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A Proofs of Basic Results of Real Analysis

Lemma 1.1 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1,x2,x3, . . . of points in Rn converges to p if and only if the ith
components of the elements of this sequence converge to pi for i = 1, 2, . . . , n.

Proof of Lemma 1.1 Let (xj)i denote the ith components of xj. Then
|(xj)i − pi| ≤ |xj − p| for i = 1, 2, . . . , n and for all positive integers j. It
follows directly from the definition of convergence that if xj → p as j → +∞
then (xj)i → pi as j → +∞.

Conversely suppose that, for each integer i between 1 and n, (xj)i →
pi as j → +∞. Let ε > 0 be given. Then there exist positive integers
N1, N2, . . . , Nn such that |(xj)i−pi| < ε/

√
n whenever j ≥ Ni. Let N be the

maximum of N1, N2, . . . , Nn. If j ≥ N then j ≥ Ni for i = 1, 2, . . . , n, and
therefore

|xj − p|2 =
n∑
i=1

((xj)i − pi)2 < n

(
ε√
n

)2

= ε2.

Thus xj → p as j → +∞, as required.

The real number system satisfies the Least Upper Bound Principle:

Any set of real numbers which is non-empty and bounded above
has a least upper bound.

Let S be a set of real numbers which is non-empty and bounded above.
The least upper bound, or supremum, of the set S is denoted by supS, and
is characterized by the following two properties:

(i) x ≤ supS for all x ∈ S;

(ii) if u is a real number, and if x ≤ u for all x ∈ S, then supS ≤ u.

A straightforward application of the Least Upper Bound guarantees that
any set of real numbers that is non-empty and bounded below has a greatest
lower bound, or infimum. The greatest lower bound of such a set S of real
numbers is denoted by inf S.

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly in-
creasing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj
for all positive integers j, non-decreasing if xj+1 ≥ xj for all positive inte-
gers j, non-increasing if xj+1 ≤ xj for all positive integers j. A sequence
satisfying any one of these conditions is said to be monotonic; thus a mono-
tonic sequence is either non-decreasing or non-increasing.
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Theorem A.1 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Principle that
there exists a least upper bound p for the set {xj : j ∈ N}. We claim that
the sequence converges to p.

Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − p| < ε whenever j ≥ N .
Now p − ε is not an upper bound for the set {xj : j ∈ N} (since p is the
least upper bound), and therefore there must exist some positive integer N
such that xN > p − ε. But then p − ε < xj ≤ p whenever j ≥ N , since
the sequence is non-decreasing and bounded above by p. Thus |xj − p| < ε
whenever j ≥ N . Therefore xj → p as j → +∞, as required.

If the sequence x1, x2, x3, . . . is non-increasing and bounded below then
the sequence −x1,−x2,−x3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence x1, x2, x3, . . . is also
convergent.

Theorem A.2 (Bolzano-Weierstrass Theorem in One Dimension) Every
bounded sequence of real numbers has a convergent subsequence.

Proof Let a1, a2, a3, . . . be a bounded sequence of real numbers. We define
a peak index to be a positive integer j with the property that aj ≥ ak for all
positive integers k satisfying k ≥ j. Thus a positive integer j is a peak index
if and only if the jth member of the infinite sequence a1, a2, a3, . . . is greater
than or equal to all succeeding members of the sequence. Let S be the set of
all peak indices. Then

S = {j ∈ N : aj ≥ ak for all k ≥ j}.

First let us suppose that the set S of peak indices is infinite. Arrange the
elements of S in increasing order so that S = {j1, j2, j3, j4, . . .}, where j1 <
j2 < j3 < j4 < · · · . It follows from the definition of peak indices that aj1 ≥
aj2 ≥ aj3 ≥ aj4 ≥ · · · . Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence
of the original sequence a1, a2, a3, . . .. This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem A.1 that
aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original sequence.

Now suppose that the set S of peak indices is finite. Choose a positive
integer j1 which is greater than every peak index. Then j1 is not a peak
index. Therefore there must exist some positive integer j2 satisfying j2 > j1
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such that aj2 > aj1 . Moreover j2 is not a peak index (because j2 is greater
than j1 and j1 in turn is greater than every peak index). Therefore there
must exist some positive integer j3 satisfying j3 > j2 such that aj3 > aj2 . We
can continue in this way to construct (by induction on j) a strictly increasing
subsequence aj1 , aj2 , aj3 , . . . of our original sequence. This increasing subse-
quence is bounded above (since the original sequence is bounded) and thus
is convergent, by Theorem A.1. This completes the proof of the Bolzano-
Weierstrass Theorem.

Theorem 1.2 Every bounded sequence of points in a Euclidean space has a
convergent subsequence.

Proof of Theorem 1.2 The theorem is proved by induction on the dimen-
sion n of the space Rn within which the points reside. When n = 1, the
required result is the one-dimensional case of the Bolzano-Weierstrass The-
orem, and the result has already been established in this case (see Theo-
rem A.2).

When n > 1, the result is proved in dimension n asssuming the result in
dimensions n − 1 and 1. Consequently the result is established successively
in dimensions 2, 3, 4, . . ., and therefore is valid for bounded sequences in Rn

for all positive integers n.
It has been shown that every bounded infinite sequence of real numbers

has a convergent subsequence (Theorem A.2). Let n be an integer greater
than one, and suppose, as an induction hypothesis, that, in cases where n > 2,
all bounded sequences of points in Rn−1 have convergent subsequences. Let
x1,x2,x3, . . . be a bounded infinite sequence in Rn and, for each positive
integer j, let sj denote the point of Rn−1 whose ith component is equal to
the ith component xj,i of xj for each integer i between 1 and n− 1.

Let some strictly positive real number ε be given. Now the infinite se-
quence

s1, s2, s3, . . .

of points of Rn−1 is a bounded infinite sequence. In the case when n = 2 we
can apply the one-dimensional Bolzano-Weierstrass Theorem (Theorem A.2)
to conclude that this sequence of real numbers has a convergent subsequence.
In cases where n > 2, we are supposing as our induction hypothesis that any
bounded sequence in Rn−1 has a convergent subsequence. Thus, assuming
this induction hypothesis in cases where n > 2, we can conclude, in all cases
with n > 1, that the bounded infinite sequence s1, s2, s3, . . . of points in Rn−1

has a convergent subsequence. Let that convergent subsequence be

sm1 , sm2 , sm3 , . . . ,
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where m1,m2,m3, . . . is a strictly increasing infinite sequence of positive in-
tegers, and let q = lim

j→+∞
smj

. There then exists some positive integer L such

that
|smj
− q| < 1

2
ε

for all positive integers j for which mj ≥ L. (Indeed the definition of conver-
gence ensures the existence of a positive integer N that is large enough to
ensure that |smj

− q| < 1
2
ε whenever j ≥ N . Taking L = mN then ensures

that j ≥ N whenever mj ≥ L.)
Let tj denote the nth component of the point xj of Rn for each positive

integer j. The one-dimensional Bolzano-Weierstrass Theorem ensures that
the bounded infinite sequence

tm1 , tm2 , tm3 , . . .

of real numbers has a convergent subsequence. It follows that there is a
strictly increasing infinite sequence k1, k2, k3, . . . of positive integers, where
each kj is equal to one of the positive integers m1,m2,m3, . . ., such that the
infinite sequence

tk1 , tk2 , tk3 , . . .

is convergent. Let r = lim
j→+∞

tkj . There then exists some positive integer M

such that M ≥ L and
|tkj − r| < 1

2
ε

for all positive integers j for which kj ≥M . It follows that if kj ≥M then

|skj − q| < 1
2
ε and |tkj − r| < 1

2
ε.

Now there is a point p of Rn, where p = (p1, p2, . . . , pn), determined so that
the ith components of the point p of Rn is equal to the ith component of
the point q of Rn−1 for each integer i between 1 and n− 1 and also the nth
component of the point p is equal to the real number t.

Also it follows from the definition of the Euclidean norm that

|xkj − p|2 = |skj − q|2 + |tkj − r|2 < 1
2
ε2

whenever kj ≥ M . But then |xkj − p| < ε for all positive integers j for
which kj ≥ M . It follows that lim

j→+∞
xkj = p. We conclude therefore that

the bounded infinite sequence x1,x2,x3, . . . does indeed have a convergent
subsequence. This completes the proof of the Bolzano-Weierstrass Theorem
in dimension n for all positive integers n.
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Lemma 1.3 Let X be a subset of Rn, and let p be a point of X. Then, for
any positive real number r, the open ball BX(p, r) in X of radius r about p
is open in X.

Proof of Lemma 1.3 Let x be an element of BX(p, r). We must show that
there exists some δ > 0 such that BX(x, δ) ⊂ BX(p, r). Let δ = r − |x− p|.
Then δ > 0, since |x− p| < r. Moreover if y ∈ BX(x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r,

by the Triangle Inequality, and hence y ∈ BX(p, r). Thus BX(x, δ) ⊂
BX(p, r). This shows that BX(p, r) is an open set, as required.

Proposition 1.4 Let X be a subset of Rn. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open in X;

(ii) the union of any collection of open sets in X is itself open in X;

(iii) the intersection of any finite collection of open sets in X is itself open
in X.

Proof of Proposition 1.4 The empty set ∅ is an open set by convention.
Moreover the definition of an open set is satisfied trivially by the whole set X.
This proves (i).

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself open in X.
Let x ∈ U . Then x ∈ V for some set V belonging to the collection A. It
follows that there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U ,
and thus BX(x, δ) ⊂ U . This shows that U is open in X. This proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of X that
are open in X, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let x ∈ V . Now x ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(x, δ) ⊂ V .
Thus the intersection V of the sets V1, V2, . . . , Vk is itself open in X. This
proves (iii).

Proposition 1.5 Let X be a subset of Rn, and let U be a subset of X. Then
U is open in X if and only if there exists some open set V in Rn for which
U = V ∩X.
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Proof of Proposition 1.5 First suppose that U = V ∩ X for some open
set V in Rn. Let u ∈ U . Then the definition of open sets in Rn ensures that
there exists some positive real number δ such that

{x ∈ Rn : |x− u| < δ} ⊂ V.

Then
{x ∈ X : |x− u| < δ} ⊂ U.

This shows that U is open in X.
Conversely suppose that the subset U of X is open in X. For each point u

of U there exists some positive real number δu such that

{x ∈ X : |x− u| < δu} ⊂ U.

For each u ∈ U , let B(u, δu) denote the open ball in Rn of radius δu about
the point u, so that

B(u, δu) = {x ∈ Rn : |x− u| < δu}

for all u ∈ U , and let V be the union of all the open balls B(u, δu) as u
ranges over all the points of U . Then V is an open set in Rn. Indeed every
open ball in Rn is an open set (Lemma 1.3), and any union of open sets in
Rn is itself an open set (Proposition 1.4). The set V is a union of open balls.
It is therefore a union of open sets, and so must itself be an open set.

Now B(u, δu) ∩ X ⊂ U . for all u ∈ U . Also every point of V belongs
to B(u, δu) for at least one point u of U . It follows that V ∩ X ⊂ U . But
u ∈ B(u, δu) and B(u, δu) ⊂ V for all u ∈ U , and therefore U ⊂ V , and thus
U ⊂ V ∩X. It follows that U = V ∩X, as required.

Lemma 1.6 A sequence x1,x2,x3, . . . of points in Rn converges to a point p
if and only if, given any open set U which contains p, there exists some
positive integer N such that xj ∈ U for all j satisfying j ≥ N .

Proof of Lemma 1.6 Suppose that the sequence x1,x2,x3, . . . has the
property that, given any open set U which contains p, there exists some pos-
itive integer N such that xj ∈ U whenever j ≥ N . Let ε > 0 be given. The
open ball B(p, ε) of radius ε about p is an open set by Lemma 1.3. Therefore
there exists some positive integer N such that xj ∈ B(p, ε) whenever j ≥ N .
Thus |xj − p| < ε whenever j ≥ N . This shows that the sequence converges
to p.

Conversely, suppose that the sequence x1,x2,x3, . . . converges to p. Let
U be an open set which contains p. Then there exists some ε > 0 such that
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the open ball B(p, ε) of radius ε about p is a subset of U . Thus there exists
some ε > 0 such that U contains all points x of X that satisfy |x − p| < ε.
But there exists some positive integer N with the property that |xj −p| < ε
whenever j ≥ N , since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N , as required.

Lemma 1.8 Let X be a subset of Rn, and let F be a subset of X which is
closed in X. Let x1,x2,x3, . . . be a sequence of points of F which converges
to a point p of X. Then p ∈ F .

Proof of Lemma 1.8 The complement X \F of F in X is open, since F is
closed. Suppose that p were a point belonging to X \F . It would then follow
from Lemma 1.6 that xj ∈ X \F for all values of j greater than some positive
integer N , contradicting the fact that xj ∈ F for all j. This contradiction
shows that p must belong to F , as required.

Lemma 1.9 Let X, Y and Z be subsets of Rm, Rn and Rk respectively, and
let f : X → Y and g : Y → Z be functions satisfying f(X) ⊂ Y . Suppose
that f is continuous at some point p of X and that g is continuous at f(p).
Then the composition function g ◦ f : X → Z is continuous at p.

Proof of Lemma 1.9 Let ε > 0 be given. Then there exists some η > 0
such that |g(y) − g(f(p))| < ε for all y ∈ Y satisfying |y − f(p)| < η. But
then there exists some δ > 0 such that |f(x) − f(p)| < η for all x ∈ X
satisfying |x− p| < δ. It follows that |g(f(x))− g(f(p))| < ε for all x ∈ X
satisfying |x− p| < δ, and thus g ◦ f is continuous at p, as required.

Lemma 1.10 Let X and Y be a subsets of Rm and Rn respectively, and let
f : X → Y be a continuous function from X to Y . Let x1,x2,x3, . . . be a
sequence of points of X which converges to some point p of X. Then the
sequence f(x1), f(x2), f(x3), . . . converges to f(p).

Proof of Lemma 1.10 Let ε > 0 be given. Then there exists some δ > 0
such that |f(x) − f(p)| < ε for all x ∈ X satisfying |x − p| < δ, since the
function f is continuous at p. Also there exists some positive integer N
such that |xj − p| < δ whenever j ≥ N , since the sequence x1,x2,x3, . . .
converges to p. Thus if j ≥ N then |f(xj) − f(p)| < ε. Thus the sequence
f(x1), f(x2), f(x3), . . . converges to f(p), as required.

Proposition 1.9 Let X, Y and Z be subsets of Rm, Rn and Rk respectively,
and let f : X → Y and g : Y → Z be functions satisfying f(X) ⊂ Y . Suppose
that f is continuous at some point p of X and that g is continuous at f(p).
Then the composition function g ◦ f : X → Z is continuous at p.

115



X

Y

p

f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f

xN

f(xN)

Proof of Proposition 1.9 Note that the ith component fi of f is given
by fi = πi ◦ f , where πi : Rn → R is the continuous function which maps
(y1, y2, . . . , yn) ∈ Rn onto its ith coordinate yi. Now any composition of
continuous functions is continuous, by Lemma 1.9. Thus if f is continuous
at p, then so are the components of f .

Conversely suppose that the components of f are continuous at p ∈ X.
Let ε > 0 be given. Then there exist positive real numbers δ1, δ2, . . . , δn such
that |fi(x) − fi(p)| < ε/

√
n for x ∈ X satisfying |x − p| < δi. Let δ be the

minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies |x− p| < δ then

|f(x)− f(p)|2 =
n∑
i=1

|fi(x)− fi(p)|2 < ε2,

and hence |f(x) − f(p)| < ε. Thus the function f is continuous at p, as
required.

Proposition 1.12 Let X be a subset of Rn, and let f : X → R and g : X →
R be continuous functions from X to R. Then the functions f + g, f − g and
f · g are continuous. If in addition g(x) 6= 0 for all x ∈ X then the quotient
function f/g is continuous.

Proof of Proposition 1.12 First we prove that f + g is continuous. Let
some strictly positive real number ε be given. Then there exist strictly pos-
itive real numbers δ1 and δ2 such that |f(x) − f(p)| < 1

2
ε whenever x ∈ X

satisfies |x − p| < δ1 and |g(x) − g(p)| < 1
2
ε whenever x ∈ X satisfies
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|x − p| < δ2. Let δ be the minimum of δ1 and δ2. If x ∈ X satisfies
|x− p| < δ then

|(f + g)(x)− (f + g)(p)| ≤ |f(x)− f(p)|+ |g(x)− g(p)| < 1
2
ε+ 1

2
ε = ε.

Thus the function f + g is continuous at p.
The function −g is also continuous at p, and f − g = f + (−g). It follows

that the function f − g is continuous at p.
Next we prove that f · g is continuous. Let some strictly positive real

number ε be given. There exists some strictly positive real number δ0 such
that |f(x) − f(p)| < 1 and |g(x) − g(p)| < 1 whenever x ∈ X satisfies
|x − p| < δ0. Let M be the maximum of |f(p)| + 1 and |g(p)| + 1. Then
|f(x)| < M and |g(x)| < M whenever x ∈ X satisfies |x− p| < δ0. Now

f(x)g(x)− f(p)g(p) = (f(x)− f(p))g(x) + f(p)(g(x)− g(p)),

and thus

|f(x)g(x)− f(p)g(p)| ≤ M
(
|f(x)− f(p)|+ |g(x)− g(p)|

)
whenever x ∈ X satisfies |x − p| < δ0. There then exists some strictly
positive real number δ, where 0 < δ ≤ δ0, such that

|f(x)− f(p)| < ε

2M
and |g(x)− g(p)| < ε

2M

whenever x ∈ X satisfies |x− p| < δ. But then

|f(x)g(x)− f(p)g(p)| < ε

whenever x ∈ X satisfies |x − p| < δ. Thus the function f · g is continuous
at p.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r : R \ {0} → R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/g is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous.

Lemma 1.13 Let X be a subset of Rm, let f : X → Rn be a continuous
function mapping X into Rn, and let |f | : X → R be defined such that
|f |(x) = |f(x)| for all x ∈ X. Then the real-valued function |f | is con-
tinuous on X.
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Proof of Lemma 1.13 Let x and p be elements of X. Then

|f(x)| = |(f(x)− f(p)) + f(p)| ≤ |f(x)− f(p)|+ |f(p)|

and
|f(p)| = |(f(p)− f(x)) + f(x)| ≤ |f(x)− f(p)|+ |f(x)|,

and therefore ∣∣∣|f(x)| − |f(p)|
∣∣∣ ≤ |f(x)− f(p)|.

The result now follows from the definition of continuity, using the above
inequality. Indeed let p be a point of X, and let some positive real number ε
be given. Then there exists a positive real number δ small enough to ensure
that |f(x)− f(p)| < ε for all x ∈ X satisfying |x− p| < δ. But then∣∣∣|f(x)| − |f(p)|

∣∣∣ ≤ |f(x)− f(p)| < ε

for all x ∈ X satisfying |x− p| < δ, and thus the function |f | is continuous,
as required.

Proposition 1.14 Let X and Y be subsets of Rm and Rn, and let f : X → Y
be a function from X to Y . The function f is continuous if and only if f−1(V )
is open in X for every open subset V of Y .

Proof of Proposition 1.14 Suppose that f : X → Y is continuous. Let
V be an open set in Y . We must show that f−1(V ) is open in X. Let
p ∈ f−1(V ). Then f(p) ∈ V . But V is open, hence there exists some
ε > 0 with the property that BY (f(p), ε) ⊂ V . But f is continuous at p.
Therefore there exists some δ > 0 such that f maps BX(p, δ) into BY (f(p), ε)
(see the remarks above). Thus f(x) ∈ V for all x ∈ BX(p, δ), showing that
BX(p, δ) ⊂ f−1(V ). This shows that f−1(V ) is open in X for every open
set V in Y .

Conversely suppose that f : X → Y is a function with the property that
f−1(V ) is open in X for every open set V in Y . Let p ∈ X. We must
show that f is continuous at p. Let ε > 0 be given. Then BY (f(p), ε) is
an open set in Y , by Lemma 1.3, hence f−1 (BY (f(p), ε)) is an open set
in X which contains p. It follows that there exists some δ > 0 such that
BX(p, δ) ⊂ f−1 (BY (f(p), ε)). Thus, given any ε > 0, there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε). We conclude that f is
continuous at p, as required.

Corollary 1.15 Let X and Y be subsets of Rn and Rm respectively, and let
ϕ : X → Y be a continuous function from X to Y . Then ϕ−1(F ) is closed
in X for every subset F of Y that is closed in Y .
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X

Yp

f(p)

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))
V

f−1(V )

f

X

Yp

f(p)

f−1(BY (f(p), ε))

BX(p, δ)

BY (f(p), ε)

f(BX(p, δ))

f
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Proof of Corollary 1.15 Let F be a subset of Y that is closed in Y , and
let let V = Y \ F . Then V is open in Y . It follows from Proposition 1.14
that ϕ−1(V ) is open in X. But

ϕ−1(V ) = ϕ−1(Y \ F ) = X \ ϕ−1(F ).

Indeed let x ∈ X. Then

x ∈ ϕ−1(V )

⇐⇒ x ∈ ϕ−1(Y \ F )

⇐⇒ ϕ(x) ∈ Y \ F
⇐⇒ ϕ(x) 6∈ F
⇐⇒ x 6∈ ϕ−1(F )

⇐⇒ x ∈ X \ ϕ−1(F ).

It follows that the complement X \ϕ−1(F ) of ϕ−1(F ) in X is open in X, and
therefore ϕ−1(F ) itself is closed in X, as required.

Lemma 1.16 Let X be a closed subset of n-dimensional Euclidean space Rn.
Then a subset of X is closed in X if and only if it is closed in Rn.

Proof of Lemma 1.16 Let F be a subset of X. Then F is closed in X if
and only if, given any point p of X for which p 6∈ F , there exists some strictly
positive real number δ such that there is no point of F whose distance from
the point p is less than δ. It follows easily from this that is F is closed in Rn

then F is closed in X.
Conversely suppose that F is closed in X, where X itself is closed in Rn.

Let p be a point of Rn that satisfies p 6∈ F . Then either p ∈ X or p 6∈ X.
Suppose that p ∈ X. Then there exists some strictly positive real num-

ber δ such that there is no point of F whose distance from the point p is less
than δ.

Otherwise p 6∈ X. Then there exists some strictly positive real number δ
such that there is no point of X whose distance from the point p is less than
δ, because X is closed in Rn. But F ⊂ X. It follows that there is no point
of F whose distance from the point p is less than δ. We conclude that the
set F is closed in Rn, as required.

Lemma A.3 Let X be a closed bounded set in Rm, and let f : X → R be a
continuous real-valued function defined on X. Suppose that the set of values
of the function f on X is bounded below. Then there exists a point u of X
such that f(u) ≤ f(x) for all x ∈ X.
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Proof Let
m = inf{f(x) : x ∈ X}.

Then there exists an infinite sequence x1,x2,x3, . . . in X such that

f(xj) < m+
1

j

for all positive integers j. It follows from the multidimensional Bolzano-
Weierstrass Theorem (Theorem 1.2) that this sequence has a subsequence
xk1 ,xk2 ,xk3 , . . . which converges to some point u of Rm.

Now the point u belongs to X because X is closed (see Lemma 1.8). Also

m ≤ f(xkj) < m+
1

kj

for all positive integers j. It follows that lim
j→+∞

f(xkj) = m. Consequently

f(u) = f

(
lim

j→+∞
xkj

)
= lim

j→+∞
f(xkj) = m

(see Proposition 1.10). It follows therefore that f(x) ≥ f(u) for all x ∈ X,
Thus the function f attains a minimum value at the point u of X, which is
what we were required to prove.

Lemma A.4 Let X be a closed bounded set in Rm, and let ϕ : X → Rn be
a continuous function mapping X into Rn. Then there exists a positive real
number M with the property that |ϕ(x)| ≤M for all x ∈ X.

Proof Let g : X → R be defined such that

g(x) =
1

1 + |ϕ(x)|

for all x ∈ X. Now the real-valued function mapping each x ∈ X to |ϕ(x)| is
continuous (see Lemma 1.13) and quotients of continuous real-valued func-
tions are continuous where they are defined (see Lemma 1.12). It follows that
the function g : X → R is continuous. Moreover the values of this function
are bounded below by zero. Consequently there exists some point w of X
with the property that g(x) ≥ g(w) for all x ∈ X (see Lemma A.3). Let
M = |ϕ(w)|. Then |ϕ(x)| ≤M for all x ∈ X. The result follows.

Theorem 1.17 Let X be a closed bounded set in Rm, and let f : X → R be
a continuous real-valued function defined on X. Then there exist points u
and v of X such that f(u) ≤ f(x) ≤ f(v) for all x ∈ X.
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Proof of Theorem 1.17 It follows from Lemma A.4 that there exists pos-
itive real number M with the property that −M ≤ f(x) ≤M for all x ∈ X.
Thus the set of values of the function f is bounded above and below on X.
Consequently there exist points u and v where the functions f and −f re-
spectively attain their minimum values on the set X (see Lemma A.3). The
result follows.
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B Alternative Proofs of Results concerning

Correspondences

Proof of Proposition 2.9 using the Bolzano-Weierstrass Theorem
Suppose that the proposition were false. Then there would exist infinite se-
quences x1,x2,x3, . . . and w1,w2,w3, . . . such that xj ∈ K, wj ∈ X \ V and
|wj − xj| < 1/j for all positive integers j. The set K is both closed and
bounded in Rn. The multidimensional Bolzano-Weierstrass Theorem (Theo-
rem 1.2) would then ensure the existence of a subsequence xk1 ,xk2 ,xk3 , . . . of
x1,x2,x3, . . . converging to some point q of K. Moreover lim

j→+∞
(wj−xj) = 0,

and therefore
lim
j→∞

wkj = lim
j→∞

xkj = q.

But wj ∈ X \ V . Moreover X \ V is closed in X, and therefore any
sequence of points in X \ V that converges in X must converge to a point of
X \V (see Lemma 1.8). It would therefore follow that q ∈ K ∩ (X \V ). But
this is impossible, because K ⊂ V and therefore K ∩ (X \ V ) = ∅. Thus a
contradiction would follow were the proposition false. The result follows.

Proof of Proposition 2.9 using the Heine-Borel Theorem It follows
from the multidimensional Heine-Borel Theorem (Theorem 1.21) that the
set K is compact, and thus every open cover of K has a finite subcover.
Given point x of K let εx be a positive real number with the property that

BX(x, 2εx) ⊂ V,

where
BX(x, r) = {x′ ∈ X : |x′ − x| < r}

for all positive integers r. The collection of open balls BX(x, εx) determined
by the points x of K covers K. By compactness this open cover of K has a
finite subcover. Therefore there exist points x1,x2, . . . ,xk of K such that

K ⊂ B(x1, εx1) ∪B(x2, εx2) ∪ · · · ∪B(xk, εxk
).

Let ε be the minimum of εx1 , εx2 , . . . , εxk
. If x is a point of K then x ∈

BX(xj, εxj
for some integer j between 1 and k. But it then follows from the

Triangle Inequality that

B(x, ε) ⊂ BX(xj, 2εxj
) ⊂ V.

It follows from this that
BX(K, ε) ⊂ V,

as required.
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Proof of Proposition 2.12 using the Bolzano-Weierstrass Theorem
Let V be a subset of Y that is open in Y , and let p be a point of X for which
Φ(p) ⊂ V . Let F = Y \ V . Then the set F is a subset of Y that is closed in
Y , and Φ(p) ∩ F = ∅. Now Y is a closed bounded subset of Rm, because it
is compact (Theorem 1.21). It follows that F is closed in Rm (Lemma 1.16).

Suppose that there did not exist any positive number δ such that Φ(x) ⊂
V for all x ∈ X satisfying |x − p| < δ. Then there would exist an infinite
sequence x1,x2,x3, . . . of points of X converging to the point p with the
property that Φ(xj)∩F 6= ∅ for all positive integers j. There would then exist
an infinite sequence y1,y2,y3, . . . of elements of Y such that yj ∈ Φ(xj)∩ F
for all positive integers j. Then (xj,yj) ∈ Graph(Φ) for all positive integers j.
Moreover the infinite sequence y1,y2,y3, . . . would be bounded, because the
set Y is bounded.

It would therefore follow from the multidimensional Bolzano-Weierstrass
Theorem (Theorem 1.2) that there would exist a convergent subsequence

yk1 ,yk2 ,yk3 , . . .

of the sequence y1,y2,y3, . . .. Let q = lim
j→+∞

ykj . Then q ∈ F , because the

set F is closed in Y and ykj ∈ F for all positive integers j (see Lemma 1.8).
Similarly (p,q) ∈ Graph(Φ), because the set Graph(Φ) is closed in X × Y ,
(xkj ,ykj) ∈ Graph(Φ) for all positive integers j, and

(p,q) = lim
j→+∞

(xkj ,ykj).

But were there to exist (p,q) ∈ X × Y for which q ∈ F and (p,q) ∈
Graph(Φ), it would follow that q ∈ Φ(p)∩F . But this is impossible, because
Φ(p) ∩ F = ∅. Thus a contradiction would arise were there to exist an
infinite sequence x1,x2,x3, . . . of points of X for which Φ(xj) ∩ F 6= ∅ and
lim

j→+∞
xj = p. Therefore no such infinite sequence can exist, and therefore

there must exist some positive real number δ such that Φ(x) ⊂ V whenever
x ∈ X satisfies |x− p| < δ. We conclude that

{x ∈ X : Φ(x) ⊂ V }

is open in X. The result follows.

Proof of Proposition 2.18 using Proposition 2.10 Let

W = {x ∈ X : (x,y) ∈ U for all y ∈ Φ(x)},
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and let p ∈ W . If Φ(p) = ∅ then it follows from Lemma 2.14 that there exists
some positive real number δ such that Φ(x) = ∅ for all x ∈ X satisfying
|x− p| < δ. Then x ∈ W for all x ∈ X satisfying |x− p| < δ.

Suppose that Φ(p) 6= 0. Let K = Φ(p). Then K is a compact subset
of Y , because the correspondence Φ is compact-valued. Also (p,y) ∈ U for
all y ∈ K. It follows from Proposition 2.10 that there exists some positive
real number δ1 such that (x,y) ∈ U for all x ∈ X and y ∈ Y satisfying
|x− p| < δ1 and dY (y, K) < δ1, where

dY (y, K) = inf{|y − z| : z ∈ K}.

Let
V = {y ∈ Y : dY (y, K) < δ1}.

Then V is open in Y because the function sending y ∈ Y to d(y, K) is
continuous on Y (see Lemma 2.8). Also Φ(p) ⊂ V . It follows from the
upper hemicontinuity of the correspondence Φ that there exists some positive
number δ2 such that Φ(x) ⊂ V whenever |x−p| < δ2. Let δ be the minimum
of δ1 and δ2. If x ∈ X satisfies |x − p| < δ then Φ(x) ⊂ V . But then
d(y, K) < δ1 for all y ∈ Φ(x). Moreover |x − p| < δ1. It follows that
(x,y) ∈ U for all y ∈ Φ(x), and therefore x ∈ W . This shows that W is an
open subset of X, as required.

Proof of Proposition 2.18 using the Heine-Borel Theorem
Let Φ: X → Y be a compact-valued upper hemicontinuous correspondence,
and let U be a subset of X × Y that is open in X × Y . Let

W = {x ∈ X : (x,y) ∈ U for all y ∈ Φ(x)}.

We must prove that W is open in X.
Let K = Φ(p). Then, given any point y of K, there exists an open

set Mp,y in X and an open set Vp,y in Y such that Mp,y × Vp,y ⊂ U (see
Lemma 2.5). Now every open cover of K has a finite subcover, because K is
compact. Therefore there exist points y1,y2, . . . ,yk of K such that

K ⊂ Vp,y1 ∪ Vp,y2 ∪ · · · ∪ Vp,yk
.

Let
Mp = Mp,y1 ∩Mp,y2 ∩ · · · ∩Mp,yk

and
Vp = Vp,y1 ∪ Vp,y2 ∪ · · · ∪ Vp,yk

.
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Then

Mp × Vp ⊂
k⋃
j=1

(Mp × Vp,yj
) ⊂

k⋃
j=1

(Mp,yj
× Vp,yj

) ⊂ U.

Now Mp is open in X, because it is the intersection of a finite number of
subsets of X that are open in X. Also it follows from the upper hemiconti-
nuity of the correspondence Φ that Φ+(Vp) is open in X, where

Φ+(Vp) = {x ∈ X : Φ(x) ⊂ Vp}

(see Lemma 2.1). Let Np = Mp∩Φ+(Vp). Then Np is open in X and p ∈ Np.
Now if x ∈ Np then x ∈Mp and Φ(x) ⊂ Vp, and therefore (x,y) ∈ U for all
y ∈ Φ(x). We have thus shown that Np ⊂ W for all p ∈ W , where

W = {x ∈ X : (x,y) ∈ U for all y ∈ Φ(x)}.

Thus W is the union of the subsets Np as p ranges over the points of
W . Moreover the set Np is open in X for each p ∈ W . It follows that W
must itself be open in X. Indeed, given any point p of W , there exists some
positive real number δ such that

{x ∈ X : |x− p| < δ} ⊂ Np ⊂ W.

The result follows.

Remark The various proofs of Proposition 2.18 were presented in the con-
texts of correspondences between subsets of Eucldean spaces. All these proofs
generalize easily so as to apply to correspondence between subsets of metric
spaces. The last of the proofs can be generalized without difficulty so as to
apply to correspondences between topological spaces. Inded the notion of
correspondences between topological spaces is defined so that a correspon-
dence Φ: X ⇒ Y between topological spaces X and Y associates to each
point of X a subset Φ(x) of Y . Such a correspondence is said to be upper
hemicontinuous at a point p of X if, given any open subset V of Y for which
Φ(p) ⊂ V , there exists an open set N(p) in X such that Φ(x) ⊂ V for all
x ∈ N .

The proof of Proposition 2.18 using the Heine-Borel Theorem presented
above can be generalized to show that, given a compact-valued correspon-
dence Φ: X ⇒ Y between topological spaces X and Y , and given a subset U
of Y , the set

{x ∈ X : (x, y) ∈ U for all y ∈ Φ(x)}

is open in X.
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We describe another proof of the Berge Maximum Theorem using the
characterization of compact-valued upper hemicontinuous correspondences
using sequences established in Proposition 2.17 and the characterization of
lower hemicontinuous correspondences using sequences established in Propo-
sition 2.19. First we introduce some terminology.

Definition Let X and Y be subsets of Rn and Rm respectively, and let
Φ: X ⇒ Y be a correspondence from X to Y . Let (xj : j ∈ N) be a sequence
of points of the domain X of the correspondence. We say that an infinite
sequence (yj : j ∈ N) in the codomain of the correspondence is a companion
sequence for (xj) with respect to the correspondence Φ if yj ∈ Φ(xj) for all
positive integers j.

Let X and Y be subsets of Rn and Rm respectively, and let Φ: X ⇒ Y be
a correspondence from X to Y . Then the continuity properties of Φ: X ⇒ Y
can be characterized in terms of companion sequences with respect to Φ as
follows:—

• the correspondence Φ: X ⇒ Y is compact-valued and upper hemicon-
tinuous at a point p of X if and only if, given any infinite sequence
(xj : j ∈ N) in X converging to the point p, and given any companion
sequence (yj : j ∈ N) in Y , that companion sequence has a subsequence
that converges to a point of Φ(p) (Proposition 2.17);

• the correspondence Φ: X ⇒ Y is lower hemicontinuous at a point p
of X if and only if, given any infinite sequence (xj : j ∈ N) in X
converging to the point p, and given any point q of Φ(p), there exists
a companion sequence (yj : j ∈ N) in Y converging to the point q.
(Proposition 2.19).

Proof of Theorem 2.23 using Companion Sequences Let X and Y be
subsets of Rn and Rm respectively, let f : X × Y → R be a continuous real-
valued function on X × Y , and let Φ: X ⇒ Y be a correspondence from
X to Y that is both upper and lower hemicontinuous and that also has the
property that Φ(x) is non-empty and compact for all x ∈ X. Let

m(x) = sup{f(x,y) : y ∈ Φ(x)}

for all x ∈ X, and let the correspondence M : X ⇒ Y be defined such that

M(x) = {y ∈ Φ(x) : f(x,y) = m(x)}
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for all x ∈ X. We must prove that m : X → R is continuous, M(x) is
a non-empty compact subset of Y for all x ∈ X, and the correspondence
M : X ⇒ Y is upper hemicontinuous.

It follows from the continuity of f : X × Y → R that M(x) is closed
in Φ(x) for all x ∈ X. It also follows from the Extreme Value Theorem
(Theorem 1.17) that M(x) is non-empty for all x.

Let (xj, j ∈ N) be a sequence in X which converges to a point p of X,
and let (y∗j : j ∈ N) be a companion sequence of (xj) with respect to the
correspondence M . Then, for each positive integer j, y∗j ∈ Φ(xj) and

f(xj,y
∗
j ) ≥ f(xj,y)

for all y ∈ Φ(xj). Now the correspondence Φ is compact-valued and upper
hemicontinuous. It follows from Proposition 2.17 that there exists a subse-
quence of (y∗j : j ∈ N) that converges to an element q of Φ(q). Let that
subsequence be the sequence (y∗kj : j ∈ N) whose members are

y∗k1 ,y
∗
k2
,y∗k3 , . . . ,

where k1 < k2 < k3 < · · · . Then q = lim
j→+∞

y∗kj .

We show that q ∈ M(p). Let r ∈ Φ(p). The correspondence Φ: X → Y
is lower hemicontinuous. It follows that there exists a companion sequence
(zj : j ∈ N) to (xj : j ∈ N) with respect to the correspondence Φ that
converges to r (Proposition 2.19). Then

lim
j→+∞

y∗kj = q and lim
j→+∞

zkj = r.

It follows from the continuity of f : X × Y → R that

lim
j→+∞

f(xkj ,y
∗
kj

) = f(p,q) and lim
j→+∞

f(xkj , zkj) = f(p, r).

Now
f(xkj ,y

∗
kj

) ≥ f(xkj , zkj)

for all positive integers j, because y∗kj ∈M(xkj). It follows that

f(p,q) = lim
j→+∞

f(xkj ,y
∗
kj

) ≥ lim
j→+∞

f(xkj , zkj) = f(p, r).

Thus f(p,q) ≥ f(p, r) for all r ∈ Φ(p). It follows that q ∈M(p).
We have now shown that, given any sequence (xj : j ∈ R) in X converging

to the point p, and given any companion sequence (y∗j : j ∈ R) with respect
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to the correspondence M , there exists a subsequence of (y∗j : j ∈ R) that con-
verges to a point of M(x). It follows that the correspondence M : X → Y is
compact-valued and upper hemicontinuous at the point p (Proposition 2.17).

It remains to show that the function m : X → R is continuous at the
point p, where m(x) = f(x,y∗) for all x ∈ X and y∗ ∈ M(x). Let (xj : j ∈
R) be an infinite sequence converging to the point p, and let vj = m(xj) for all
positive integers j. Then there exists an infinite sequence Let (y∗j : j ∈ R) in
Y that is a companion sequence to (xj) with respect to the correspondenceM .
Then y∗j ∈M(xj) and therefore vj = f(xj,y

∗
j ) for all positive integers j. Now

the correspondence M : X ⇒ Y has been shown to be compact-valued and
upper hemicontinuous. There therefore exists a subsequence (y∗kj : j ∈ N) of

(yj) that converges to a point q of M(p). It then follows from the continuity
of the function f : X × Y → R that

lim
j→+∞

m(xkj) = lim
j→+∞

vkj = lim
j→+∞

f(xkj ,y
∗
kj

) = f(p,q) = m(p).

Now the result just proved can be applied with any subsequence of (xj :
j ∈ N) in place of the original sequence. It follows that every subsequence of
of (vj : j ∈ R) itself has a subsequence that converges to m(p).

Let some positive real number ε be given. Suppose that there did not
exist any positive integer N with the property that |vj−m(p)| < ε whenever
j ≥ N . Then there would exist infinitely many positive integers j for which
|vj −m(p)| ≥ ε. It follows that there would exist some subsequence

vl1 , vl2 , vl3 , . . .

of v1, v2, v3, . . . with the property that |vlj − m(p)| ≥ ε for all positive in-
tegers j. This subsequence would not in turn contain any subsequences
converging to the point m(p).

But we have shown that every subsequence of (vj : j ∈ N) contains
a subsequence converging to m(p). It follows that there must exist some
positive integer N with the property that |vj −m(p)| < ε whenever j ≥ N .
We conclude from this that lim

j→+∞
m(xj) = m(p).

We have shown that if (xj : j ∈ N) is an infinite sequence in X and
if lim

j→+∞
xj = p then lim

j→+∞
m(xj) = m(p). It follows that the function

m : X → R is continuous at p. This completes the proof of Berge’s Maximum
Theorem.
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C Historical Note on Berge’s Maximum The-

orem

In 1959, the French mathematician Claude Berge published a book entitled
Espaces topologiques: fonctions multivoques (Dunod, Paris, 1959). This book
was subsequently translated into English by E.M. Patterson, and the trans-
lation was published with the title Topological spaces, including a treatment
of multi-valued functions, vector spaces and convexity (Oliver and Boyd, Ed-
inburgh and London, 1963).

Claude Berge had completed his Ph.D. at the University of Paris in 1953,
supervised by the differential geometer and mathematical physicist André
Lichnerowicz. His thesis was entitled Sur une théorie ensembliste des jeux
alternatifs, and a paper of that name was published by him (J. Math. Pures
Appl. 32 (1953), 129–184). He subsequently published Théorie Générale des
Jeux à N Personnes (Gauthier Villars, Paris, 1957). The title translates as
“General theory of n-person games”.

Claude Berge was Professor at the Institute of Statistics at the Univer-
sity of Paris from 1957 to 1964, and subsequently directed the International
Computing Center in Rome. Following his early work in game theory, his
research developed in the fields of combinatorics and graph theory.

The preface of the 1959 book, Espaces topologiques: fonctions multivo-
ques, includes a passage translated by E.M. Patterson as follows:—

In Set Topology, with which we are concerned in this book,
we study sets in topological spaces and topological vector spaces;
whenever these sets are colletions of n-tuples or classes of func-
tions, we recover well-known results of classical analysis.

But the role of topology does not stop there; the majority
of text-books seem to ignore certain problems posed by the cal-
culus of probabilities, the decision functions of statistics, linear
programming, cybernetics, economics; thus, in order to provide
a topological tool which is of equal interest to the student of
pure mathematics and the student of applied mathematics, we
have felt it desirable to include a systematic devcelopment of the
properties of multi-valued functions.

The following theorem is included in Espaces topologiques by Claude
Berge (Chapter 6, Section 3, page 122):—

Théorème du maximum. — Si ϕ(y) est une fonction
numérique continue dans Y , et si Γ est un application continue
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de X dans Y telle que Γx 6= ∅ pour tout x,

M(x) = max{ϕ(y)/y ∈ Γx}

est une fonction numérique continue dans X, et

Φx = {y/y ∈ Γx, ϕ(y) = M(x)}

est une application u.s.c. de X dans Y .

This theorem is translated by E.M. Patterson as follows (Topological
Spaces, Claude Berge, translated by E.M. Patterson, Oliver and Boyd, Ed-
inburgh, 1963, in Chapter 6, Section 3, page 116):—

Maximum Theorem — If ϕ is a continuous numerical func-
tion in Y and Γ is a continuous mapping of X into Y such that,
for each x, Γx 6= ∅, then the numerical function M defined by

M(x) = max{ϕ(y)/y ∈ Γx}

is continuous in X and the mapping Φ defined by

Φx = {y/y ∈ Γx, ϕ(y) = M(x)}

is an u.s.c. mapping of X into Y .

In this context X and Y are Hausdorff topological spaces. Indeed in
Chapter 4, Section 5 of Espaces topologiques, Berge introduces the concept
of a separated (or Hausdorff ) space and then, after some discussion of sep-
aration properties, makes that statement translated by E.M. Patterson as
follows:—

In what follows all the topological spaces which we consider
will be assumed to be separated.

It seems that, in the original statement, the objective function ϕ was
required to be a continuous function on Y , but the first sentence of the
proof of the “Maximum Theorem” notes that ϕ is continuous on X × Y . A
“mapping” in Berge is a correspondence. A mapping (or correspondence)
is said by Berge to be “upper semi-continuous” when it is both compact-
valued and upper hemicontinuous; a mapping is said by Berge to be “lower
semi-continuous” when it is lower hemicontinuous.

Berge’s proof of the Théorème du maximum is just one short paragraph,
but requires the work of earlier theorems. We discuss his proof using the
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terminology adopted in these lectures. In Theorem 1 of Chapter 6, Section
4, Berge shows that if the correpondence Γ: X ⇒ Y is compact-valued and
upper hemicontinuous then, given any point x0 of X, and given any posi-
tive real number ε, the function M(x) equal to the maximum value of the
objective function φ on Γ(x) satisfies M(x) ≤ M(x0) + ε throughout some
open neighbourhood of the point x0. (This result can be compared with
Lemma 2.21 and the first proof of Theorem 2.23 presented in these notes.)
In Theorem 2 of Chapter 6, Section 4, Berge shows that if the correspon-
dence Γ is lower hemicontinuous then, given any point x0 of X, and given
any positive real number ε, the function M(x) equal to the maximum value
of the objective function φ on Γ(x) satisfies M(x) ≥ M(x0) − ε throughout
some open neighbourhood of the point x0.

(This result can be compared with Lemma 2.22 and the first proof of
Theorem 2.23 presented in these notes.) These two results ensure that if Γ
is compact-valued, everywhere non-empty and both upper and lower hemi-
continuous then the function function M is continuous on X. In Theo-
rem 7 of Chapter 6, Section 1, Berge had proved that the intersection of a
compact-valued upper hemicontinuous correspondence and a correspondence
with closed graph is compact valued and upper hemicontinuous (see Propo-
sition 2.20 of these notes). Berge completes the proof of the Théorème du
maximum by putting these results together in a fashion to obtain a proof
(in the contexts of correspondences between Hausdorff topological spaces)
similar in structure to the first proof of Theorem 2.23 presented in these
notes.

The definitions of “upper-semicontinuous” and “lower-semicontinuous”
mappings (i.e., correspondences) Given by Claude Berge at the beginning of
Chapter VI are accompanied by a footnote translated by E.M. Patterson as
follows (C. Berge, translated E.M. Patterson, Topological Spaces, loc. cit.,
p. 109):—

The two kinds of semi-continuity of a multivalued function
were introduced independently by Kuratowski (Fund. Math. 18,
1932, p.148) and Bouligand (Ens. Math., 1932, p. 14). In gen-
eral, the definitions given by different authors do not coincide
whenever we deal with non-compact spaces (at least for upper
semi-continuity, which is the more important from the point of
view of applications). The definitions adopted here, which we
have developed elsewhere (C. Berge, Mém. Sc. Math. 138), en-
able us to include the case when the image of a point x can be
empty.

In 1959, the year in which Claude Berge published Espaces topologiques,
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Gérard Debreu published his influential monograph Theory of value: an ax-
iomatic analysis of economic equilibrium (Cowles Foundation Monographs
17, 1959). Section 1.8 of Debreu’s monograph discusses “continuous cor-
respondences”, developing the theory of correspondences ϕ from S to T ,
where S is a subset of Rm and T is a compact subset of Rn. Debreu also
requires correspondences to be non-empty-valued. In consequence of these
conventions, closed-valued correspondences from S to T must necessarily be
compact-valued. Also a correspondence from S to T is upper hemicontinuous
if and only if its graph is closed (see Propositions 2.11 2.12 of these notes).

In the notes to Chapter 1 of the Theory of Value, Debreu notes that
“a study of the continuity of correspondences from a topological space to a
topological space will be found in C. Berge [1], Chapter 6”. The reference is
to Espace Topologiques.

According to Debreu, the correspondence ϕ is upper semicontinuous at
the point x0 if the following condition is satisfied:

“xq → x0, yq ∈ ϕ(xq), yq → y0” implies “y0 ∈ ϕ(x0)”.

This condition is satisfied at each point of the domain of a correspondence if
and only if that correspondence has closed graph. Thus Debreu’s definition
is in accordance with the definition of upper hemicontinuity for those cor-
respondences, and only those correspondences, where the codomain of the
correspondence is a compact subset of a Euclidean space. Indeed Debreu
notes the following in Section 1.8 of the Theory of Value:—

“(1) The correspondence ϕ is upper semicontinuous on S if and
only if its graph is closed in S × T .”

Again according to Debreu, the correspondence ϕ is lower semicontinuous
at the point x0 if the following condition is satisfied:

“xq → x0, y0 ∈ ϕ(x0)” implies “there is (yq) such that yq ∈
ϕ(xq), yq → y0”.

This condition is satisfied at each point of the domain of a correspondence if
and only if that correspondence is lower hemicontinuous (in accordance with
the definitions adopted in those notes, see Proposition 2.19 of these notes).

A correspondence from S to T is said by Debreu to be continuous if
it is both upper semicontinuous and lower semicontinuous according to his
definitions.

Debreu discusses Berge’s Maximum Theorem, in the context of a corre-
spondence ϕ from a subset S of Rm to a compact subset T of Rn, as follows
(Theory of Value, Section 1.8, page 19):—
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The interest of these concepts for economics lies, in particular,
in the interpretations of an element x of S as the environment of
a certain agent, of T as the set of actions a priori available to
him, and of ϕ(x) (assumed here to be closed for every x in S)
as the subset of T to which his choice is actually restricted by
the environment x. Let f be a continuous real-valued function
on S × T , and interpret f(x, y) as the gain for that agent when
his environment is x and his action y. Given x, one is interested
in the elements of ϕ(x) which maximize f (now a function of y
alone) on ϕ(x); they form a set µ(x). What can be said about
the continuity of the correspondence µ from S to T?

One is also interested in g(x), the value of the maximum of f
on φ(x) for a given x. What can be said about the continuity of
the real-valued function g on S? An answer to these two questions
is given by the following result (the proof of the continuity of g
should not be attempted).
(4) If f is continuous on S × T , and if ϕ is continuous at x ∈ S,
then µ is upper semicontinuous at x, and g is continuous on x.

The book Infinite dimensional analysis: a hitchhiker’s guide by Char-
alambos D. Aliprantis and Kim C. Border (2nd edition, Springer-Verlag,
1999) discusses the theory of continuous correspondences between topologi-
cal spaces (Chapter 16). Berge’s Maximum Theorem is stated and proved,
in the context of correspondences between topological spaces, as Theorem
16.31 (p. 539). The definitions of upper hemicontinuity and lower hemiconti-
nuity for correspondences are consistent with the definitions adopted in these
lecture notes. These definitions are accompanied by the following footnote:—

J. C. Moore [. . . ] identifies five slightly different definitions of
upper semicontinuity in use by economists, and points out some
of the differences for compositions, etc. T. Ichiishi [. . . ] and
E. Klein and A. C. Thompson [. . . ] also give other notions of
continuity.

The book Mathematical Methods and Models for Economists by Angel de
la Fuente (Cambridge University Press, 2000) includes a section on continuity
of correspondences between subsets of Euclidean spaces (Chapter 2, Section
11). The definitions of upper and lower hemicontinuity adopted there are
consistent with those given in these lecture notes. The sequential character-
ization of compact-valued upper hemicontinuous correspondences in terms
of companion sequences (Proposition 2.17 of these lecture notes) is stated
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and proved as Theorem 11.2 of Chapter 2 of Angel de la Fuente’s textbook.
Similarly the sequencial characterization of lower hemicontinuous correspon-
dences in terms of companion sequences Proposition 2.19 is stated and proved
as Theorem 11.3 of that textbook.

Theorem 11.6 in Chapter 2 of that textbook covers the result that a
closed-valued upper hemicontinuous correspondence has a closed graph (see
Proposition 2.11) and the result that a correspondence with closed graph
whose codomain is compact is upper hemicontinuous (see Proposition 2.12).
The result that the intersection of a compact-valued upper hemicontinuous
correspondence and a correspondence with closed graph is compact-valued
and upper hemicontinuous (see Proposition 2.20) is Theorem 11.7 in Chap-
ter 2 of the textbook by Angel de la Fuente. Berge’s Maximal Theorem is
Theorem 2.1 in Chapter 7 of that textbook. The proof is based on the use of
the sequential characterizations of upper and lower hemicontinuity in terms
of existence and properties of companion sequences.
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D Further Results Concerning Barycentric Sub-

division

D.1 The Barycentric Subdivision of a Simplex

Proposition D.1 Let σ be a simplex in RN with vertices v0,v1, . . . ,vq, and
let m0,m1, . . . ,mr be integers satisfying

0 ≤ m0 < m1 < · · · < mr ≤ q.

Let ρ be the simplex in RN with vertices τ̂0, τ̂1, . . . , τ̂r, where τ̂k denotes the
barycentre of the simplex τk with vertices v0,v1, . . . ,vmk

for k = 1, 2, . . . , r.
Then the simplex ρ is the set consisting of all points of RN that can be repre-
sented in the form

∑q
j=0 tjvj, where t0, t1, . . . , tq are real numbers satisfying

the following conditions:

(i) 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q;

(ii)
q∑
j=0

tj = 1;

(iii) t0 ≥ t1 ≥ · · · ≥ tq;

(iv) tj = tm0 for all integers j satisfying j ≤ m0;

(v) tj = tmk
for all integers j and k satisfying 0 < k ≤ r and mk−1 < j ≤

mk;

(vi) tj = 0 for all integers j satisfying j > mr.

Moreover the interior of the simplex ρ is the set consisting of all points of

RN that can be represented in the form
q∑
j=0

tjvj, where t0, t1, . . . , tq are real

numbers satisfying conditions (i)–(iv) above together with the following extra
condition:

(vii) tmk−1
> tmk

> 0 for all integers k satisfying 0 < k ≤ r.

Proof Let wk = τ̂k for k = 0, 1, . . . , r. Then

wk =
1

mk + 1

mk∑
j=0

vj.
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Let x ∈ ρ, and let the real numbers u0, u1, . . . , ur be the barycentric coordi-
nates of the point x with respect to the vertices w0,w1, . . . ,wr of ρ, so that

0 ≤ uk ≤ 1 for k = 0, 1, . . . , r,
r∑

k=0

ukwk = x, and
r∑

k=0

uk = 1.

Also let
K(j) = {k ∈ Z : 0 ≤ k ≤ r and mk ≥ j}

for j = 0, 1, . . . , q. Then x =
q∑
j=0

tjvj, where

tj =
∑

k∈K(j)

uk
mk + 1

when 0 ≤ j ≤ mr, and tj = 0 when mr < j ≤ q. Moreover

q∑
j=0

tj =
mr∑
j=0

∑
k∈K(j)

uk
mk + 1

=
∑

(j,k)∈L

uk
mk + 1

=
r∑

k=0

mk∑
j=0

uk
mk + 1

=
r∑

k=0

uk = 1,

where
L = {(j, k) ∈ Z2 : 0 ≤ j ≤ q, 0 ≤ k ≤ r and j ≤ mk}.

Now tj ≥ 0 for j = 0, 1, . . . , q, because uk ≥ 0 for k = 0, 1, . . . , r, and
therefore

0 ≤ tj ≤
q∑
j=0

tj = 1.

Also tj′ ≤ tj for all integers j and j′ satisfying 0 ≤ j < j′ ≤ mr, because
K(j′) ⊂ K(j). If 0 ≤ j ≤ m0 then K(j) = K(m0), and therefore tj = tm0 .
Similarly if 0 < k ≤ r, and mk−1 < j ≤ mk then K(j) = K(mk), and
therefore tj = tmk

. Thus the real numbers t0, t1, . . . , tk satisfy conditions
(i)–(vi) above.

Now let t0, t1, . . . , tq be real numbers satisfying conditions (i)-(vi), let

ur = (mr + 1)tmr

and
uk = (mk + 1)(tmk

− tmk+1
)

for k = 0, 1, . . . , r − 1. Then

tmk
=

r∑
k′=k

uk′

mk′ + 1
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for k = 0, 1, . . . , r. Also uk ≥ 0 for k = 0, 1, . . . , r, and

r∑
k=0

uk =
r−1∑
k=0

(mk + 1)(tmk
− tmk+1

) + (mr + 1)tmr

= (m0 + 1)tm0 +
r−1∑
k=1

(mk + 1)tmk
−

r−2∑
k=0

(mk + 1)tmk+1

− (mr−1 + 1)tmr + (mr + 1)tmr

= (m0 + 1)tm0 +
r−1∑
k=1

(mk + 1)tmk
−

r−1∑
k=1

(mk−1 + 1)tmk

+ (mr −mr−1)tmr

= (m0 + 1)tm0 +
r∑

k=1

(mk −mk−1)tmk
,

But

q∑
j=0

tq =

m0∑
j=0

tj +
r∑

k=1

mk∑
j=mk−1+1

tj

= (m0 + 1)tm0 +
r∑

k=1

(mk −mk−1)tmk
,

because conditions (i)-(vi) satisfied by the real numbers t0, t1, . . . , tq ensure
that tj = tm0 when 0 ≤ j ≤ m0, tj = tmk

when 1 ≤ k ≤ r, and mk−1 < j ≤
mk and tj = 0 when j > mr. Thus

r∑
k=0

uk = (m0 + 1)tm0 +
r∑

k=1

(mk −mk−1)tmk
=

q∑
j=0

tj = 1.

It follows that u0, u1, . . . , ur are the barycentric coordinates of a point of the
simplex with vertices w0,w1, . . . ,wr. Moreover

tj =
∑

k∈K(j)

uk
mk + 1
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for j = 0, 1, . . . , q, and therefore

r∑
k=0

ukwk =
r∑

k=0

mk∑
j=0

uk
mk + 1

vj

=
∑

(j,k)∈L

uk
mk + 1

vj

=

q∑
j=0

∑
k∈K(j)

uk
mk + 1

vj

=

q∑
j=0

tjvj.

We conclude the the simplex ρ is the set of all points of RN that are rep-

resentable in the form
q∑
j=0

tjvj, where the coefficients t0, t1, . . . , tq are real

numbers satisfying conditions (i)–(vi).

Now the point
q∑
j=0

tjvj belongs to the interior of the simplex ρ if and only

if uk > 0 for k = 0, 1, . . . , r, where ur = (mr +1)tmr and uk = (mk +1)(tmk
−

tmk+1
) for k = 0, 1, . . . , r − 1. This point therefore belongs to the interior of

the simplex ρ if and only if tmr > 0 and tmk
> tmk+1

for k = 0, 1, . . . , r − 1.

Thus the interior of the simplex ρ consists of those points
q∑
j=0

tjvj of σ whose

barycentric coordinates t0, t1, . . . , tq with respect to the vertices v0,v1, . . . ,vq
of σ satisfy conditions (i)–(vii), as required.

Corollary D.2 Let σ be a simplex in some Euclidean space RN , and let
Kσ be the simplicial complex consisting of the simplex σ together with all
of its faces. Let v0,v1, . . . ,vq be the vertices of σ, and let t0, t1, . . . , tq be
the barycentric coordinates of some point x of σ, so that 0 ≤ tj ≤ 1 for

j = 0, 1, . . . , q,
q∑
j=0

tjvj = x and
q∑
j=0

tj = 1. Then there exists a permutation π

of the set {0, 1, . . . , q} and integers m0,m1, . . . ,mr satisfying

0 ≤ m0 < m1 < · · · < mr ≤ q.

such the following conditions are satisfied:

(iii) tπ(0) ≥ tπ(1) ≥ · · · ≥ tπ(q);

(iv) tπ(j) = tπ(m0) for all integers j satisfying j ≤ m0;
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(v) tπ(j) = tπ(mk) for all integers j and k satisfying 0 < k ≤ r and mk−1 <
j ≤ mk;

(vi) tπ(j) = 0 for all integers j satisfying j > mr.

(vii) tπ(mk−1)
> tπ(mk) > 0 for all integers k satisfying 0 < k ≤ r.

Let ρ be the simplex of the first barycentric subdivision K ′σ of the simplical
complex Kσ with vertices τ̂0, τ̂1, . . . , τ̂r, where τ̂k is the barycentre of the sim-
plex τk with vertices vπ(0),vπ(1), . . . ,vπ(mk) for k = 0, 1, . . . , r. Then ρ is the
unique simplex of K ′σ that contains the point x in its interior.

Proof The required permutation π can be any permutation that rearranges
the barycentric coordinates in descending order, so that 1 ≥ tπ(0) ≥ tπ(1) ≥
. . . ≥ tπ(q) ≥ 0. The required result then follows immediately on applying
Proposition D.1.

Corollary D.2 may be applied to determine the simplices of the first
barycentric subdivision K ′σ of the simplicial complex Kσ that consists of
some simplex σ together with all of its faces.

Example Let K be the simplicial complex consisting of a triangle with
vertices v0, v1 and v2, together with all its edges and vertices, and let K ′

be the first barycentric subdivision of the simplicial complex K. Then K ′

consists of six triangles ρ012, ρ102, ρ021, ρ120, ρ201 and ρ210, together with all
the edges and vertices of those triangles, where
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ρ012 =

{
2∑
j=0

tjvj : 1 ≥ t0 ≥ t1 ≥ t2 ≥ 0 and
2∑
j=0

tj = 1

}
,

ρ102 =

{
2∑
j=0

tjvj : 1 ≥ t1 ≥ t0 ≥ t2 ≥ 0 and
2∑
j=0

tj = 1

}
,

ρ021 =

{
2∑
j=0

tjvj : 1 ≥ t0 ≥ t2 ≥ t1 ≥ 0 and
2∑
j=0

tj = 1

}
,

ρ120 =

{
2∑
j=0

tjvj : 1 ≥ t1 ≥ t2 ≥ t0 ≥ 0 and
2∑
j=0

tj = 1

}
,

ρ201 =

{
2∑
j=0

tjvj : 1 ≥ t2 ≥ t0 ≥ t1 ≥ 0 and
2∑
j=0

tj = 1

}
,

ρ210 =

{
2∑
j=0

tjvj : 1 ≥ t2 ≥ t1 ≥ t0 ≥ 0 and
2∑
j=0

tj = 1

}
.

The intersection of any two of those triangles is a common edge or vertex of
those triangles. For example, the intersection of the triangles ρ012 and ρ102
is the edge ρ012 ∩ ρ102, where

ρ012 ∩ ρ102 =

{
2∑
j=0

tjvj : 1 ≥ t0 = t1 ≥ t2 ≥ 0 and
2∑
j=0

tj = 1

}
.

And the intersection of the triangle ρ012 and ρ120 is the barycentre of the

triangle v0 v1 v2, and is thus the point
2∑
j=0

tjvj whose barycentric coordinates

t0, t1, t2 satisfy t0 = t1 = t2 = 1
3
.

Let σ be a q-simplex with vertices v0,v1, . . . ,vq, let Kσ be the simplicial
complex consisting of the simplex σ, together with all its faces, and let K ′σ
be the first barycentric subdivision of the simplicial complex Kσ. Then the
q-simplices of K ′σ are the simplices of the form ρm0m1 ...mq , where the list
m0,m1, . . . ,mq is a rearrangement of the list 0, 1, . . . , q (so that each integer
between 0 and q occurs exactly one in the list m0,m1, . . . ,mq), and where

ρm0m1 ...mq

=

{
q∑
j=0

tjvj : 1 ≥ tm0 ≥ tm1 ≥ · · · ≥ tmq ≥ 0 and

q∑
j=0

tj = 1

}
.
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A point of σ belongs to the interior of one of the simplices of K ′σ if and only if
its barycentric coordinates t0, t1, . . . , tq are all distinct and strictly positive.

Moreover if a point
q∑
j=0

tjvj of σ with barycentric coordinates t0, t1, . . . , tq

belongs to the interior of some r-simplex of K ′σ then there are exactly r + 1
distinct values amongst the real numbers t0, t1, . . . , tq (i.e., {t0, t1, . . . , tq} is
a set with exactly r + 1 elements).
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