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Course MAU34804: Hilary Term 2022. Midterm
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1. Let S be the simplex in R3 with vertices v0, v1, v2, v3, where

v0 = (−1,−1,−1), v1 = (2, 0, 0), v2 = (0, 3, 0), v3 = (0, 0, 4).

Also let T be the 3-simplex in R3 be the simplex whose vertices are the
following:

• the vertex v3 of T ;

• the midpoint of the edge of T with endpoints v2 and v3;

• the barycentre of the triangular face of S with vertices v1, v2 and
v3;

• the barycentre of the simplex S itself.

Determine four constraints, each of the form ax + by + cz ≤ d for
appropriate real constants a, b, c and d, such that the simplex S consists
of those points (x, y, z) of R3 that satisfy all four constraints.

2. Let v0,v1,v2,v3 be vertices of a 3-simplex T in R3. (This simplex T
is then a tetrahedron.) Also let f :R3 → R be a linear functional on
R3. (There then exist real numbers u, v and w such that f(x, y, z) =
ux + vy + wz for all (x, y, z) ∈ R3.) Let m be the maximum value
attained by the linear functional f on the simplex T , and let

M = {(x, y, z) ∈ T : f(x, y, z) = m}.

Prove that the subset M of T is contained in the edge of T with end-
points v2 and v3 if and only if

f(v0) < max(f(v2), f(v3)) and f(v1) < max(f(v2), f(v3)).

3. Let v0,v1,v2,v3 be vertices of a 3-simplex T in R3. Also, for each
ordered triple (u, v, w) of real numbers, let f(u,v,w):R3 → R denote the
linear functional on R3 defined so that f(u,v,w)(x, y, z) = ux + vy + wz
for all (x, y, z) ∈ R3. Let m(u, v, w) be the maximum value attained
by the linear functional f(u,v,w) on the simplex T , and let

M(u, v, w) = {(x, y, z) ∈ T : f(u,v,w)(x, y, z) = m(u, v, w)}.

Let E be the edge of the simplex T with endpoints v2 and v3. Explain
why

{(u, v, w) ∈ R3 : M(u, v, w) ⊂ E}

3



is an open set in R3. Then, given this result, explain why the corre-
spondence M :R3 ⇒ R3 that sends each ordered triple (u, v, w) of real
numbers to the subset M(u, v, w) of the simplex T is upper hemicon-
tinuous at any point (u, v, w) of R3 for which M(u, v, w) = E. (You
should not apply Berge’s Maximum Theorem.)
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