron-Frobenius eigenvalue) of the matrix is a simple eigenvector, with a
one-dimensional eigenspace spanned by a positive eigenvector, and that any
other eigenvalues of the matrix has a modulus strictly less than the Perron
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root. In 1912, Georg Frobenius (1849-1917) generalized Perron’s Theorem to
a particular class of non-negative square matrices that are said to be unzer-
legbar (i.e., “indecomposible” or “irreducible”). These discoveries initiated
the development of a body of results concerning non-negative square matrices
that is today referred to as Perron-Frobenius Theory

Before stating and proving Perron’s Theorem, we review (without proof)
some standard results from linear algebra, related to the Jordan normal form
of a square matrix, that are relevant to the proof of Perron’s Theorem.

Let T be a linear operator defined on a finite-dimensional complex vector
space V . Then the vector space V can be decomposed as a direct sum of
subspaces that are invariant under the action of T and cannot be further
decomposed as direct sums of invariant subspaces. Then

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm
where, for each integer r between 1 and m, the linear operator T maps the
subspace Vr of V into itself. Moreover the subspace Vr has no proper non-
zero vector subspace that is invariant under the action of T . Associated with
each subspace Vr is a complex number λr that is the unique eigenvalue of the
restriction of the linear operator T to Vr.

The characteristic polynomial χ of T on V is defined such that χ(z) =
det(zIV − T ), where IV denotes the identity operator on V . It can be shown
that

χ(z) =
m∏
r=1

(z − λr)dr ,

where dr = dimC Vr for r = 1, 2, . . . ,m. It follows that a complex number λ
is a simple root of the characteristic polynomial χ of T if and only if the fol-
lowing two conditions are satisfied: there exists exactly one integer r between
1 and m for which λ = λr; for this value of r, dr = 1.

The theory of the Jordan Normal Form ensures that each subspace Vr
has a basis of the form

e1, e2, . . . , edr ,
with the property that Te1 = λres and Tes = λres + es−1 for 1 < s ≤ dr.
All eigenvectors of T contained in Vr are scalar multiples of e1. Moreover if
dr > 1 then (T − λrIVr)2e2 = 0 but Te2 6= λre2.

These results of linear algebra, summarized without detailed proof, yield
the result stated in the following lemma.

Lemma 6.11 Let T be a linear operator acting on a finite-dimensional com-
plex vector space V , and let λ be an eigenvalue of T . Then λ is a simple root
of the characteristic polynomial of T if and only if the following two condi-
tions are satisfied:
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• the eigenspace associated with the eigenvalue λ is one-dimensional;

• if v ∈ V satisfies the identity (T − λIV )2v = 0 then Tv = λv.

Theorem 6.12 (Perron) Let T be a positive square matrix, and let µ be
the Perron root of T . Then the following properties are satisfied:—

(i) there exists an eigenvector of T with associated eigenvalue µ whose
coefficients are all strictly positive;

(ii) the eigenvalue µ is a simple root of the characteristic polynomial of T ,
and the corresponding eigenspace is therefore one-dimensional;

(iii) all eigenvalues λ (real or complex) of T that are distinct from µ satisfy
the inequality |λ| < µ.

Proof Let the positive square matrix T be an n × n matrix, and let µ
denote the Perron root of T . Proposition 6.4 establishes that the Perron
root µ of T is well-defined and is an eigenvalue of T with which is associated
an eigenvector b with positive coefficients. Moreover Proposition 6.4 ensures
that the following properties are then satisfied:—

(iv) b >> 0 and Tb = µb;

(v) if ρ is a non-negative real number, if v is a non-zero n-dimensional
vector with non-negative coefficients, and if Tv ≥ ρv, then ρ ≤ µ.

(vi) given any n-dimensional vector u with real coefficients for which Tu ≥
µu, there exists a real number t for which u = tb, and thus Tu = µu.

Now because the coefficients of the matrix T are all real, and µ is also
a real number, the real and imaginary parts of any eigenvector of T with
associated eigenvalue µ must themselves be eigenvectors with eigenvalue µ.
The result just obtained therefore ensures that any convex eigenvector of T
with eigenvalue µ must be a complex scalar multiple of the eigenvector b.
Thus the eigenspace of T associated with the eigenvalue µ is one-dimensional,
when considered over the field of complex numbers.

Let I denote the identity n × n matrix, and let v be real n-dimensional
vector for which (T − µI)2v = 0. Then Tv− µv is an eigenvector of T with
associated eigenvalue µ. It follows from property (vi) above that there must
exist some real number α for which Tv − µv = αb. Now b >> 0. It follows
that if α ≥ 0 then Tv ≥ µv. But property (vi) stated at the commencement
of the proof then ensures that v = tb for some real number t. But then
Tv = µv and α = 0. Similarly if α ≤ 0 then T (−v) ≥ µ(−v), and this
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also ensures that α = 0. It follows that if v is a real n-dimensional vector
satisfying (T−µI)2v = 0 then Tv = µv. The criterion stated in Lemma 6.11
therefore establishes that µ is a simple root of the characteristic polynomial
of T .

We have now verified (i) and (ii). It remains to verify that all eigenvalues
λ of T distinct from µ satisfy the inequality |λ| < µ.

Now it follows from Proposition 6.7 that all eigenvalues λ of T satisfy the
inequality |λ| ≤ µ.

Now suppose that |λ| = µ. It then follows from property (vi), stated
at the commencement of the proof, that Tv = µv = |λ|v. It then follows
from Lemma 6.6 that λ is a positive real number, and therefore λ = µ.
This completes the proof of (iii), and therefore completes the proof of the
theorem.
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7 Game Theory and Nash Equilibria

7.1 Zero-Sum Two-Person Games
Example Consider the following hand game. This is a zero-sum two-person
game. At each go, the two players present simultaneously either and open
hand or a fist. If both players present fists, or if both players present open
hands, then no money changes hands. If one player presents a fist and the
other player presents an open hand then the player presenting the fist receives
ten cents from the player presenting the open hand.

The payoff for the first player can be represented by the following payoff
matrix: (

0 −10
10 0

)
.

In this matrix the entry in the first row represent the payoffs when the first
player presents an open hand; those in the second row represent the payoffs
when the first player presents a fist. The entries in the first column represent
the payoff when the second player presents an open hand; those in the second
column represent the payoffs when the second player presents a fist. In this
game the second player, choosing the best strategy, is always going to play
a fist, because that reduces the payoff for the first player, whatever the first
player chooses to play. Similarly the first player, choosing the best strategy,
is going to play a fist, because that maximizes the payoff for the first player
whatever the second player does. Thus in this game, both players choosing
the best strategies, play fists.

It should be noticed that, in this situation, if the second player always
plays a fist, the first player would not be tempted to move from a strategy
of always playing a fist in order get a better payoff. Similarly if the first
player always plays a fist, then the second player would not be tempted to
move from a strategy of always playing a fist in order to reduce the payoff to
the first player. This is a very simple example of a Nash Equilibrium. This
equilibrium arises because the element in the second row and second column
of the payoff matrix is simultaneously the largest element in its column and
the smallest element in its row. Matrix elements with this property as said
to be saddle points of the matrix.

Example Now consider the game of Rock, Paper, Scissors. This game has
a long history, and versions of this game were well-established in China and
Japan in particular for many centuries.

Two players simultaneously present hand symbols representing Rock (a
closed fist), Paper (a flat hand), or Scissors (first two fingers outstretched in
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a ‘V’). Paper beats Rock, Scissors beats Paper, Rock beats Scissors. If both
players present the same hand symbol then that round is a draw.

Ordering the strategies for the playes in the order Rock (1st), Paper (2nd)
and Scissors (3rd), the payoff matrix for the first player is the following:— 0 −1 1

1 0 −1
−1 1 0

 .

The entry in the ith row and jth column of this payoff matrix represents
the return to the first player on a round of the game if the first player plays
strategy i and the second player plays strategy j.

A pure strategy would be one in which a player presents the same hand
symbol in every round. But it is not profitable for any player in this game to
adopt a pure strategy. If the first player adopts a strategy of playing Paper,
then the second player, on observing this, would adopt a strategy of always
playing Scissors, and would beat the first player on every round. A preferable
strategy, for each player, is the mixed strategy of playing Rock, Paper and
Scissors with equal probability, and seeking to ensure that the sequence of
plays is as random as possible.

Let us denote by M the payoff matrix above. A mixed strategy for the first
player is one in which, on any given round Rock is played with probability p1,
Paper is played with probability p2 and Scissors is played with probability
p3. The mixed strategies for the first player can therefore be represented by
points of a triangle ∆P , where

∆P =
{

(p1, p2, p3) ∈ R3 : p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, p1 + p2 + p3 = 1
}
.

A mixed strategy for the second player is one in which Rock is played with
probability q1, Paper with probability q2 and Scissors with probability q3.
The mixed strategies for the second player can therefore be represented by
points of a triangle ∆Q, where

∆Q =
{

(q1, q2, q3) ∈ R3 : q1 ≥ 0, q2 ≥ 0, q3 ≥ 0, q1 + q2 + q3 = 1
}
.

Let p ∈ ∆P represent the mixed strategy chosen by the first player, and
q ∈ ∆Q the mixed strategy chosen by the second player, where

p = (p1, p2, p3), q = (q1, q2, q3).

Let Mij the payoff for the first player when the first player plays strategy i
and the second player plays strategy j. Then Mij is the entry in the ith row
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and jth column of the payoff matrix M . In matrix equations we consider p
and q to be column vectors, denoting their transposes by the row matrices
pT and qT . The expected payoff for the first player is then f(p,q), where

f(p,q) = pTMq =
3∑
i=1

3∑
j=1

piMijqj.

Let p∗ = (p∗1, p∗2, p∗3), where

p∗1 = p∗2 = p∗3 = 1
3 .

Then p∗TM = (0, 0, 0), and therefore

f(p∗,q) = 0

for all q ∈ ∆Q. Similarly let q∗ = (q∗1, q∗2, q∗3), where

q∗1 = q∗2 = q∗3 = 1
3 .

Then
f(p,q∗) = 0

for all p ∈ ∆Q. Thus the inequalities

f(p,q∗) ≤ f(p∗,q∗) ≤ f(p∗,q)

are satisfied for all p ∈ ∆P and q ∈ ∆q, because each of the quantities
occurring is equal to zero.

Were the first player to adopt a mixed strategy p, where p = (p1, p2, p3),
pi ≥ 0 for i = 1, 2, 3 and p1 + p2 + p3 = 1, the second player could adopt
mixed strategy q, where q = (q1, q2, q3) = (p3, p1, p2). The payoff f(p,q) is
then

f(p,q) = −p1q2 + p1q3 − p2q3 + p2q1 − p3q1 + p3q2

= −p2
1 + p1p2 − p2

2 + p2p3 − p2
3 + p3p1

= −1
6

(
(2p1 − p2 − p3)2 + (2p2 − p3 − p1)2

+ (2p3 − p1 − p2)2
)

≤ 0.

Moreover if f(p,q) = 0, where q1 = p3, q2 = p1 and q3 = p2, then

(2p1 − p2 − p3)2 + (2p2 − p3 − p1)2 + (2p3 − p1 − p2)2 = 0
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and therefore 2p1 = p2 + p3, 2p2 = p3 + p1 and 2p3 = p1 + p2. But then

3p1 = 3p2 = 3p3 = p1 + p2 + p3 = 1,

and thus p = p∗. It follows that if p ∈ ∆Q and p 6= p∗ then there exists
q ∈ ∆Q for which f(p,q) < 0. Thus if the first player adopts a mixed strategy
other than the strategy p∗ in which Rock, Paper, Scissors are played with
equal probability on each round, there is a mixed strategy for the second
player that ensures that the average payoff for the first player is negative,
and thus the first player will lose in the long run over many rounds. Thus
strategy p∗ is the only sensible mixed strategy that the first player can adopt.
The corresponding strategy q∗ is the only sensible mixed strategy that the
second player can adopt. The average payoff for each player is then equal to
zero.

7.2 Von Neumann’s Minimax Theorem
In 1920, John Von Neumann published a paper entitled “Zur Theorie der
Gesellschaftsspielle” (Mathematische Annalen, Vol. 100 (1928), pp. 295–
320). The title translates as “On the Theory of Social Games”. This paper
included a proof of the following “Minimax Theorem”, which made use of
the Brouwer Fixed Point Theorem. An alternative proof using results con-
cerning convexity was presented in the book On the Theory of Games and
Economic Behaviour by John Von Neumann and Oskar Morgenstern (Prince-
ton University Press, 1944). George Dantzig, in a paper published in 1951,
showed how the theorem could be solved using linear programming methods
(see Joel N. Franklin, Methods of Mathematical Economics, (Springer Verlag,
1980, republished by SIAM in 1982).

Theorem 7.1 (Von Neumann’s Minimax Theorem) Let M be an m×
n matrix, let

∆P =
{

(p1, p2, . . . , pm) ∈ Rm : pi ≥ 0 for i = 1, 2, . . . ,m, and
m∑
i=1

pi = 1
}
,

∆Q =
{

(q1, q2, . . . , qn) ∈ Rn : qi ≥ 0 for i = 1, 2, . . . , n, and
n∑
j=1

qj = 1
}
,
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and let

f(p,q) = pTMq =
m∑
i=1

n∑
j=1

Mi,jpiqj

for all p ∈ ∆P and q ∈ ∆Q. Then there exist p∗ ∈ ∆P and q∗ ∈ ∆Q such
that

f(p,q∗) ≤ f(p∗,q∗) ≤ f(p∗,q)

for all p ∈ ∆P and q ∈ ∆Q.

Proof Let f(p,q) = pTMq for all p ∈ ∆P and q ∈ ∆Q. Given q ∈ ∆Q, let

µP (q) = sup{f(p,q) : p ∈ ∆P}

and let
P (q) = {p ∈ ∆P : f(p,q) = µP (q)}.

Similarly given p ∈ ∆P , let

µQ(p) = inf{f(p,q) : q ∈ ∆Q}

and let
Q(p) = {q ∈ ∆Q : f(p,q) = µQ(q)}.

An application of Berge’s Maximum Theorem (Theorem 2.23) ensures
that the functions µP : ∆P → R and µQ : ∆Q → R are continuous, and
that the correspondences P : ∆Q ⇒ ∆P and Q : ∆P ⇒ ∆Q are non-empty,
compact-valued and upper hemicontinuous. These correspondences therefore
have closed graphs (see Proposition 2.11). Morever P (q) is convex for all
q ∈ ∆Q and Q(p) is convex for all p ∈ ∆P . Let X = ∆P × ∆Q, and let
Φ: X ⇒ X be defined such that

Φ(p,q) = P (q)×Q(p)

for all (p,q) ∈ X. Kakutani’s Fixed Point Theorem (Theorem 5.4) then
ensures that there exists (p∗,q∗) ∈ X such that (p∗,q∗) ∈ Φ(p∗,q∗). Then
p∗ ∈ P (q∗) and q∗ ∈ Q(p∗) and therefore

f(p,q∗) ≤ f(p∗,q∗) ≤ f(p∗,q)

for all p ∈ ∆P and q ∈ ∆Q, as required.
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7.3 Quasiconvex Functions
Definition Let K be a convex set in some real vector space. A real-valued
function f : K → R is said to be quasiconvex if

f((1− t)u + tv) ≤ max
(
f(u), f(v)

)
for all u,v ∈ K and for all real numbers t satisfying 0 ≤ t ≤ 1.

Definition Let K be a convex set in some real vector space. A real-valued
function f : K → R is said to be quasiconcave if

f((1− t)u + tv) ≥ min
(
f(u), f(v)

)
for all u,v ∈ K and for all real numbers t satisfying 0 ≤ t ≤ 1.

Linear functionals are quasiconvex and quasiconcave.
A function f : K → R defined over a convex subset K of a real vector

space is quasiconcave if and only if the function −f is quasiconvex.

Lemma 7.2 Let K be a convex set in a real vector space, and let f : K → R
be a quasiconcave function. Then, for each real number s, the preimage
f−1([s,+∞)) of the interval [s,+∞) is a convex subset of K, where

f−1([s,+∞)) = {x ∈ K : f(x) ≥ s}.

Proof Let u,v ∈ f−1([s,+∞)), and let t be a real number satisfying 0 ≤
t ≤ 1. Then f(u) ≥ s and f(v) ≥ s. It follows from the definition of
quasiconcavity that

f((1− t)u + tv) ≥ min
(
f(u), f(v)

)
≥ s,

and therefore (1− t)u + tv ∈ f−1([s,+∞)), as required.

7.4 Nash Equilibria
We consider a game with n players. Each player choses a strategy from an
appropriate strategy sets. The strategies chosen by the players in the game
constitute a strategy profile. The utility, or payoff, of the game, for each player
is determined by the strategy profile chosen by the players in the game. The
technical details involved are explored and specified in more detail in the
following discussion.

81



We suppose that, in an n-player game, the ith player choses strategies
from a strategy set Si, where Si is represented as a non-empty compact convex
set in Rmi for some positive integer mi. (The convexity requirement would
typically be satisfied in games where players can adopt mixed strategies.)
We let S = S1 × S1 × · × Sn. The elements of the set S are referred to as
strategy profiles. The strategy profile set S is a compact convex subset of Rm,
where

m = m1 +m2 + · · ·+mn.

For each integer i between 1 and n let us define

S−1 = S2 × S3 × S4 × · · · × Sn,
S−2 = S1 × S3 × S4 × · · · × Sn,
S−3 = S1 × S2 × S4 × · · · × Sn,

...
S−n = S1 × S2 × S3 × · · · × Sn−1,

so that
S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn

for all integers i between 1 and n (making the appropriate interpretation of
the right hand side of this expression, as specified above, in the cases i = 1
and i = n). The set S−i is then a compact convex subset of Rm−mi for
i = 1, 2, . . . , n.

We define projections πi : S → Si and π−i : S → S−i for i = 1, 2, . . . , n in
the obvious fashion so that

πi(x1,x2, . . . ,xn) = xi

and

π−1(x1,x2, . . . ,xn) = (x2,x3,x4, . . . ,xn),
π−2(x1,x2, . . . ,xn) = (x1,x3,x4, . . . ,xn),
π−3(x1,x2, . . . ,xn) = (x1,x2,x4, . . . ,xn),

...
π−n(x1,x2, . . . ,xn) = (x1,x2,x3, . . . ,xn−1).

We now consider the utility, or payoff, of the game for the players. We
suppose that, for each integer i between 1 and n, the utility of the game,
from the perspective of the ith player, is determined by a utility function
ui : Si × S−i → R defined so that, for each element x−i of S−i representing
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a choice of strategies by players of the game other than the ith player, the
real number ui(xi,x−i) represents the utility, or payoff, for the ith player on
adopting the strategy i. We impose the following two requirements on these
utility functions:

• the utility function ui : Si × S−i → R is continuous on Si × S−i;

• for fixed x−i, the function sending xi to ui(xi,x−i) is quasiconcave on
Si, and thus

ui((1− t)x′i + tx′′i ,x−i) ≥ min
(
ui(x′i,x−i), ui(x′′i ,x−i)

)
for all x′i,x′′i ∈ Si, x−i ∈ S−i and real numbers t satisfying 0 ≤ t ≤ 1.

Let x′i and x′′i elements of the strategy set Si, representing strategies for
the ith player, and let x−i be an element of S−i, representing a profile of
strategies adopted by the other players. Then the ith player actively prefers
the outcome of strategy profile x′′i to that of strategy profile x′i if and only if

ui(x′i,x−i) < ui(x′′i ,x−i).

The ith player is indifferent between the outcomes of the strategy profiles x′i
and x′′i if and only if

ui(x′i,x−i) = ui(x′′i ,x−i).

Definition In an n-player game, let S1, S2, . . . , Sn denote the strategy sets
for the players in the game, and let ui : Si × S−i → R denote the utility
function for the ith player in the game (where the set S−i is defined for
i = 1, 2, . . . , n as described above). A strategy profile

(x∗1,x∗2, . . . ,x∗n)

is said to be a Nash equilibrium for the game if

ui(xi,x∗−i) ≤ ui(x∗i ,x∗−i).

for all integers i between 1 and n and for all xi ∈ Si.

Given any element x−i of S−i (representing a choice of strategies that
might be adopted by the other players of the game), there will be a sub-
set Bi(x−i) of Si that represents the best strategies that the ith player can
adopt when the other players are adopting the strategies represented by the
element x−i of S−i. These best strategies are those strategies that maximize
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the utility function for the ith player, and we denote the value of the utility
function ui for those best strategies by bi(x−i). Accordingly

bi(x−i) = sup{ui(xi,x−i) : xi ∈ Si},
Bi(x−i) = {xi ∈ Si : ui(xi,x−i) = b(x−i)}.

We obtain in this fashion a single-valued function bi : S−i → Si and a corre-
spondence Bi : S−i ⇒ Si.

Now, for each integer i between 1 and n, the constant correspondence
that sends each element of S−i to the strategy set Si is clearly both upper
hemicontinuous and lower hemicontinuous. The function ui : Si×S−i → R is
required to be continuous. Moreover, for each xi−1 ∈ S−i, the Extreme Value
Theorem ensures that the set Bi(x−i) is non-empty, and the continuity of
the utility function ui ensures that Bi(x−i) is a closed subset of the compact
set Si. It follows that the the correspondence B : S−i ⇒ Si is both non-
empty and compact. It therefore follows from Berge’s Maximum Theorem
(Theorem 2.23) that the function b : S−i → R is continuous on S−i, Bi(x−i) is
a compact subset of Si for all x−i ∈ S−i, and the correspondence B : S−i ⇒ Si
is upper hemicontinuous in S−i. Now every upper hemicontinuous closed-
valued correspondence has a closed graph (Proposition 2.11). We conclude
therefore that the correspondence B : S−i ⇒ Si has a closed graph.

Now, for each i, and for each x−i ∈ S−i, the quasiconcavity requirement
imposed on the utility function i ensures that the non-empty compact set
Bi(x−i) is convex. Indeed the definition of bi(x−i) and Bi(x−i) ensures that
ui(z,x−i) ≤ bi(x−i) for all z ∈ Si, and ui(z,x−i) = bi(x−i) for all z ∈ Bi(x−i).
It follows that

Bi(x−i) = {z ∈ Si : ui(z,x−i) ≥ b(x−i)}.

The quasiconcavity condition on the function ui ensures that, for all z, z′ ∈
Bi(x−i) and for all real numbers t satisfing 0 ≤ t ≤ 1,

ui((1− t)z′ + tz′′,x−i) ≥ min
(
ui(z′,x−i), ui(z′′,x−i)

)
≥ b(x−i),

and therefore (1 − t)z′ + tz′′ ∈ Bi(x−i). (This justification of the convex-
ity of Bi(x−i) essentially repeats the argument presented in the proof of
Lemma 7.2.)

We have now shown that, for each integer i between 1 and n, the cor-
respondence Bi : S−i → Si that assigns to each element x−i of S−i the set
of best strategies that the ith player can adopt in the event that the other
players adopt the strategies represented by x−i has closed graph, and maps
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each element x−i of S−i to a subset Bi(x−i) that is non-empty, compact and
convex.

Now the Kakutani Fixed Point Theorem (Theorem 5.4) applies to corre-
spondences with closed graph that map elements of a non-empty, compact
and convex subset to non-empty convex subsets of that set. Thus in order
to obtain a proof of the existence of Nash equilibria that utilizes the Kaku-
tani Fixed Point Theorem, we must construct such a correspondence from a
non-empty compact convex set to itself.

We recall that the strategy profile set S is defined to be the Cartesian
product S1 × S2 × · · · × Sn of the strategy sets for the players of the game.
Let Φ: S ⇒ S be the correspondence from the strategy profile set S to itself
defined so that

Φ(x) =
(
B1(π−1(x)), B2(π−2(x)), · · ·Bn(π−n(x))

)
for i = 1, 2, . . . , n. Then

{(x,y) ∈ S × S : y ∈ Φ(x)} =
n⋂
i=1

Gi,

where
Gi = {(x,y) ∈ S × S : πi(y) ∈ Bi(π−i(x))}

for i = 1, 2, . . . , n. Now, for each i, the set

{(x−i,yi) ∈ S−i × Si : yi ∈ Bi(x−i)}

is closed in S−i × Si, because the correspondence Bi : S−i ⇒ Si has closed
graph. It follows that each set Gi is closed in S × S, because the set Gi

is the preimage of a closed set under the continuous mapping from S × S
to S−i × Si that sends each ordered pair (x,y) in S × S to (π−i(x), πi(y)).
The graph of the correspondence Φ is the intersection of the closed sets
G1, G2, . . . , Gn. It is therefore itself a closed set. Thus the correspondence
Φ: S ⇒ S has closed graph. Moreover S is a non-empty compact convex set,
and Φ(x) is a non-empty convex subset of S for all x ∈ S. It follows from
the Kakutani Fixed Point Theorem (Theorem 5.4) that there exists a fixed
point x∗ for the correspondence Φ. This fixed point is strategy profile that
satisfies x∗ ∈ Φ(x∗).

Let x∗i = πi(x∗) and x∗−i = π−i(x∗) for i = 1, 2, . . . , n. Then x∗i ∈ Bi(x∗−i)
for i = 1, 2, . . . , n, because x∗ ∈ Φ(x∗). It follows from the definition of
Bi(x∗−i that

ui(xi,x∗−i) ≤ ui(x∗i ,x∗−i)
for all integers i between 1 and n and for all xi ∈ Si. The strategy profile
(x∗1,x∗2, . . . ,x∗n) therefore represents a Nash equilibrium for the game.
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Theorem 7.3 (Existence of Nash Equilibria)
Consider an n-person game in which, for each integer i between 1 and n, the
strategy set Si is a compact convex subset of a Euclidean space, and in which
the utility function ui : Si × Si−1 → R that determines the utility for the ith
player, given a strategy profile x−i representing strategies chosen by the other
players, is a continuous function that, for any fixed x−i ∈ S−i, determines a
quasiconcave function mapping xi to ui(xi,x−i) as xi varies over the strategy
set Si. Then there exists a Nash equilibrium (x∗1,x∗2, . . . ,x∗n) for the game.
Accordingly

ui(xi,x∗−i) ≤ ui(x∗i ,x∗−i)

for all integers i between 1 and n and for all xi ∈ Si.
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8 Walrasian Equilibria

8.1 Exchange Economies
We consider an exchange economy consisting of a finite number of com-
modities and a finite number of households, each provided with an initial
endowment of each of the commodities. The commodities are required to
be infinitely divisible: this means that a household can hold an amount x of
that commodity for any non-negative real number x. (Thus salt, for example,
could be regarded as an ‘infinitely divisible’ quantity whereas cars cannot:
it makes little sense to talk about a particular household owning 2.637 of a
car, for example, though such a household may well own 2.637 kilograms of
salt.) Now the households may well wish to exchange commodities with one
another so as improve on their initial endowment. They might for example
seek to barter commodities with one another: however this method of redis-
tribution would not work very efficiently in a large economy. Alternatively
they might attempt to set up a price mechanism to simplify the task of redis-
tributing the commodities. Thus suppose that each commodity is assigned
a given price. Then each household could sell its initial endowment to the
market, receiving in return the value of its initial endowment at the given
prices. The household could then purchase from the market a quantity of
each commodity so as to maximize its own preference, subject to the con-
straint that the total value of the commodities purchased by any household
cannot exceed the value of its initial endowment at the given prices. The
problem of redistribution then becomes one of fixing prices so that there is
exactly enough of each commodity to go around: if the price of any com-
modity is too low then the demand for that commodity is likely to outstrip
supply, whereas if the price is too high then supply will exceed demand. A
Walras equilibrium is achieved if prices can be found so that the supply of
each commodity matches its demand. We shall use Berge’s Maximum Theo-
rem and the Kakutani fixed point theorem to prove the existence of a Walras
equilibrium in this idealized economy.

Let our exchange economy consist of n commodities and m households.
We suppose that household h is provided with an initial endowment xhi of
commodity i, where xhi ≥ 0. Thus the initial endowment of household h
can be represented by a vector xh in Rn whose ith component is xhi. The
prices of the commodities are given by a price vector p whose ith component
pi specifies the price of a unit of the ith commodity: a price vector p is
required to satisfy pi ≥ 0 for all i. Then the value of the initial endowment
of household h at the given prices is p . xh. This quantity represents the
wealth of household h at prices p.

87



Definition For each positive integer n, the positive orthant Rn
+ is the subset

of Rn defined so that
Rn

+ = {x ∈ Rn : x ≥ 0}.

In particular R+ = {t ∈ R : t ≥ 0}.

Definition A real-valued function u : X → R defined over a subset X of
Rn is said to be strictly increasing on X if u(x) < u(x′) for all x,x′ in X
satisfying x ≤ x′ and x 6= x′.

8.2 The Budget Correspondence
We now discuss basic properties of the budget correspondence.

The budget correspondence is defined on the set of pairs. A price-wealth
pair is an ordered pair (p, w), where p ∈ Rn, w is a non-negative real number
and p ≥ 0. The budget correspondence assigns to each price-wealth pair the
bundles of commodities that an economic agent with the specified wealth can
afford to purchase at the specified prices.

More formally, the definition of the budget correspondence may be given
as follows.

Definition In a model of an exchange economy with n commodities, The
budget correspondence B : Rn

+ × R+ ⇒ Rn assigns to each price-wealth pair
(p, w) in Rn

+ × R+ the subset B(p, w) of Rn
+ defined such that

B(p, w) = {x ∈ Rn : x ≥ 0 and p . x ≤ w}.

Example Consider the case of two commodities. The budget correspon-
dence B : R2

+ × R+ ⇒ R2 is defined so that

B(p, w) = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0 and p1x1 + p2x2 ≤ w}

for all p ∈ R2
+ and w ∈ R+, where p = (p1, p2).

Let p0 be the vector in R2
+ with p0 = (1, 0), and let V be the open set in

R3 defined so that

V =
{

(x1, x2) ∈ R2 : x1 < 1 + 1
1 + x2

2

}
.

Now
B(p0, w) = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ w and x2 ≥ 0}
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for all w > 0. It follows that B(p0, 1) ⊂ V , but B(p0, w) 6⊂ V for all w > 1.
Indeed if w > 1 then t can be chosen large enough to ensure that

w > 1 + 1
1 + t2

.

But then (w, t) ∈ B(p0, w), but (w, t) 6∈ V . This example demonstrates that
the budget correspondence B : R2

+ × R+ ⇒ R2 is not upper hemicontinuous
at (p0, 1), where p0 = (1, 0).

Note also that B(p, w) = B(w−1p, 1) for all (p, w) ∈ R2 × R+ satisfying
w > 0. It follows that the budget correspondence p 7→ B(p, 1) is not upper
hemicontinuous on R2

+ at p0. Now let p0 = (1, 0) as before, and let

V = {(x1, x2) ∈ R2 : x2 > 1}.

Now
B(p0, 0) = {(x1, x2) ∈ R2 : x1 = 0 and x2 ≥ 0}.

It follows that B(p0, 0)∩V 6= ∅. But if p >> 0 then B(p, 0) = {(0, 0)}. Thus
B(p, 0)∩V = ∅ whenever p ≥ 0. It follows that the budget correspondence B
is not lower hemicontinuous at (p0, 0).

Proposition 8.1 Let n be a positive integer, let c be an element of Rn satis-
fying c >> 0, and let Bc : Rn

+×R+ ⇒ Rn be the correspondence that assigns
to each price-wealth pair (p, w) in Rn

+×R+ the subset Bc(p, w) of Rn
+ defined

such that
Bc(p, w) = {x ∈ Rn : 0 ≤ x ≤ c and p . x ≤ w}.

Then the correspondence Bc : Rn
+ × R+ ⇒ Rn is upper hemicontinuous on

Rn
+ × R and lower hemicontinuous on

{(p, w) ∈ Rn
+ × R : w > 0}.

Moreover Bc(p, w) of Rn
+ is non-empty, compact and convex for all (p, w) ∈

Rn
+ × R.

Proof The set Bc(p, w) is a non-empty closed bounded convex subset of Rn
+

for i = 1, 2, . . . , n. Any closed bounded subset of Rn is compact. It follows
that The set Bc(p, w) is non-empty, compact convex for all (p, w) ∈ Rn

+×R+.
Next we show that the correspondence Bc is upper hemicontinuous on

Rn
+×R+. Let (p0, w0) ⊂ Rn

+×R+, and let V be an open set in Rn for which
Bc(p0, w0) ⊂ V . We will show that there exists an open set N in Rn

+ × R+
such that (p0, w0) ∈ N and Bc(p, w) ⊂ V for all (p, w) ∈ N .
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Now Bc(p, w) ⊂ C for all (p, w) ∈ Rn
+ × R+, where

C = {x ∈ Rn : 0 ≤ x ≤ c}.

It follows that if C ⊂ V then Bc(p, w) ⊂ V for all (p, w) ∈ Rn
+ × R+. We

may therefore take N = Rn
+ × R+ in the case where C ⊂ V .

In the case where C is not contained in V let F = C \V . Then F is a non-
empty closed subset of C. If x ∈ C and p0 .x ≤ w0 then x ∈ Bc(p0, w0), and
therefore x ∈ V , because Bc(p0, w0) ⊂ V , and thus x 6∈ F . It follows that
p0 . x > w0 for all x ∈ F . It then follows from the Extreme Value Theorem
that the continuous function sending each point x of F to p0 . x attains a
minimum value at some point of the set F , and therefore there exists a point
x1 of F and a real number w1 such that p0 . x1 = w1 and p0 . x ≥ w1 for
all x ∈ F . Then w1 > w0. It follows that p0 . x ≥ w1 for all x ∈ F , and
therefore Bc(p0, w1)∩F = ∅. But Bc(p0, w1) ⊂ C and F = C \V . It follows
that Bc(p0, w1) ⊂ V .

Now let N be the subset of Rn
+×R+ consisting of those price-wealth pairs

(p, w) with the property that

(p)i >
w

w1
(p0)i

for those integers i between 1 and n for which (p0)i > 0. Then N is open in
Rn

+×R+. Moreover the definition of N and the inequality w0 < w1 together
ensure that (p0, w0) ∈ N .

Care needs to be exercised in cases where w = 0. Suppose that p ≥ 0
and (p, 0) ∈ N . Then (p)i > 0 for all integers i between 1 and n for which
(p0)i > 0. It follows that if x ∈ Rn satisfies x ≥ 0 and p .x = 0 then (p)i = 0
for those integers i between 1 and n for which (x)i > 0. But then (p0)i = 0 for
those integers i between 1 and n for which (x)i > 0, and therefore p0 .x = 0.
We conclude from this that if (p, 0) ∈ N and x ∈ Bc(p, 0) then p0 . x = 0,
and therefore x ∈ Bc(p0, 0). But

Bc(p0, 0) ⊂ Bc(p0, w0) ⊂ V.

We conclude therefore that if (p, 0) ∈ N then Bc(p, 0) ⊂ V .
Now let (p, w) ∈ N , where w > 0, and let x ∈ Bc(p, w). Then x ≥ 0 and

p . x ≤ w. Then

p0 . x =
n∑
i=1

(p0)i(x)i ≤
w1

w

n∑
i=1

(p)i(x)i = w1

w
p . x ≤ w1,

and therefore x ∈ Bc(p0, w1). It follows that if (p, w) ∈ N and w > 0 then

Bc(p, w) ⊂ Bc(p0, w1) ⊂ V.
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We conclude therefore that Bc(p, w) ⊂ V for all (p, w) ∈ N . The results we
have so far obtained combine to show that the correspondence Bc is upper
hemicontinuous on Rn

+ × R+.
Now let (p0, w0) ∈ Rn

+ × R+ satisfy w0 > 0, and let V be an open set in
Rn that satisfies V ∩Bc(p0, w0) 6= ∅. The constraint w0 > 0 ensures that any
open ball of positive radius centred on a point of Bc(p0, w0) intersects the
interior of that set. It follows that the open set V must intersect the interior
of the set Bc(p0, w0), and therefore there exists x0 ∈ V for which 0 ≤ x0 ≤ c
and p0 . x0 < w0. Let

N = {(p, w) ∈ Rn
+ × R+ : w − p . x0 > 0}.

ThenN is open in Rn, (p0,w0) ∈ N , and x0 ∈ V ∩Bc(p, w) for all (p, w) ∈ N .
We conclude from this that the correspondence Bc is lower hemicontinuous
on the set Rn

+ × R+. This completes the proof.

Proposition 8.2 Let n be a positive integer, and let B : Rn
+ × R+ ⇒ Rn

be the budget correspondence that assigns to each price-wealth pair (p, w) in
Rn

+ × R+ the subset B(p, w) of Rn
+ defined such that

B(p, w) = {x ∈ Rn : x ≥ 0 and p . x ≤ w}.

Then the budget correspondence B : Rn
+ × R+ ⇒ Rn is both upper hemicon-

tinuous and lower hemicontinuous on the set Γn, where

Γn = {(p, w) ∈ Rn × R : p >> 0 and w > 0}.

Moreover B(p, w) of Rn
+ is non-empty, compact and convex for all (p, w) ∈

Γn.

Proof Let (p0, w0) be a price-wealth pair for which p0 >> 0 and w0 > 0.
Then (p)i > 0 for i = 1, 2, . . . , n. Let a positive vector c be chosen so that

(c)i >
w0

(p0)i

for i = 1, 2, . . . , n. Let

N = {(p, w) ∈ Rn
+ × R+ : w > 0 and (p)i >

w

(c)i
for i = 1, 2, . . . , n}.

Then N is an open subset of Rn
+×R+, (p0, w0) ∈ N . Moreover if (p, w) ∈ N ,

and if x ∈ B(p, w), then x ≥ 0, p . x ≤ w and w > 0 But then (p)i > 0 and

(p)i(x)i ≤ w < (p)i(c)i
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for i = 1, 2, . . . , n, and therefore x ≤ c. It follows that B(p, w) = Bc(p, w)
for all (p, w) ∈ N , where

Bc(p, w) = {x ∈ Rn : 0 ≤ x ≤ c and p . x ≤ w}.

Now the correspondence Bc defined in this fashion is both upper hemicon-
tinuous and lower hemicontinuous on the set of all price-wealth pairs (p, w)
for which w > 0. (Proposition 8.1). It follows that, because w > 0 and
B(p, w) = Bc(p, w) for all (p, w) ∈ N , the budget correspondence B is both
upper hemicontinuous and lower hemicontinuous on the open subset N of
the set of price-wealth pairs, and is therefore both upper and lower hemicon-
tinuous around the price-wealth pair (p0, w0). The result follows.

8.3 Maximizing Normalized Commodity Prices
Proposition 8.3 Let n be a positive integer, let

∆ =

{
p ∈ Rn : p ≥ 0 and

n∑
i=1

(p)i = 1

}
.

Let γ : Rn → R be the function defined so that, for each x ∈ Rn, γ(x) is the
maximum of the components of x, and let µ : Rn ⇒ ∆ be the correspondence
defined such that

µ(x) = {p ∈ ∆ : p . x = γ(x)}.

Then the correspondence µ : Rn ⇒ ∆ is upper hemicontinuous, and µ(x) is a
non-empty compact convex subset of ∆ for all x ∈ Rn. Also p . x ≤ p′ . x =
γ(x) for all p ∈ ∆ and p′ ∈ µ(x).

Proof Let x ∈ Rn and p ∈ ∆, and let x = (x1, x2, . . . , xn) and p =
(p1, p2, . . . , pn). Then pi ≥ 0 for i = 1, 2, . . . , n, and

γ(x) = max(x1, x2, . . . , xn).

Let I(x) denote those integers i between 1 and n for which xi = γ(x). Now
0 ≤ pi ≤ 1 for i = 1, 2, . . . , n, and

n∑
i=1

pi = 1. It follows that

p . x =
n∑
i=1

pixi ≤ γ(x)
n∑
i=1

pi = γ(x).

Moreover if xi < γ(x) and pi > 0 for some integer i between 1 and n then
p . x < µ(x). It follows that p . x ≤ γ(x) for all p ∈ ∆, and p . x = γ(x) if
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and only if pi = 0 for those integers i between 1 and n for which xi < γ(x).
It follows that p . x = γ(x) if and only if pi = 0 for those integers i between
1 and n for which i 6∈ I(x). Therefore

µ(x) = {(p1, p2, . . . , pn) ∈ ∆ : pi = 0 whenever (x)i < γ(x)}
= {(p1, p2, . . . , pn) ∈ ∆ : pi = 0 whenever i 6∈ I(x)}.

It follows that, for all x ∈ R, the set µ(x) is a closed subset of the simplex ∆,
and is therefore a compact set. It is clearly non-empty and convex. Also

p . x ≤ µ(x) = p′ . x

for all p ∈ ∆ and p′ ∈ µ(x).
Let x′ ∈ Rn, and let x′ = (x′1, x′2, . . . , x′n). If i ∈ I(x′) then x′i = γ(x′),

and if i 6∈ I(x′) then x′i < γ(x′). There then exists a real number θ such
that θ < γ(x′) and x′i < θ whenever i 6∈ I(x′). Let N be the subset of Rn

consisting of those elements (x1, x2, . . . , xn) of Rn satisfying the following two
conditions:

• xi > θ if i ∈ I(x′);

• xi < θ if i 6∈ I(x′).

Then N is open in Rn and x′ ∈ N . Moreover I(x) ⊂ I(x′) for all x ∈ N ,
and therefore µ(x) ⊂ µ(x′) for all x ∈ N . Thus if V is open in Rn and if
µ(x′) ⊂ V then µ(x) ⊂ V for all x ∈ N . We conclude from this that the
correspondence µ : Rn → ∆ is upper hemicontinuous on R. This completes
the proof.

Remark Let e1, e2, . . . , en is the standard basis of Rn, defined so that, for
each integer i between 1 and n, the ith component of ei is equal to 1 and the
other components are zero. Then the simplex ∆ is an (n − 1)-dimensional
simplex with vertices e1, e2, . . . , en, and, for each x ∈ Rn, the subset µ(x) of
∆ is the face of the simplex ∆ spanned by those vertices ei of ∆ for which
(x)i = γ(x), where γ(x) denotes the maximum value of the components of
the vector x.

8.4 Consumer Preferences
We next discuss how each household sets out to determine its purchase re-
quirements.

We suppose that the preferences of household h are represented by a
utility function uh : Rn

+ → R that is continuous, strictly increasing and qua-
siconcave. Such a utility function therefore satisfies the following conditions:
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• the function u : Rn
+ → R is continuous ;

• the function u : Rn
+ → R is strictly increasing, and thus if x,x′ ∈ Rn

+
satisfy x ≤ x′ and x 6= x′ then u(x) < u(x′);

• the function u : Rn
+ → R is quasiconcave, and thus

u((1− t)x + tx′) ≥ min
(
u(x), u(x′)

)
for all x,x′ ∈ Rn

+ and t ∈ [0, 1].

Proposition 8.4 Let u : X → R be a function defined on a closed convex
subset X of Rn that is continuous, strictly increasing and quasiconcave, let p
be a non-zero non-negative price vector in Rn, let w be a positive real number,
let

B(p, w) = {x ∈ Rn : x ≥ 0 and p . x ≤ w}

and let x∗ ∈ B(p, w). Suppose that there exists some open neighbourhood N
of x∗ in Rn

+ with the property that u(x) ≤ u(x∗) for all x ∈ B(p, w) ∩ N .
Then p . x∗ = w and u(x) ≤ u(x∗) for all x ∈ B(p, w).

Proof Suppose that it were the case that p . x∗ < w. Then it would be
possible to find x ∈ N satisfying x >> x∗ and p . x < w. Then x ∈
B(p, w)∩N . The strictly increasing property of the utility function u would
then ensure that u(x) > u(x∗). But this would contradict that assumption
that the maximum of the utility function u on B(p, w)∩N is attained at x∗.

Next suppose that there were to exist in the set B(p, w) a commodity
bundle x′ for which u(x′) > u(x∗). It would then follow from the continuity of
the utility function u that the value of utility function u would exceed u(x∗)
throughout some open ball of positive radius centred on x′. Now w > 0,
and therefore B(p, w) has non-empty interior. Moreover every open ball of
positive radius about an element of B(p, w) would intersect the interior of
this set. It follows that there would exist a commodity bundle x′′ in the
interior of B(p, w) lying sufficiently close to x′ to ensure that u(x′′) > u(x∗)
and p . x′′ < w. The quasiconcavity of the utility function would ensure
that the utility function u would take values no less than u(x∗) along the
line segment joining the commodity bundles x∗ and x′′. Moreover this line
segment would be wholly contained within the convex set B(p, w).

Now x∗ ∈ N . Therefore there would then exist a commodity bundle x′′′
on the line segment joining x∗ and x′′ that was distinct from x∗ but was close
enough to x∗ to ensure that x′′′ ∈ N . Then u(x′′′) ≥ u(x∗) and p . x′′′ < w.
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There would then exist a commodity bundle x satisfying x ≥ x′′′ and x 6= x′′′
for which x ∈ N and p . x < w. Then x ∈ B(p, w) ∩N and

u(x) > u(x′′′) ≥ u(x∗),

contradicting the fact that the function u achieves is maximum value on
B(p, w) ∩ N at x∗. We conclude therefore that the maximum value of the
utility function u on B(p, w) is attained at the point x∗, as required.

8.5 Indirect Utility and Consumer Demand
Let Γn be the set of price-wealth pairs (p, w) for which p >> 0 and w > 0,
so that

Γn = {(p, w) ∈ Rn × R : p >> 0 and w > 0}.

Then the closure Γn of Γn in Rn × R satisfies

Γn = Rn
+ × R+ = {(p, w) ∈ Rn × R : p ≥ 0 and w ≥ 0}.

Let B : Γn ⇒ Rn denote the budget correspondence on Γn, where

B(p, w) = {x ∈ Rn : x ≥ 0 and p . x ≤ w}

for all (p, w) ∈ Γn.
Let u : Γn → R be a utility function for a given consumer, defined over

Γn, that is continuous, strictly increasing and quasiconcave. Then the utility
function u and the budget correspondence B together determine a single
valued function V : Γn → R and a correspondence ξ : Γn ⇒ Rn

+, where

V (p, w) = sup{u(x) : x ∈ B(p, w)}

and
ξ(p, w) = sup{x ∈ B(p, w) : u(x) = V (p, w)}.

The function V : Γn → R is referred to as the indirect utility function for
the given consumer, and the correspondence ξ : Γn ⇒ Rn

+ is referred to as
the demand correspondence for that consumer. The value of V (p, w) is the
maximum utility that the consumer by purchasing a bundle of commodities
that is affordable for that consumer when the commodity prices are given
by the price vector p and the wealth of the consumer is represented by
the non-negative real number w. The demand correspondence ξ : Γn ⇒ Rn

+
associates to a price-wealth pair (p, w) the set consisting of those bundles of
commodities that are most desirable for the consumer with wealth w, subject
to being affordable at prices p.
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Proposition 8.5 In an exchange economy with n commodities, suppose that
the preferences of a given consumer are represented by a utility function
u : Γn → R, defined over the line Γn of price-wealth pairs, that is contin-
uous, strictly increasing and quasiconcave. Then the resulting indirect utility
function V : Γn → R is continuous on the set Γn of price-wealth pairs (p, w)
for which p >> 0 and w > 0, and the demand correspondence ξ : Γn ⇒ Rn

+
is upper hemicontinuous and maps each price-wealth pair (p, w) in Γn to a
non-empty compact convex subset of Rn

+.

Proof Proposition 8.2 ensures that the budget correspondence ξ : Γn ⇒ Rn
+

is both upper hemicontinuous and lower hemicontinuous on Γn. Moreover
ξ(p, w) is a non-empty compact subset of Rn

+ for all (p, w) ∈ Γn. It follows
from a direct application of Berge’s Maximum Theorem (Theorem 2.23) that
the indirect utility function is continuous and the demand correspondence is
upper hemicontinuous and maps each price-wealth pair in Γn to a non-empty
compact subset of Rn

+. The convexity of B(p, w) and the quasiconcavity of
the utility function u then ensure that ξ(p, w) is convex for all price-wealth
pairs (p, w) in Γn.

Let c be an element of Rn satisfying c >> 0. In what follows we re-
strict consumer choice to those bundles of commodities that, for a particular
price-wealth pair (p, w), are both affordable and subject to the availability
constraint 0 ≤ x ≤ c. Thus let Bc : Γn ⇒ Rn denote the budget correspon-
dence on Γn when availability is constrained in this fashion, so that

Bc(p, w) = {x ∈ Rn : 0 ≤ x ≤ c and p . x ≤ w}

for all (p, w) ∈ Γn. It follows from Proposition 8.1 that the correspon-
dence Bc : Γn ⇒ Rn is both upper hemicontinuous and lower hemicontinuous
throughout the set Γ̂n defined so that

Γ̂n = {(p, w) ∈ Rn × R : p ≥ 0 and w > 0}.

We still require the utility function u : Γn → R for the given consumer to
be continuous, strictly increasing and quasiconcave. Then the utility func-
tion u and the modified budget correspondence Bc together determine a
single valued function V̂c : Γn → R and a correspondence ξ̂c : Γn ⇒ Rn

+,
where

V̂c(p, w) = sup{u(x) : x ∈ Bc(p, w)}

and
ξ̂c(p, w) = sup{x ∈ Bc(p, w) : u(x) = V̂cp, w)}.
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Proposition 8.6 In an exchange economy with n commodities, suppose that
the preferences of a given consumer are represented by a utility function
u : Γn → R, defined over the line Γn of price-wealth pairs, that is continuous,
strictly increasing and quasiconcave. Let c ∈ Rn satisfy c >> 0, and let the
consumer be required to select from bundles x of commodities, represented by
non-negative n-dimensional vectors, that, for prices and wealth given by the
price-wealth pair (p, w), satisfy both the budget constraint p . x ≤ w and the
availability constraint 0 ≤ x ≤ c. Then the resulting indirect utility function
V̂c : Γ̂n → R is continuous on the set Γ̂n of price-wealth pairs (p, w) for which
w > 0, and the demand correspondence ξ̂c : Γ̂n ⇒ Rn

+ is upper hemicontin-
uous and maps each price-wealth pair (p, w) in Γ̂n to a non-empty compact
convex subset of Rn

+.

Proof Proposition 8.1 ensures that the budget correspondence ξ̂c : Γ̂n ⇒ Rn
+

is both upper hemicontinuous and lower hemicontinuous on Γ̂n. Moreover
ξ̂c(p, w) is a non-empty compact subset of Rn

+ for all (p, w) ∈ Γ̂n. It follows
from a direct application of Berge’s Maximum Theorem (Theorem 2.23) that
the indirect utility function is continuous and the demand correspondence is
upper hemicontinuous and maps each price-wealth pair in Γ̂n to a non-empty
compact subset of Rn

+. The convexity of Bc(p, w) and the quasiconcavity of
the utility function u then ensure that ξ̂c(p, w) is convex for all price-wealth
pairs (p, w) in Γ̂n.

8.6 Addition of Compact-Valued Correspondences
We discuss now the addition of vector-valued correspondences.

Suppose that we have m correspondences ξ1, ξ2, . . . , ξm defined over some
subset Ω of a Euclidean space, and mapping points of Ω to subsets of a
Euclidean space Rn. Let

n∑
h=1

ξh denote the correspondence ξ defined such

that

ξ(p) =

{
m∑
h=1

xh : xh ∈ ξh(p)

}
.

Proposition 8.7 Let ξ1, ξ2, . . . , ξm be correspondences defined over some sub-
set Ω of a Euclidean space, and mapping points of that space to non-empty
compact subsets of the n-dimensional Euclidean space Rn. Suppose that these
correspondences are upper hemicontinuous. Then the sum

m∑
h=1

ξh of those cor-

respondences is an upper hemicontinuous correspondence mapping points of
Ω to non-empty compact subsets of Rn.
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Proof Let ξ : Ω ⇒ Rn be the correspondence that is the sum
m∑
h=1

ξh of the

correspondences ξ1, ξ2, . . . , ξm. Now, for each p ∈ Ω, the set ξ(p) is the image
of the Cartesian product

ξ1(p)× ξ2(p)× · · · × ξm(p)

under the continuous function that maps each m-tuple of vectors in Rn to
the sum of its components. Moreover ξh(p) is, by assumption, a non-empty
compact subset of Rn, and any Cartesian product of non-empty compact sets
is non-empty and compact, and the image of a non-empty compact set under
a continuous map is non-empty and compact. We conclude therefore that
ξ(p) is a non-empty compact subset of Rn for all p ∈ Ω.

We can therefore apply the “ε–δ” criterion for upper hemicontinuity of
compact-valued correspondences established by Proposition 2.16. Given any
subset K of Rn, and given any positive real number r, we denote by B(K, r)
the subset of Rn that lie within a distance less than r of a point of K.

Let p ∈ Ω, and let some strictly positive real number ε be given. It follows
from Proposition 2.16 that, for each integer h between 1 and m, there exists
some open neighbourhood Nh of p in Ω such that ξh(p′) ⊂ B(ξh(p), ε/m)
for all p′ ∈ Nh. Let N be the open neighbourhood of p in Ω that is the
intersection of N1, N2, . . . , Nh. Then a straightforward application of the
triangle inequality ensures that ξ(p′) ⊂ B(ξ(p), ε) for all p′ ∈ N . It then
follows from Proposition 2.16 that the correspondence ξ : Ω ⇒ Rn is upper
hemicontinuous at p. Its values are non-empty compact subsets of Rn. The
result follows.

8.7 Aggregate Supply and Demand in an Exchange
Economy

We now consider the properties of aggregate supply and demand in a pure
exchange economy, or market, in which n commodities are traded between
m households. Each household is provided with an initial endowment of
commodities. The initial endowment of household h is then represented by
an n-dimensional vector xh whose ith component specifies the initial endow-
ment (relative to some appropriate unit) of the ith commodity traded in the
market. The aggregate supply is then represented by a vector s that is the
sum of the initial endowment vectors of all households. Thus

s =
m∑
h=1

xh.
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We restrict our attention to the situation in which xh >> 0 for h =
1, 2, . . . ,m. This restriction requires that each household be given an initial
endowment of every commodity traded in the market. This ensures that,
provided all commodity prices are non-negative, and at least one commod-
ity price is strictly positive, then initial endowment of each household has
strictly positive value, and thus each household has wealth to enable it to
trade in the market. Within the mathematical model, this ensures that the
demand correspondences of each household are lower hemicontinuous (see
Proposition 8.6). The requirement that xh >> 0 for all households h also
ensures that s >> 0.

The prices of the commodities are encoded in a price vector p whose
components are non-negative real numbers. The ith component of this price
vector p specifies the price of a unit of the ith commodity. We suppose that
the price of at least one commodity is non-zero.

Each household seeks to trade its initial endowment for the bundle of
commodities that provides it with maximum utility within the budget con-
straint that requires the value of purchased commodities to be less than or
equal to the value of the initial endowment traded in. A consequence of
this is that the demand of the ith consumers at prices λp is identical to the
demand at prices p for all positive real numbers λ. Indeed the bundles of
commodities available to household h at prices p are those represented by
vectors xh satisfying the budget constraint

p . xh ≤ p . xh.

It follows that the price vector p may be replaced by the scalar multiple
λp for any positive real number λ without altering the set of bundles of
commodities that the households individually can afford.

It is appropriate therefore to normalize prices in some fashion so that all
non-zero non-negative price vectors can be expressed uniquely as a scalar
multiple of a normalized price vector. We adopt the normalization scheme
in which the sum of the prices of the commodities is required to be equal to
one.

Definition A price vector p (with non-negative components) is said to be
normalized if

n∑
i=1

(p)i = 1.

Normalized price vectors are therefore represented by the points of the
price simplex ∆, where

∆ =

{
p ∈ Rn : p ≥ 0 and

n∑
i=1

(p)i = 1

}
.
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We suppose that the demand for each household is determined by the
appropriate budget constraint and by a utility function that is continuous,
strictly increasing and quasiconcave. This being the case, if the price of
the ith commodity is zero, with the result that the commodity is free, then
every household can afford to acquire unlimited quantities of it, and because
the utility functions are required to be strictly increasing, demand for that
commodity cannot be satisfied: the households have an insatiable appetite
for free commodities.

This might suggest constraining price variation to price vectors whose
components are strictly positive. However the fixed point theorems that are
used to prove the existence of equilibria in which supply balances demand
apply to functions or correspondences defined on compact sets. Therefore the
correspondences that specify the demands of the consumers as prices vary
should assign a non-empty compact set not only to the normalized price
vectors in the interior of the price simplex ∆ but also to the price vectors on
the boundary of the price simplex.

Accordingly we impose an additional constraint on the purchases of the
households. In addition to the budget constraint, we place limits on the
amount of each commodity in the bundles available to the households. These
limits may be specified by a fixed positive vector c. Accordingly we require
that c >> 0 and that, for each integer h between 1 and m, household h selects
a bundle at prices p to maximize utility amongst bundles x that satisfy both
the budget constraint

p . x ≤ p . xh
and the additional constraint 0 ≤ x ≤ c.

We denote by Bc,h(p) the set of bundles of commodities from which house-
hold x makes its selection. Accordingly, with this additional constraint, for
each price vector p belonging to the price simplex ∆, household h selects
the bundle of commodities that maximizes its utility function uh over the
non-empty compact set Bc,h(p), where

Bc,h(p) = {x ∈ Rn
+ : 0 ≤ x ≤ c and p . x ≤ p . xh}.

We denote the set of bundles of commodities that maximizes utility for house-
hold h under these constraints by ξ̂c,h(p). We obtain in this fashion a cor-
respondence ξ̂c,h : ∆ ⇒ Rn

+ that determines the set of bundles maximizing
utility for household h at prices p, subject to the budget constraint and
the additional constraint that available bundles of commodities by bounded
above by the positive vector c.
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Proposition 8.8 Suppose that, in a model of an exchange economy with
n goods and m households, every household receives a strictly positive ini-
tial endowment of every commodity, so that the initial endowment vector xh
of household h satisfies xh >> 0 for h = 1, 2, . . . ,m. Suppose also that the
preferences of household h are determined by a utility function uh that is con-
tinuous, strictly increasing and quasiconcave. Then, for each household, and
for each c ∈ Rn satisfying c >> 0 the demand correspondences ξ̂c,h : ∆ ⇒ Rn

+
is upper hemicontinuous on the set ∆ of normalized price vectors, and maps
each normalized price vector p to a non-empty compact convex subset ξ̂c,h(p)
of Rn

+ that consists of those bundles x of commodities that maximize util-
ity for household h at prices p subject to both the affordability constraint
p . x ≤ p . x and the constraint 0 ≤ x ≤ c.

Proof Let
Γ̂n = {(p, w) ∈ Rn × R : p ≥ 0 and w > 0},

and, for all (p, w) ∈ Γ̂n, let us denote by ξ̂′c,h(p, w) the demand of house-
hold h at prices p, when the household has wealth h, where ξ̂′c,h(p, w) is
the set of bundles x of commodities maximizing utility for household h at
prices p subject to the constraints p . x ≤ w and 0 ≤ x ≤ c. It follows from
Proposition 8.6 that this correspondence ξ̂′c,h is upper hemicontinuous on Γ̂n,
and moreover it maps each price-wealth pair in Γ̂n to a non-empty compact
convex subset of Rn. Let ψh : ∆→ Γ̂n be the continuous mapping that sends
p ∈ ∆ to (p,p . xh). Then ξ̂c,h = ξ̂′c,h ◦ ψh: in other words,

ξ̂c,h(p) = ξ̂′c,h(p,p . xh) = ξ̂′c,h(ψh(p)).

It follows that the correspondence ξ̂c,h : ∆ → Rn
+ is the composition of a

continuous mapping followed by an upper hemicontinuous correspondence.
Any correspondence of this type must itself be an upper hemicontinuous
correspondence. Moreover the images of normalized price vectors in ∆ are
subsets of Rn

+ that have the required properties.

Now, because the demand correspondences ξ̂c,h : ∆ ⇒ Rn
+ for the individual

households assign to each normalized price vector p in the price simplex a
non-empty compact subset of Rn

+, these demand correspondences may be
added together to obtain an correspondence ξ̂c : ∆ ⇒ Rn

+ that represents
aggregate demand from the entire economy for each normalized price vector
belonging to the price simplex ∆.

An immediate application of Proposition 8.7 yields the following result.
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Corollary 8.9 Suppose that, in a model of an exchange economy with n
goods and m households, every household receives a strictly positive initial
endowment of every commodity, so that the initial endowment vector xh of
household h satisfies xh >> 0 for h = 1, 2, . . . ,m. Suppose also that the pref-
erences of household h are determined by a utility function uh that is contin-
uous, strictly increasing and quasiconcave. Let ∆ denote the simplex whose
elements are the normalized price vectors, and, for each c ∈ Rn satisfying
c >> 0, let the demand correspondence ξ̂c,h : ∆ ⇒ Rn

+ be defined as specified

in the statement of Proposition 8.8, let s =
m∑
h=1

xh, and let ξ̂c =
m∑
h=1

ξ̂c,h. Then

the the aggregate demand correspondence ξ̂c : ∆ ⇒ Rn
+ is upper hemicontin-

uous on ∆, and maps each element of ∆ to a non-empty compact convex
subset of Rn

+. Moreover p . x ≤ p . s for all p ∈ ∆ and x ∈ ξ̂c(p).

8.8 Walrasian Equilibria in Exchange Economies
Theorem 8.10 Let n be a positive integer, let

∆ =

{
p ∈ Rn : p ≥ 0 and

n∑
i=1

(p)i = 1

}
,

let K be a compact subset of Rn, and let ζ : ∆ ⇒ K be an upper hemicontin-
uous correspondence mapping points of the simplex ∆ to non-empty closed
convex subsets of K. Suppose that p . z ≤ 0 for all p ∈ ∆ and z ∈ ζ(p).
Then there exist p∗ ∈ ∆ and z∗ ∈ ζ(p∗) for which z∗ ≤ 0.

Proof The set K is clearly non-empty. We may assume, without loss of
generality, that the set K is both compact and convex, because if K were
not convex, then it could be replaced by a compact convex set containing it.

Let γ : Rn → R be the function defined so that, for each x ∈ Rn, γ(x) is
the maximum of the components of x, and let µ : Rn ⇒ ∆ be the correspon-
dence defined such that

µ(x) = {p ∈ ∆ : p . z = γ(z)}.

It was shown in Proposition 8.3 that the correspondence µ : Rn ⇒ ∆ is upper
hemicontinuous, and µ(x) is a non-empty compact convex subset of ∆ for all
x ∈ Rn. Moreover p . x ≤ p′ . x = γ(x) for all p ∈ ∆ and p′ ∈ µ(x). (The
upper hemicontinuity of µ also follows directly on applying Berge’s Maximum
Theorem, which is Theorem 2.23 above.)

Let Φ: ∆×K ⇒ ∆×K be the correspondence defined such that

Φ(p, z) = (µ(z), ζ(p))
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for all p ∈ ∆ and z ∈ K. The correspondences µ and ζ are upper hemicon-
tinuous and closed-valued, and every upper hemicontinuous closed-valued
correspondence has a closed graph (Proposition 2.11). It follows that the
correspondence Φ has closed graph. Moreover Φ(p, z) is a non-empty closed
convex subset of the compact convex set ∆ × K for all p ∈ ∆ and z ∈ K.
It follows from the Kakutani Fixed Point Theorem (Theorem 5.4) that there
exists (p∗, z∗) ∈ ∆×K for which (p∗, z∗) ∈ Φ(p∗, z∗). Then p∗ ∈ µ(z∗) and
z∗ ∈ ζ(p∗).

Now the conditions of the theorem require that p∗ .z ≤ 0 for all z ∈ ζ(p∗).
Combining this inequality with the definition of the correspondence µ, and
noting that p∗ ∈ µ(z∗) and z∗ ∈ ζ(p∗), we find that

p . z∗ ≤ p∗ . z∗ ≤ 0

for all p ∈ ∆. Applying this result when p is the vertex of ∆ whose ith
component is equal to 1 and whose other components are zero, we find that
(z∗)i ≤ 0 for i = 1, 2, . . . , n, and thus z∗ ≤ 0, as required.

Remark For Theorem 8.10, and its proof, see Gérard Debreu, Theory of
Value (Cowles Foundation Monograph 17, 1959), Section 5.6. In his notes
on Chapter 5 of that monograph, Debreu notes that the result was obtained
and published independently by D. Gale (published 1955) and H. Nikaido
(published 1956). Debreu also thanks A. Borel, P. Samuel and A. Weil for
conversations that he had with them on an early formulation of the result.

Theorem 8.11 Suppose that, in a model of an exchange economy with n
goods and m households, every household receives a strictly positive initial
endowment of every commodity, so that the initial endowment vector xh of
household h satisfies xh >> 0 for h = 1, 2, . . . ,m. Suppose also that the
preferences of household h are determined by a utility function uh that is con-
tinuous, strictly increasing and quasiconcave. Then there exists a normalized
price vector p∗ satisfying p∗ >> 0 and, for each household h, a corresponding
bundle x∗h of commodities that maximizes utility for that household subject to
the affordability constraint p . x∗h ≤ p . xh, so that the total supply is redis-
tributed amongst the households, and thus

m∑
h=1

x∗h =
m∑
h=1

xh.

Proof Let s =
m∑
h=1

xh, and let c ∈ Rn be chosen so that c >> s. Let

∆ =

{
p ∈ Rn : p ≥ 0 and

n∑
i=1

(p)i = 1

}
,
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and, for each household, let ξ̂c,h : ∆ ⇒ Rn
+ be the demand correspondence

that sends each normalized price vector p in ∆ to the set ξ̂c,h(p) of bundles of
commodities that maximize utility for household h subject to the affordability
constraint p∗ . xh ≤ p∗ . xh, and the additional constraint 0 ≤ x ≤ c. Let
the correspondence ξ̂c : ∆ ⇒ Rn

+ be defined so that ξ̂c =
m∑
h=1

ξ̂c,h. Then the

correspondence ξ̂c is upper hemicontinuous and maps each normalized price
vector in ∆ to a non-empty compact convex subset of Rn

+ whose elements x
satisfy p . x ≤ p . s (see Corollary 8.9).

Let the correspondence ζc : ∆→ Rn be defined so that

ζc = {x− s : x ∈ ξ̂c(p)}

for all p ∈ ∆. Then p . z ≤ 0 for all p ∈ ∆ and z ∈ ζ(p). Moreover ζc maps
∆ into the compact set

{z ∈ Rn : −s ≤ z ≤ c− s}.

It then follows from Theorem 8.10 that there exist p∗ ∈ ∆ and z∗ ∈ ζc(p∗)
for which z∗ ≤ 0.

Now z∗ + s ∈ ξ̂c(p∗). It follows from the definition of ξ̂c(p∗). that there
exist x∗h ∈ ξ̂c,h(p∗) for h = 1, 2, . . . , n for which

m∑
h=1

x∗h = z∗ + s. Then
m∑
h=1

x∗h ≤ s, because z∗ ≤ 0. Now x∗h ≥ 0 for h = 1, 2, . . . ,m. It follows that

0 ≤ x∗h ≤ s and therefore x∗h << c for h = 1, 2, . . . ,m.
Now x∗h maximizes the utility function uh on the set Bc,h(p∗), where

Bc,h(p∗) = {x ∈ Rn
+ : 0 ≤ x ≤ c and p∗ . x ≤ p∗ . xh}.

Let
Bh(p∗) = {x ∈ Rn

+ : x ≥ 0 and p∗ . x ≤ p∗ . xh}.

and let
N = {x ∈ Rn : x << c}.

Then the set N is open in Rn, x∗h ∈ N and the maximum value of the utility
function uh for household h on Bh(p∗) ∩ N is achieved at x∗h. It follows
directly from Proposition 8.4 that

p∗ . x∗h = p∗ . xh,

and moreover the maximum value of the utility function uh for household h
on Bh(p∗) is achieved at x∗h.
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Next we note that were it the case that (p∗)i = 0 for some index i between
1 and n then the amount of the ith commodity in the bundle x∗h could be
increased to obtain a bundle x for which x 6= x∗h, x >> xh and p∗ .x = p∗ .x∗h.
But then uh(x) > uh(x∗h), because the utility function uh is strictly increasing,
and thus x∗h would not maximize utility for for household h subject to the
affordability constraint. We conclude therefore that p∗ >> 0.

Finally we note that

s−
m∑
h=1

x∗h ≥ 0

and

p∗ .
(

s−
m∑
h=1

x∗h

)
=

m∑
h=1

p∗ . (xh − x∗h) = 0.

It follows that

s =
m∑
h=1

x∗h.

This completes the proof.

8.9 Walras’s Law
In the exchange economy model under discussion, let p be a price vector
satisfying p >> 0, and let ξh(p) be the set of bundles of commodities maxi-
mizing utility for household h, subject only to the budget constraint requir-
ing that p . x ≤ p . xh for all bundles x available to household h. Then
p . x = p . xh for all x ∈ ξh(p). Summing over all households, we find that
p . x = p . s, for all x ∈ ξ(p), where s denotes the aggregate supply, defined
so that s =

m∑
h=1

xh, and ξ(p) denotes the value of the aggregate demand cor-

respondence at prices p, defined so that ξ =
m∑
h=1

ξh. It follows that p . z = 0

for all z ∈ ζ(p), where ζ denotes the excess demand correspondence, defined
such that

ζ(p) = {x− s : x ∈ ξ(p)}

for all p ∈ ∆ satisfying p >> 0. This property of the excess demand corre-
spondence is often referred to as Walras’s Law.
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8.10 Walrasian Equilibria with Strictly Quasiconcave
Utility

We consider an exchange economy with n commodities and m households,
retaining the notation of the previous discussion. We now consider the situ-
ation in which the utility function of each household is strictly quasiconcave.

Definition A real-valued function u : X → R defined on a convex subset X
of Rn is said to be strictly quasiconcave on X if

u((1− t)x + tx′) > min
(
u(x), u(x′)

)
for all distinct points x and x′ of X and for all real numbers t satisfying
0 < t < 1.

Suppose that, in the exchange economy, the utility function uh of house-
hold h is continuous, strictly increasing and strictly quasiconcave for h =
1, 2, . . . ,m. The utility function of household h cannot then be maximized
at two distinct points of any non-empty compact convex set. Let c be an
n-dimensional vector satisfying c >> 0. Then, given any normalized price
vector p, and given an initial endowment xh for the ith household, there
is a unique bundle of commodities x̂c,h(p) satisfying the budget constraint
p . x̂c,h(p) ≤ p . xh and the total availability constraint x̂c,h(p) ≤ c which
maximizes the utility function for household h for all bundles of commodi-
ties that satisfy the budget constraint and the total availability constraint.
Moreover if x̂c,h(p) << c then p . x̂c,h(p) = p . xh.

The preferences of household h, given normalized prices, given its initial
endowment, and given the upper bounds on the availability of each com-
modity specified by the components of the vector c, therefore determine a
demand function x̂c,h : ∆→ R+

− on the price simplex ∆, where

∆ = {(p1, p2, . . . , pn) ∈ Rn : pi ≥ 0 for i = 1, 2, . . . , n, and
n∑
i=1

pi = 1}.

The results obtained in more generality for demand correspondences, using
Berge’s Maximum Theorem, ensure that this demand function x̂c,h is con-
tinuous on ∆.

Summing the demand functions for the households, and subtracting the
initial endowments, we obtain an excess demand function ẑc : ∆ → Rn on
the price simplex ∆ whose value at normalized prices p specifies the excess
demand for the commodities traded, when each household seeks to purchase
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commodities to maximize its utility, subject to the budget constraint deter-
mined by the prices and its initial endowment, and subject to the availability
constraint that no household can purchase an amount of the ith commodity
exceeding in amount the ith component of the vector c. This excess demand
function on the price simplex ∆ is continuous, and satisfies p . ẑc(p) ≤ 0 for
all p ∈ ∆.

The existence of Walrasian equilibria at which supply at least matches
demand can then be established on the basis of the following proposition,
whose proof makes use of the Brouwer Fixed Point Theorem.

Proposition 8.12 Let

∆ = {(p1, p2, . . . , pn) ∈ Rn : pi ≥ 0 for i = 1, 2, . . . , n, and
n∑
i=1

pi = 1},

let z : ∆→ Rn be a continuous function mapping ∆ into Rn, and let

z(p) = (z1(p), z2(p), . . . , zn(p))

for all p ∈ ∆. Suppose that p . z(p) ≤ 0 for all p ∈ ∆. Then there exists
p∗ ∈ ∆ such that zi(p∗) ≤ 0 for i = 1, 2, . . . , n.

Proof Let v : ∆→ Rn be the function with ith component vi given by

vi(p) =
{
pi + zi(p) if zi(p) > 0;
pi if zi(p) ≤ 0.

Note that v(p) 6= 0 and the components of v(p) are non-negative for all
p ∈ ∆. It follows that there is a well-defined map ϕ : ∆→ ∆ given by

ϕ(p) = 1
n∑
i=1

vi(p)
v(p),

The Brouwer Fixed Point Theorem (Theorem 5.3) ensures that there exists
p∗ ∈ ∆ satisfying ϕ(p∗) = p∗. Then v(p∗) = λp∗ for some λ ≥ 1. We claim
that λ = 1.

Suppose that it were the case that λ > 1. Then vi(p∗) > p∗i , and thus
zi(p∗) > 0 whenever p∗i > 0. But p∗i ≥ 0 for all i, and p∗i > 0 for at least one
value of i, since p∗ ∈ ∆. It would follow that p∗ . z(p∗) > 0, contradicting
the requirement that p . z(p) ≤ 0 for all p ∈ ∆. We conclude that λ = 1,
and thus vi = p∗i and zi(p∗) ≤ 0 for all i, as required.
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8.11 Historical Note
The proof of the existence of Walrasian equilibria in exchange economies can
be generalized to Arrow-Debreu models where economic activity is carried
out by both households and firms. The problem of existence of equilibria was
studied by L. Walras in the 1870s, though a rigorous proof of the existence of
equilibria was not found till the 1930s, when A. Wald proved existence for a
limited range of economic models. Proofs of existence using topological fixed
point theorems such as the Brouwer Fixed Point Theorem or the Kakutani
Fixed Point Theorem were first published in 1954 by K. J. Arrow and G. De-
breu and by L. McKenzie. Subsequent research has centred on problems of
uniqueness and stability, and the existence theorems have been generalized
to economies with an infinite number of commodities and economic agents
(households and firms). An alternative approach to the existence theorems
using techniques of differential topology was pioneered by G. Debreu and by
S. Smale.

More detailed accounts of the theory of ‘general equilibrium’ can be found
in, for example, The theory of value, by G. Debreu, General competitive
analysis, by K. J. Arrow and F. H. Hahn, or Economics for mathematicians
by J. W. S. Cassels.
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