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1. (Unseen problem)

(a) The transport matrix X must be of the form X = X0+λY , where
the matrix Y is of the form

Y =

 y1,1 y1,2 0 y1,4
0 y2,2 y2,3 0
0 y3,2 y3,3 0

 .

Moreover the rows and columns of the matrix Y must sum to
zero. Therefore we must have y1,1 = 0 and y1,4 = 0, from which it
follows that y1,2 = 0. Then, scaling so that y2,2 = 1, we find that

Y =

 0 0 0 0
0 1 −1 0
0 −1 1 0

 .

Thus the matrix X is of the form

X0 + λY =

 23 1 0 13
0 41 + λ 7− λ 0
0 6− λ 9 + λ 0

 .

for an appropriate value of λ. Moreover

T (X) = T (X0)− 52λ.

Consequently we should take a positive value of λ which is small
enough to ensure that the solutionX remains feasible and becomes
basic. Accordingly we must take λ = 6

X =

 23 1 0 13
0 47 1 0
0 0 15 0

 .

We must check that this basic solution is indeed feasible.

The expected basis B is given by

B = {(1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 3),

We must check that this is indeed a basis. Suppose that we are
given real numbers y1, y2, y3 and z1, z2, z3, z4 for which

y1 + y2 + y3 = z1 + z2 + z3 + z4.
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We seek w1,1, w1,2, w1,4, w2,2, w2,3 and w3,3 such that

w1,1 + w1,2 + w1,4 = y1,

w2,2 + w2,3 = y2,

w3,3 = y3,

w1,1 = z1,

w1,2 + w2,2 = z2,

w2,3 + w3,3 = z3,

w1,4 = z4.

Clearly w3,3 = y3, w1,1 = z1, w1,4 = z4, w2,3 = z3 − y3, w2,2 =
y2−z3 +y3 and w1,2 = z2−y2 +z3−y3. Accordingly the equations
with right hand sides equal to y2, y3, z1, z2, z3 and z4 are satisfied.
It remains to check that the equation with right hand side equal
to z1 is also satisfied with these values of the wi,j quantities. Now

w1,1 + w1,2 + w1,4 = z1 + z2 − y2 + z3 − y3 + z4 = y1.

Thus the required quantities wi,j have been found for any real
quantities yi and zi satisfying the stated condition. We conclude
that the set B is indeed a basis for the transportation problem,
and thus we have found the required basic feasible solution. (Note
valid alternative expressions

w1,2 = z2 + z3 − y2 − y3 = y1 + z1 − z4
w2,2 = y2 + y3 − z3 = z1 + z2 + z4 − y1

that arise from the requirement that
3∑

i=1

yi =
4∑

j=1

zj.)

(b) (Routine, seen similar)

Filling in the appropriate tableau in a routine fashion so as to
determine ui, vj and qi,j such that ensure that ci,j + ui = vj + qi,j
for all i and j and qi,j = 0 whenever (i, j) ∈ B, we obtain the
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following filled-out tableau:

ci,j ↘ qi,j 1 2 3 4 ui

1 73 • 47 • 57 36 •
0 0 −2 0 0

2 37 62 • 74 • 25
−51 0 0 −26 −15

3 62 71 31 • 59
17 52 0 51 28

vj 73 47 59 36

Accordingly the cost of a feasible solution (xi,j) is

T (X)− 2x1,3 − 51x2,1 − 26x2,4 + 17x3,1 + 523,2 + 41x3,4.

Accordingly the basic feasible solution T (X) could be undercut by
bringing into commission transport along any of the routes (1, 3),
(2, 1) and (2, 4). Accordingly this basic feasible solution is not
optimal.

(c) No, there cannot exist any optimal solution of this transportation
problem within the set S of feasible solutions. For if there were
to exist an optimal solution, then the standard procedure for con-
structing a basic feasible solution from a feasible solution without
increasing cost would produce a basic optimal solution belonging
to S. But we have shown that unique basic feasible solution in S
with cost less than that of X0 is not optimal. Therefore there can
exist no other.
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2. (Unseen problem)

(a) Letting B = {1, 2} and

MB =

(
a1,1 a1,2
a2,1 a2,2

)
and letting D be the value of the determinant of this matrix, we
find that

DM−1
B =

(
a2,2 −a1,2
−a2,1 a1,1

)
.

Consequently

Dr1,1 = a2,2, Dr1,2 = −a1,2, Dr2,1 = −a2,1, Dr2,2 = a1,1.

Let B̂ = {1, 2, 4} and

M̂B̂ =

 a1,1 a1,2 0
a2,1 a2,2 0
−c1 −c2 1


and letting D be the value of the determinant of this matrix, we
find that

det M̂B̂ =

∣∣∣∣ a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = D = a1,1a2,2 − a2,1a1,2.

Calculating the inverse of the matrix M̂B̂ by dividing the adjugate
matrix by the determinant, we find that

Dr̂1,1 =

∣∣∣∣ a2,2 0
−c2 1

∣∣∣∣ = a2,2 = Dr1,1,

Dr̂2,1 = −
∣∣∣∣ a2,1 0
−c1 1

∣∣∣∣ = −a2,1 = Dr2,1,

Dr̂3,1 =

∣∣∣∣ a2,1 a2,2
−c1 −c2

∣∣∣∣ = c1a2,2 − c2a2,1

= D(c1r1,1 + c2r2,1) = Dp1,

Dr̂1,2 = −
∣∣∣∣ a1,2 0
−c2 1

∣∣∣∣ = −a1,2 = Dr1,2,
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Dr̂2,2 =

∣∣∣∣ a1,1 0
−c1 1

∣∣∣∣ = a1,1 = Dr2,2,

Dr̂3,2 = −
∣∣∣∣ a1,1 a1,2
−c1 −c2

∣∣∣∣ = −c1a1,2 + c2a1,1

= D(c1r1,2 + c2r2,2) = Dp2.

Dr̂1,3 =

∣∣∣∣ a1,2 0
a2,2 0

∣∣∣∣ = 0.

Dr̂2,3 = −
∣∣∣∣ a1,1 0
a2,1 0

∣∣∣∣ = 0.

Dr̂3,3 =

∣∣∣∣ a1,1 a1,2
a2,1 a2,2

∣∣∣∣ = 1.

Consequently

M̂−1

B̂
=

 r̂1,1 r̂1,2 r̂1,3
r̂2,1 r̂2,2 r̂2,3
r̂3,1 r̂3,2 r̂3,3

 =

 r1,1 r1,2 0
r2,1 r2,2 0
p1 p2 1

 .

(b) Now

b = b1e
(1) + b2e

(2) = (b1r1,1 + b2r1,2)a
(1) + (b1r2,1 + b2r2,2)a

(2).

Consequently

s1 = b1r1,1 + b2r1,2, s2 = b1r2,1 + b2r2,2.

Therefore

b̂ = b1ê
(1) + b2ê

(2)

= (b1r̂1,1 + b2r̂2,1)a
(1) + (b1r̂1,2 + b2r̂2,2)a

(2)

+ (b1r̂1,3 + b2r̂2,3)a
(4)

= (b1r1,1 + b2r2,1)a
(1) + (b1r2,1 + b2r2,2)a

(2)

+ (b1p1 + b2p2)a
(4)

Now

b1p1+b2p2 = b1c1r1,1+b1c2r2,1+b2c1r1,2+b2c2r2,2 = c1s1+c2s2 = C.

Consequently
b̂ = s1â

(1) + s2â
(2) + Câ(4),

and consequently ŝ1 = s1, ŝ2 = s2 and ŝ3 = C.
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(c) Now

a(j) = a1,je
(1) + a2,je

(2)

= (a1,jr1,1 + a2,jr1,2)a
(1) + (a1,jr2,1 + a2,jr2,2)a

(2).

Consequently

t1,j = a1,jr1,1 + a2,jr1,2, t2,j = a1,jr2,1 + a2,jr2,2.

Therefore

â(j) = a1,j ê
(1) + a2,j ê

(2) − cj ê(4)

= (a1,j r̂1,1 + a2,j r̂1,2 − cj r̂1,3)a(1)

+ (a1,j r̂2,1 + a2,j r̂2,2 − cj r̂2,3)a(2)

+ (a1,j r̂3,1 + a2,j r̂3,2 − cj r̂3,3)a(4)

= (a1,jr1,1 + a2,jr1,2)a
(1) + (a1,jr2,1 + a2,jr2,2)a

(2)

+ (a1,jp1 + a2,jp2 − cj)a(4)

Now

a1,jp1 + a2,jp2 − cj = a1,jc1r1,1 + a1,jc2r2,1

+ a2,jc1r1,2 + a2,jc2r2,2 − cj
= c1t1,j + c2t2,j − cj = −qj

Consequently

â(j) = t1,jâ
(1) + t2,jâ

(2) − qjâ(4),

and consequently

t̂1,j = t1,j, t̂2,j = t2,j, t̂3,j = −qj.

Note furthermore that, because {1, 2} is the chosen basis, t1,1 =
t2,2 = 1, t1,2 = t2,1 = 0 and q1 = q2 = 0.
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3. (Unseen problem)

(a) The points of R3 that lie on the plane containing the points with
position vectors 0, v1 and v2 are those points which have position
vectors x that satisfy

(v1 × v2) . x = 0.

The two sides of this plane are thus those for which

(v1 × v2) . x < 0 or (v1 × v2) . x > 0.

Now the point x must lie on the same side of the plane as the
point v3, and moreover the question states that (v1×v2) .v3 > 0.
Accordingly we must take ε = +1.

Now it follows from standard 3-dimensional vector algebra (v1 ×
v3) .v2 = −(v1×v2) .v3. Accordingly, arguing on the same lines,
we should take η = −1.

(b) The set C is indeed a convex cone. Indeed let x and y be position
vectors of points of C, and let λ and µ be real numbers with λ ≥ 0
and µ ≥ 0. Then

b(v1 × v2) . x ≥ 0, c(v1 × v3) . x ≥ 0.

b(v1 × v2) . y ≥ 0, c(v1 × v3) . y ≥ 0,

and consequently

b(v1 × v2) . (λx + µy) = λb(v1 × v2) . x + µb(v1 × v2) . y ≥ 0,

c(v1 × v3) . (λx + µy) = λb(v1 × v3) . x + µc(v1 × v3) . y ≥ 0.

Thus the set C is indeed a convex cone in R3.

(c) The tetrahedron T is not a convex cone in R3. Let x be the
position vector of a point in the interior of the tetrahedron. Then
the origin 0 and the point λx lies on opposite sides of the plane
containing the points v1, v2, v3 when the positive real number λ
is sufficiently large.

(d) Let f3:R3 → R and f3:R3 → R be defined so that

f3(x) = (v1 × v2) . x and f2(x) = −(v1 × v3) . x
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for all x ∈ R3. Then f2(x
∗) = 0, f3(x

∗) = 0 and moreover f2(x) ≥
0 and f3(x) ≥ 0 for all x ∈ T . Moreover affine linear functionals
f0 and f1 can be constructed so that f0(x

∗) > 0, f1(x
∗) > 0 and

T = {x ∈ X : fj(x) ≥ 0 for j = 0, 1, 2, 3}.

(Indeed we can take

f1(x) = (v2 × v3) . x

and
f0(x) = ((v2 − v1)× (v3 − v1) . (v1 − x)

for all x ∈ R3. However the details of the construction of these
affine linear functions f0 and f1 is unimportant for the problem
in hand.) Applying the Karush-Kuhn-Tucker Theorem (in the
form of Theorem 5.21 of the module core notes, we find that if
the function g attains a maximum at the point x∗ (which lies
in the interior of the line segment at which the faces 0,v1,v2 and
0,v1,v3 of the tetrahedron intersect) then there exist non-negative
real constants λ and µ such that

(∇g)x∗ + λ(∇f3)x∗ + µ(∇f2)x∗ = 0.

But (∇f3)x∗ = v1 × v2 and (∇f2)x∗ = −v1 × v3. Thus

(∇g)x∗ + λv1 × v2 − µv1 × v3 = 0,

as required.
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