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2 Finite-Dimensional Vector Spaces

2.1 Real Vector Spaces

Definition A real vector space consists of a set V on which there is defined
an operation of vector addition, yielding an element v +w of V for each pair
v,w of elements of V , and an operation of multiplication-by-scalars that
yields an element λv of V for each v ∈ V and for each real number λ. The
operation of vector addition is required to be commutative and associative.
There must exist a zero element 0V of V that satisfies v + 0V = v for all
v ∈ V , and, for each v ∈ V there must exist an element −v of V for which
v+(−v) = 0V . The following identities must also be satisfied for all v,w ∈ V
and for all real numbers λ and µ:

(λ+ µ)v = λv + µv, λ(v + w) = λv + λw,

λ(µv) = (λµ)v, 1v = v.

Let n be a positive integer. The set Rn consisting of all n-tuples of real
numbers is then a real vector space, with addition and multiplication-by-
scalars defined such that

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . xn + yn)

and
λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ R and for all real numbers λ.
The set Mm,n(R) of all m×n matrices is a real vector space with respect

to the usual operations of matrix addition and multiplication of matrices by
real numbers.

2.2 Linear Dependence and Bases

Elements u1,u2, . . . ,um of a real vector space V are said to be linearly de-
pendent if there exist real numbers λ1, λ2, . . . , λm, not all zero, such that

λ1u1 + λ2u2 + · · ·+ λmum = 0V .

If elements u1,u2, . . . ,um of real vector space V are not linearly dependent,
then they are said to be linearly independent.

Elements u1,u2, . . . ,un of a real vector space V are said to span V if,
given any element v of V , there exist real numbers λ1, λ2, . . . , λn such that
v = λ1u1 + λ2u2 + · · ·+ λnun.
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A vector space is said to be finite-dimensional if there exists a finite
subset of V whose members span V .

Elements u1,u2, . . . ,un of a finite-dimensional real vector space V are
said to constitute a basis of V if they are linearly independent and span V .

Lemma 2.1 Elements u1,u2, . . . ,un of a real vector space V constitute a
basis of V if and only if, given any element v of V , there exist uniquely-
determined real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

Proof Suppose that u1,u2, . . . ,un is a basis of V . Let v be an element V .
The requirement that u1,u2, . . . ,un span V ensures that there exist real
numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

If µ1, µ2, . . . , µn are real numbers for which

v = µ1u1 + µ2u2 + · · ·+ µnun,

then
(µ1 − λ1)u1 + (µ2 − λ2)u2 + · · ·+ (µn − λn)un = 0V .

It then follows from the linear independence of u1,u2, . . . ,un that µi−λi = 0
for i = 1, 2, . . . , n, and thus µi = λi for i = 1, 2, . . . , n. This proves that the
coefficients λ1, λ2, . . . , λn are uniquely-determined.

Conversely suppose that u1,u2, . . . ,un is a list of elements of V with the
property that, given any element v of V , there exist uniquely-determined
real numbers λ1, λ2, . . . , λn such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

Then u1,u2, . . . ,un span V . Moreover we can apply this criterion when
v = 0. The uniqueness of the coefficients λ1, λ2, . . . , λn then ensures that if

λ1u1 + λ2u2 + · · ·+ λnun = 0V

then λi = 0 for i = 1, 2, . . . , n. Thus u1,u2, . . . ,un are linearly independent.
This proves that u1,u2, . . . ,un is a basis of V , as required.

Proposition 2.2 Let V be a finite-dimensional real vector space, let

u1,u2, . . . ,un

be elements of V that span V , and let K be a subset of {1, 2, . . . , n}. Suppose
either that K = ∅ or else that those elements ui for which i ∈ K are linearly
independent. Then there exists a basis of V whose members belong to the list
u1,u2, . . . ,un which includes all the vectors ui for which i ∈ K.
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Proof We prove the result by induction on the number of elements in the
list u1,u2, . . . ,un of vectors that span V . The result is clearly true when
n = 1. Thus suppose, as the induction hypothesis, that the result is true for
all lists of elements of V that span V and that have fewer than n members.

If the elements u1,u2, . . . ,un are linearly independent, then they consti-
tute the required basis. If not, then there exist real numbers λ1, λ2, . . . , λn,
not all zero, such that

λ1u1 + λ2u2 + · · ·+ λnun = 0V .

Now there cannot exist real numbers λ1, λ2, . . . , λn, not all zero, such

that both
n∑

i=1

λiui = 0V and also λi = 0 whenever i 6= K. Indeed, in the

case where K = ∅, this conclusion follows from the requirement that the real
numbers λi cannot all be zero, and, in the case where K 6= ∅, the conclusion
follows from the linear independence of those ui for which i ∈ K. Therefore
there must exist some integer i satisfying 1 ≤ i ≤ n for which λi 6= 0 and
i 6∈ K.

Without loss of generality, we may suppose that u1,u2, . . . ,un are ordered
so that n 6∈ K and λn 6= 0. Then

un = −
n−1∑
i=1

λi
λn

ui.

Let v be an element of V . Then there exist real numbers µ1, µ2, . . . , µn

such that v =
n∑

i=1

µiui, because u1,u2, . . . ,un span V . But then

v =
n−1∑
i=1

(
µi −

µnλi
λn

)
ui.

We conclude that u1,u2, . . . ,un−1 span the vector space V . The induction
hypothesis then ensures that there exists a basis of V consisting of members
of this list that includes the linearly independent elements u1,u2, . . . ,um, as
required.

Corollary 2.3 Let V be a finite-dimensional real vector space, and let

u1,u2, . . . ,un

be elements of V that span the vector space V . Then there exists a basis of
V whose elements are members of the list u1,u2, . . . ,un.

Proof This result is a restatement of Proposition 2.2 in the special case
where the set K in the statement of that proposition is the empty set.
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2.3 Dual Spaces

Definition Let V be a real vector space. A linear functional ϕ:V → R on
V is a linear transformation from the vector space V to the field R of real
numbers.

Given linear functionals ϕ:V → R and ψ:V → R on a real vector space V ,
and given any real number λ, we define ϕ + ψ and λϕ to be the linear
functionals on V defined such that (ϕ+ψ)(v) = ϕ(v) +ψ(v) and (λϕ)(v) =
λϕ(v) for all v ∈ V .

The set V ∗ of linear functionals on a real vector space V is itself a
real vector space with respect to the algebraic operations of addition and
multiplication-by-scalars defined above.

Definition Let V be a real vector space. The dual space V ∗ of V is the
vector space whose elements are the linear functionals on the vector space V .

Now suppose that the real vector space V is finite-dimensional. Let
u1,u2, . . . ,un be a basis of V , where n = dimV . Given any v ∈ V there

exist uniquely-determined real numbers λ1, λ2, . . . , λn such that v =
n∑

j=1

λjuj.

It follows that there are well-defined functions ε1, ε2, . . . , εn from V to the
field R defined such that

εi

(
n∑

j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. These functions are
linear transformations, and are thus linear functionals on V .

Lemma 2.4 Let V be a finite-dimensional real vector space, let

u1,u2, . . . ,un

be a basis of V , and let ε1, ε2, . . . , εn be the linear functionals on V defined
such that

εi

(
n∑

j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn. Then ε1, ε2, . . . , εn

constitute a basis of the dual space V ∗ of V . Moreover ϕ =
n∑

i=1

ϕ(ui)εi for all

ϕ ∈ V ∗.
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Proof Let µ1, µ2, . . . , µn be real numbers with the property that
n∑

i=1

µiεi =

0V ∗ . Then

0 =

(
n∑

i=1

µiεi

)
(uj) =

n∑
i=1

µiεi(uj) = µj

for j = 1, 2, . . . , n. Thus the linear functionals ε1, ε2, . . . , εn on V are linearly
independent elements of the dual space V ∗.

Now let ϕ:V → R be a linear functional on V , and let µi = ϕ(ui) for
i = 1, 2, . . . , n. Now

εi(uj) =

{
1 if i = j;
0 if i 6= j.

It follows that(
n∑

i=1

µiεi

)(
n∑

j=1

λjuj

)
=

n∑
i=1

n∑
j=1

µiλjεi(uj) =
n∑

j=1

µjλj

=
n∑

j=1

λjϕ(uj) = ϕ

(
n∑

j=1

λjuj

)

for all real numbers λ1, λ2, . . . , λn.
It follows that

ϕ =
n∑

i=1

µiεi =
n∑

i=1

ϕ(ui)εi.

We conclude from this that every linear functional on V can be expressed as
a linear combination of ε1, ε2, . . . , εn. Thus these linear functionals span V ∗.
We have previously shown that they are linearly independent. It follows that

they constitute a basis of V ∗. Moreover we have verified that ϕ =
n∑

i=1

ϕ(ui)εi

for all ϕ ∈ V ∗, as required.

Definition Let V be a finite-dimensional real vector space, let u1,u2, . . . ,un

be a basis of V . The corresponding dual basis of the dual space V ∗ of V
consists of the linear functionals ε1, ε2, . . . , εn on V , where

εi

(
n∑

j=1

λjuj

)
= λi

for i = 1, 2, . . . , n and for all real numbers λ1, λ2, . . . , λn.

Corollary 2.5 Let V be a finite-dimensional real vector space, and let V ∗

be the dual space of V . Then dimV ∗ = dimV .
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Proof We have shown that any basis of V gives rise to a dual basis of V ∗,
where the dual basis of V has the same number of elements as the basis
of V to which it corresponds. The result follows immediately from the fact
that the dimension of a finite-dimensional real vector space is the number of
elements in any basis of that vector space.

Let V be a real-vector space, and let V ∗ be the dual space of V . Then
V ∗ is itself a real vector space, and therefore has a dual space V ∗∗. Now each
element v of V determines a corresponding linear functional Ev:V ∗ → R on
V ∗, where Ev(ϕ) = ϕ(v) for all ϕ ∈ V ∗. It follows that there exists a function
ι:V → V ∗∗ defined so that ι(v) = Ev for all v ∈ V . Then ι(v)(ϕ) = ϕ(v)
for all v ∈ V and ϕ ∈ V ∗.

Now

ι(v + w)(ϕ) = ϕ(v + w) = ϕ(v) + ϕ(w) = (ι(v) + ι(w))(ϕ)

and
ι(λv)(ϕ) = ϕ(λv) = λϕ(v) = (λι(v))(ϕ)

for all v,w ∈ V and ϕ ∈ V ∗ and for all real numbers λ. It follows that
ι(v + w) = ι(v) + ι(w) and ι(λv) = λι(v) for all v,w ∈ V and for all real
numbers λ. Thus ι:V → V ∗∗ is a linear transformation.

Proposition 2.6 Let V be a finite-dimensional real vector space, and let
ι:V → V ∗∗ be the linear transformation defined such that ι(v)(ϕ) = ϕ(v) for
all v ∈ V and ϕ ∈ V ∗. Then ι:V → V ∗∗ is an isomorphism of real vector
spaces.

Proof Let u1,u2, . . . ,un be a basis of V , let ε1, ε2, . . . , εn be the dual basis
of V ∗, where

εi(uj) =

{
1 if i = j,
0 if i 6= j,

and let v ∈ V . Then there exist real numbers λ1, λ2, . . . , λn such that v =
n∑

i=1

λiui.

Suppose that ι(v) = 0V ∗∗ . Then ϕ(v) = Ev(ϕ) = 0 for all ϕ ∈ V ∗. In
particular λi = εi(v) = 0 for i = 1, 2, . . . , n, and therefore v = 0V . We
conclude that ι:V → V ∗∗ is injective.

Now let F :V ∗ → R be a linear functional on V ∗, let λi = F (εi) for

i = 1, 2, . . . , n, let v =
n∑

i=1

λiui, and let ϕ ∈ V ∗. Then ϕ =
n∑

i=1

ϕ(ui)εi (see
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Lemma 2.4), and therefore

ι(v)(ϕ) = ϕ(v) =
n∑

i=1

λiϕ(ui) =
n∑

i=1

F (εi)ϕ(ui)

= F

(
n∑

i=1

ϕ(ui)εi

)
= F (ϕ).

Thus ι(v) = F . We conclude that the linear transformation ι:V → V ∗∗

is surjective. We have previously shown that this linear transformation is
injective. There ι:V → V ∗∗ is an isomorphism between the real vector spaces
V and V ∗∗ as required.

The following corollary is an immediate consequence of Proposition 2.6.

Corollary 2.7 Let V be a finite-dimensional real vector space, and let V ∗

be the dual space of V . Then, given any linear functional F :V ∗ → R, there
exists some v ∈ V such that F (ϕ) = ϕ(v) for all ϕ ∈ V ∗.
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