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7. Winding Numbers of Loops in the Plane

7. Winding Numbers of Loops in the Plane

7.1. Lifts of Angle Functions along Plane Curves

Proposition 7.1

For each real number θ, let Ωθ be the open set in R2 that is the
complement of the ray

{(t cos θ, t sin θ) : t ∈ R and t ≤ 0}.

Then, for each real number θ, there exists a corresponding
continuous function ωθ : Ωθ → R characterized by the properties
that θ − π < ωθ(x , y) < θ + π,

x =
√

x2 + y2 cosωθ(x , y) and y =
√
x2 + y2 sinωθ(x , y)

for all (x , y) ∈ Ωθ.
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Proof
For each real number θ, the open subset Ωθ of the plane R2 is the
union of the three open sets V

θ−1
2π

, Vθ and V
θ+

1
2π

, where, for

each real number θ,

Vθ = {(x , y) ∈ Rn : x cos θ + y sin θ > 0}.

The open set Vθ then consists of those points (x , y) of R2 distinct
from (0, 0) that are such that the displacement vector from the
origin to the point in question makes an angle with the vector
(cos θ, sin θ) that is an acute angle.
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Let θ be a real number, and let (x , y) ∈ Vθ. Then (− sin θ, cos θ)
is not a scalar multiple of (x , y), and therefore

|y cos θ − x sin θ| <
√
x2 + y2.

Indeed the left hand side of this inequality is the absolute value of
the scalar product, in R2, of the vectors (− sin θ, cos θ) and (x , y),
this scalar product is equal to the length

√
x2 + y2 of the

vector (x , y) multiplied by the cosine of the angle between the two
vectors, and this cosine lies strictly between −1 and 1, because the
vectors are not scalar multiples of one another when (x , y) ∈ Vθ.
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Let

ω̂θ(x , y) = θ + arcsin

(
y cos θ − x sin θ√

x2 + y2

)
for all x , y ∈ Vθ, where arcsin : [−1, 1]→ [−1

2π,
1
2π] is the inverse

of the restriction of the sine function to the closed interval
[−1

2π,
1
2π]. The function arcsin is continuous. Also∣∣∣∣∣arcsin

(
y cos θ − x sin θ√

x2 + y2

)∣∣∣∣∣ < 1
2π,

because
|y cos θ − x sin θ| <

√
x2 + y2

as previously noted.
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Consequently θ − 1
2π < ω̂θ(x , y) < θ + 1

2π for all (x , y) ∈ Vθ.

Now, given any point (x , y) of Vθ, there exists a unique real
number ψ satisfying θ − 1

2π < ψ < θ + 1
2π for which

x =
√

x2 + y2 cosψ and y =
√

x2 + y2 sinψ. Then

y cos θ − x sin θ =
√

x2 + y2 (sinψ cos θ − cosψ sin θ)

=
√

x2 + y2 sin(ψ − θ).

It follows that ω̂θ(x , y) = ψ, and thus

x =
√

x2 + y2 cos ω̂θ(x , y) and y =
√
x2 + y2 sin ω̂θ(x , y).
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Now ω̂
θ+

1
2π

(x , y) = ω̂θ(x , y) for all (x , y) ∈ V
θ+

1
2π
∩ Vθ. Indeed,

for any point (x , y) in the set V
θ+

1
2π
∩ Vθ, the values of

ω̂
θ+

1
2π

(x , y) and ω̂θ(x , y) differ by an amount whose absolute

value is less than 3
2π and are mapped to the same value under

both the sine and cosine functions, and must therefore be equal to
one another. Similarly ω̂

θ−1
2π

(x , y) = ω̂θ(x , y) for all

(x , y) ∈ V
θ−1

2π
∩ Vθ. There is thus a well-defined continuous

function ωθ : Ωθ → R defined such that

ωθ(x , y) =


ω̂
θ−1

2π
(x , y) if (x , y) ∈ V

θ−1
2π

;

ω̂θ(x , y) if (x , y) ∈ Vθ;
ω̂
θ+

1
2π

(x , y) if (x , y) ∈ V
θ+

1
2π

.

This function ωθ : Ωθ → R has all the required properties.
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Proposition 7.2

Let γ : [0, 1]→ R2 be a path in the plane R2 that does not pass
through the origin (0, 0). Then there exists a continuous function
γ̂ : [0, 1]→ R with the property that

γ(t) = (|γ(t)| cos γ̂(t), |γ(t)| sin γ̂(t))

for all t ∈ [0, 1].
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Proof
For each real number θ, let Ωθ be the open set in R2 that is the
complement of the ray

{(t cos θ, t sin θ) : t ∈ R and t ≤ 0}.

Then, for each real number θ, there exists a corresponding
continuous function ωθ : Ωθ → R characterized by the properties
that θ − π < ωθ(x , y) < θ + π,

x =
√

x2 + y2 cosωθ(x , y) and y =
√

x2 + y2 sinωθ(x , y)

for all (x , y) ∈ Ωθ. (see Proposition 7.1.)
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The open sets Ωθ that result as θ ranges over the set of all real
numbers cover the complement R2 \ {(0, 0)} of the origin in the
plane R2. The preimages of these open sets under the continuous
function γ then cover the closed unit interval [0, 1]. The closed
unit interval is a compact metric space. It follows, on applying the
Lebesgue Lemma (Lemma 1.36), that there exists a positive real
number δ with the property that, given any subinterval of the
closed unit interval whose length is less than δ, there exists some
real number θ that is such as to ensure that the subinterval is
mapped by the continuous function γ into the open set Ωθ.
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Accordingly let n be a positive integer large enough to ensure that
1/n < δ, and let uj = j/n for all integers j between 0 and n. There
then exist real numbers θ1, θ2, . . . , θn chosen so that
γ([uj−1, uj ]) ⊂ Ωθj for j = 1, 2, . . . , n. Then, for j = 1, 2, . . . , n, let
ηj(t) = ωθj (γ(t)) for all real numbers t satisfying uj−1 ≤ t ≤ uj .
Then

γ(t) = (|γ(t)| cos ηj(t), |γ(t)| sin ηj(t))

for all t ∈ [uj−1, uj ].
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Now
ηj+1(uj)− ηj(uj)

2π

is an integer for all integers j between 1 and n − 1. Accordingly let
m1 = 0 and let integers m2,m3, . . . ,mn be successively determined
so that

ηj(uj) + 2πmj = ηj+1(uj) + 2πmj+1

for j = 1, 2, . . . , n − 1. Then let γ̂ : [0, 1]→ R be the function
defined so that

γ̂(t) = ηj(t) + 2πmj

for j = 1, 2, . . . , n and for all real numbers t satisfying
uj−1 ≤ t ≤ uj . Then the function γ̂ : [0, 1]→ R is the required
continuous function with the property that

γ(t) = (|γ(t)| cos γ̂(t), |γ(t)| sin γ̂(t))

for all t ∈ [0, 1].
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7.2. The Winding Number of a Loop around a Point

Let γ : [0, 1]→ R2 be a path in the plane R2. We say that a
point p of R2 does not lie on the path γ if p does not belong to the
range γ([0, 1]) of the continuous function representing the path.
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Now let γ : [0, 1]→ R2 be a loop in the plane R2 and let p be a
point of R2 that does not lie on the loop γ. Then there exists a
continuous function θ : [0, 1]→ R with the property that

γ(t)− p = |γ(t)− p| (cos θ(t), sin θ(t))

for all t ∈ [0, 1]. (see Proposition 7.2). Moreover

θ(1)− θ(0)

2π

is an integer because the function γ : [0, 1]→ R2 representing the
loop has the property that γ(1) = γ(0).



7. Winding Numbers of Loops in the Plane (continued)

Now let ϕ : [0, 1]→ R2 be any continuous function with the
property that

γ(t)− p = |γ(t)− p| (cosϕ(t), sinϕ(t))

for all t ∈ [0, 1]. Then
θ(t)− ϕ(t)

2π

is a continuous function of the real number t, as t ranges over the
closed unit interval [0, 1]. Moreover the values of this continuous
function are all integers. Such a function must be a constant
function. It follows that

θ(1)− ϕ(1) = θ(0)− ϕ(0),

and therefore
θ(1)− θ(0) = ϕ(1)− ϕ(0).
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We are therefore justified in making the following definition.

Definition

Let γ : [0, 1]→ R2 be a loop in the plane R2 and let p be a point
of R2 that does not lie on the loop γ. The winding number of the
loop γ about the point p is the unique integer n(γ,p), determined
by the loop γ and the point p, that is characterized by the
property that

2πn(γ,p) = θ(1)− θ(0)

for any continuous function θ : [0, 1]→ R with the property that

γ(t)− p = |γ(t)− p| (cos θ(t), sin θ(t))

for all t ∈ [0, 1].
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7.3. The Dog-Walking Lemma

Let γ : [0, 1]→ R2 be a path in the plane R2. Then the range
γ([0, 1]) of the continuous function representing the path is a
compact subset of the plane, because the closed unit interval is a
compact set, and because continuous functions map compact sets
to compact sets. It follows that the range γ([0, 1]) of the
function γ is a closed set. We denote this closed set by [γ].



7. Winding Numbers of Loops in the Plane (continued)

Lemma 7.3 (Dog-Walking Lemma)

Let γ1 : [0, 1]→ R2 and γ2 : [0, 1]→ R2 be loops in the plane, and
let p be a point of the plane R2 that does not lie on γ1. Suppose
that |γ2(t)− γ1(t)| < |γ1(t)− p| for all t ∈ [0, 1]. Then the
winding numbers of the loops γ1 and γ2 about the point p are
equal to one another.
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Proof
Note that the inequality requiring that
|γ2(t)− γ1(t)| < |γ1(t)− p| for all t ∈ [0, 1] ensures that the
point p does not lie on the path γ2. Now it follows from
Proposition 7.2 that there exist continuous functions
γ̂1 : [0, 1]→ R and γ̂2 : [0, 1]→ R with the properties that

γ1(t)− p = (|γ1(t)− p| cos γ̂1(t), |γ1(t)− p| sin γ̂1(t)),

γ2(t)− p = (|γ2(t)− p| cos γ̂2(t), |γ2(t)− p| sin γ̂2(t))

for all t ∈ [0, 1].
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The hypotheses of the lemma ensure that, for each real number t
satisfying 0 ≤ t ≤ 1, the point γ2(t) belongs to the open disk of
radius |γ1(t)− p| centred on the point γ1(t). Now the
displacement vector from the point p to any point of this open
disk makes an acute angle with the displacement vector from p to
the centre of the disk. Consequently the angle between the
displacement vectors from the point p to the points γ1(t) and
γ2(t) is an acute angle.
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This geometric fact can be verified algebraically as follows. The
hypotheses of the lemma require that

|γ2(t)− γ1(t)| < |γ1(t)− p|

for all real numbers t satisfying 0 ≤ t ≤ 1. Taking scalar products
of vectors in R2, and applying Schwarz’s Inequality we find that

(γ1(t)− p) . (γ2(t)− p)

= |γ1(t)− p|2 − (γ1(t)− p) . (γ1(t)− γ2(t))

≥ |γ1(t)− p|2 − |γ1(t)− p| |γ2(t)− γ1(t)|
> 0.

Consequently the angle between the displacement vectors
γ1(t)− p and γ2(t)− p is indeed an acute angle.
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It follows that, for each real number t between 0 and 1, there is a
corresponding uniquely-determined integer mt such that

2πmt − 1
2π < γ̂2(t)− γ̂1(t) < 2πmt + 1

2π.

The continuity of the functions γ̂1 and γ̂2 ensures that, given any
real number t satisfying 0 ≤ t ≤ 1 there exists some positive real
number δ such that

2πmt − 1
2π < γ̂2(u)− γ̂1(u) < 2πmt + 1

2π.

for all real numbers u satisfying the inequalities 0 ≤ u ≤ 1 and
t − δ < u < t + δ. It follows that mu = mt for all real numbers u
satisfying these inequalities. Thus the function that sends each real
number t in the closed unit interval to the integer mt is a
continuous integer-valued function on the closed unit interval, and
is thus a constant function on that interval.
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Consequently there exists some integer m, independent of t, with
the property that

2πm − 1
2π < γ̂2(t)− γ̂1(t) < 2πm + 1

2π.

for all t ∈ [0, 1].
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Now γ̂1(1) and γ̂1(0) differ by an integer multiple of 2π, because
γ1(1) = γ1(0). Similarly γ̂2(1) and γ̂2(0) differ by an integer
multiple of 2π, because γ2(1) = γ2(0). It follows that the real
numbers γ̂2(1)− γ̂1(1) and γ̂2(0)− γ̂1(0) differ by an integer
multiple of 2π. But both these numbers differ from the constant
2πm by an amount whose absolute value is less than 1

2π. It follows
that

γ̂2(1)− γ̂1(1) = γ̂2(0)− γ̂1(0).
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Rearranging this equality we find that

γ̂2(1)− γ̂2(0) = γ̂1(1)− γ̂1(0).

Now the winding numbers of the loops γ1 and γ2 about the
point p respectively are the integers that result on dividing by 2π
the quantities γ̂1(1)− γ̂1(0) and γ̂2(1)− γ̂2(0) respectively.
Consequently the winding numbers of the loops γ1 and γ2 about
the point p are equal to one another, as required.
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Remark
Imagine that you are exercising a dog in a park. You walk along a
path close to the perimeter of the park that remains at all times at
at least 200 metres from an oak tree in the centre of the park.
Your dog runs around in your vicinity, but remains at all times
within 100 metres of you. In order to leave the park you and your
dog return to the point at which you entered the park. The
Dog-Walking Lemma then ensures that the number of times that
your dog went around the oak tree in the centre of the park is equal
to the number of times that you yourself went around that tree.
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Lemma 7.4

Let γ : [0, 1]→ R2 be a loop in the plane and let W be the set
R2 \ [γ] of all points of the plane that do not lie on the loop γ.
Then the function that sends each point of W to the winding
number of the loop γ about that point is a continuous function on
W .
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Proof
Let p ∈W . Now the range [γ] of the function representing the
loop γ is a compact subset of the plane. It is therefore a closed
subset of the plane. Consequently there exists some positive real
number δ small enough to ensure that |γ(t)− p| ≥ δ > 0 for all
t ∈ [0, 1]. Let q be a point of the plane R2 satisfying |q− p| < δ,
and let η : [0, 1]→ R2 be the loop in the plane defined such that
η(t) = γ(t) + p− q for all t ∈ [0, 1]. Then γ(t)− q = η(t)− p for
all t ∈ [0, 1], and therefore the winding number of the loop γ
about the point q is equal to the winding number of the loop η
about the point p.
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Also |η(t)− γ(t)| < |γ(t)− p| for all t ∈ [0, 1]. It follows from the
Dog-Walking Lemma (Lemma 7.3) that the winding number of the
loop γ about the point q is equal to the winding number of the
loop η about the point p, and is therefore equal to the winding
number of the loop γ about the point p. This shows that the
function sending each point p to the winding number of the loop γ
about that point is a continuous function on the set W , as
required.
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Lemma 7.5

Let γ : [0, 1]→ R2 be a loop in the plane, and let R be a positive
real number with the property that |γ(t)| < R for all t ∈ [0, 1].
Then the winding number of γ about a point p of the plane is zero
if that point p satisfies |p| ≥ R.

Proof
Let γ0 : [0, 1]→ R2 be the constant path defined by γ0(t) = 0 for
all [0, 1]. If |p| ≥ R then

|γ(t)− γ0(t)| = |γ(t)| < |p| = |γ0(t)− p|.

It follows from the Dog-Walking Lemma (Lemma 7.3) that the
winding numbers of the loops γ and γ0 about the point p are equal
to one another, and thus the winding number of the loop γ about
the point p is equal to zero, as required.
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7.4. The Homotopy Invariance of Winding Numbers

Proposition 7.6

For each τ ∈ [0, 1], let γτ : [0, 1]→ R2 be a loop in the plane. Also
let p be a point of R2 that does not lie on any of the loops γτ .
Suppose that the function H : [0, 1]× [0, 1]→ R2 is continuous,
where H(t, τ) = γτ (t) for all t ∈ [0, 1] and τ ∈ [0, 1]. Then the
winding numbers of the loops γ0 and γ1 about the point p are
equal to one another.
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Proof
The closed unit square [0, 1]× [0, 1] is a closed bounded subset of
R2, and is therefore compact. It follows that the continuous
function on the closed unit square [0, 1]× [0, 1] that sends a point
(t, τ) of the square to |H(t, τ)− p|−1 is a bounded function on
[0, 1]× [0, 1] (see, for example, Lemma 1.30). Therefore there
exists some positive real number ε such that |H(t, τ)− p| ≥ ε > 0
for all t ∈ [0, 1] and τ ∈ [0, 1].
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Now any continuous vector-valued function on a a closed bounded
subset of a Euclidean space is uniformly continuous. (This follows,
for example, on combining the results of Theorem 2.9 and
Theorem 1.37.) Therefore there exists some positive real number δ
such that |H(t, τ)− H(t, τ ′)| < ε for all t ∈ [0, 1] and for all
τ, τ ′ ∈ [0, 1] satisfying |τ − τ ′| < δ. Let τ0, τ1, . . . , τm be real
numbers chosen such that 0 = τ0 < τ1 < . . . < τm = 1 and
|τj − τj−1| < δ for j = 1, 2, . . . ,m.
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Then

|γτj (t)− γτj−1(t)| = |H(t, τj)− H(t, τj−1)|
< ε ≤ |H(t, τj−1)− p| = |γτj−1(t)− p|

for all t ∈ [0, 1], and for each integer j between 1 and m. It
therefore follows from the Dog-Walking Lemma (Lemma 7.3) that
the winding numbers of the loops γτj−1 and γτj about the point p
are equal to one another for each integer j between 1 and m.
Consequently the winding numbers of the loops γ0 and γ1 about
the point p are equal to one another, as required.
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7.5. Winding Numbers of Loops in the Complex Plane

Definition

Let γ : [0, 1]→ C be a loop in the complex plane, and let w be a
complex number that does not lie on the loop γ. The winding
number of γ about w is defined to be the unique integer n(γ,w)
with the property that

γ̂(1)− γ̂(0) = 2πn(γ,w)

for any continuous real-valued function γ̂ : [0, 1]→ R that is
determined so as to ensure that

γ(t)− w = |γ(t)− w | (cos γ̂(t) + i sin γ̂(t))

for all t ∈ [0, 1], where i =
√
−1.
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Lemma 7.7

Let c be a non-zero complex number, let m be a positive integer,
and let P be the polynomial function defined such that
P(z) = czm for all complex numbers z . Also let R be a positive
real number, and let σ : [0, 1]→ C be the loop in the complex
plane defined so that

σ(t) = R cos 2πt + iR sin 2πt

for all t ∈ [0, 1], where i =
√
−1. Then the winding number

n(P ◦ σ, 0) of the loop that sends each real number t satisfying
0 ≤ t ≤ 1 to P(σ(t)) satisfies n(P ◦ σ, 0) = m.
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Proof
Let η denote the loop P ◦ σ. Then η(t) = P(σ(t)) for all
t ∈ [0, 1]. Also let θ0 be a real number for which

c = |c |(cos θ0 + i sin θ0).

Now De Moivre’s Theorem ensures that

(cos 2πt + i sin 2πt)m = cos 2mπt + i sin 2mπt

for all t ∈ [0, 1]. Consequently

η(t) = |c |Rm(cos θ0 + i sin θ0)(cos 2mπt + i sin 2mπt)

= |c |Rm(cos η̂(t) + i sin η̂(t))

for all t ∈ [0, 1], where η̂(t) = θ0 + 2mπt. It follows that
2πn(η, 0) = η̂(1)− η̂(0) = 2mπ. The result follows.
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The Dog-Walking Lemma (Lemma 7.3), when reformulated for
loops in the complex plane, may be restated as follows.

Lemma 7.8

Let γ1 : [0, 1]→ C and γ2 : [0, 1]→ C be loops in the complex
plane, and let w be a complex number that does not lie on γ1.
Suppose that |γ2(t)− γ1(t)| < |γ1(t)− w | for all t ∈ [0, 1]. Then
the winding numbers of the loops γ1 and γ2 about the complex
number w are equal to one another.
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7.6. The Fundamental Theorem of Algebra

Theorem 7.9 (The Fundamental Theorem of Algebra)

Any non-constant polynomial with complex coefficients has at least
one root in the complex plane.

Proof
We shall prove that any polynomial with complex coefficients that
is non-zero throughout the complex plane must be a constant
polynomial.

Let P(z) = c0 + c1z + · · ·+ cmz
m, where c1, c2, . . . , cm are

complex numbers and cm 6= 0. We write P(z) = Pm(z) + Q(z),
where Pm(z) = cmz

m and Q(z) = c0 + c1z + · · ·+ cm−1z
m−1. Let

R =
|c0|+ |c1|+ · · ·+ |cm|

|cm|
.
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If |z | ≥ R then |z | ≥ 1, and therefore∣∣∣∣ Q(z)

Pm(z)

∣∣∣∣ =
1

|cmz |

∣∣∣ c0
zm−1

+
c1

zm−2
+ · · ·+ cm−1

∣∣∣
≤ 1

|cm| |z |

(∣∣∣ c0
zm−1

∣∣∣+
∣∣∣ c1
zm−2

∣∣∣+ · · ·+ |cm−1|
)

≤ 1

|cm| |z |
(|c0|+ |c1|+ · · ·+ |cm−1|) <

R

|z |
≤ 1.

It follows that |P(z)− Pm(z)| < |Pm(z)| for all complex
numbers z satisfying |z | ≥ R.
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For each real number τ satisfying 0 ≤ τ ≤ 1 let γτ : [0, 1]→ C be
the loop in the complex plane defined so that

γτ (t) = P(Rτ(cos 2πt + i sin(2πt))

for all t ∈ [0, 1]. Also let η : [0, 1]→ C be the loop in the complex
plane defined so that

η(t) = Pm(R(cos 2πt+i sin(2πt)) = Rmcm(cos 2mπt+i sin(2mπt))

for all t ∈ [0, 1]. Then n(η, 0) = m (see Lemma 7.7).

Now |γ1(t)− η(t)| < |η(t)| for all t ∈ [0, 1]. It therefore follows
from the Dog-Walking Lemma (Lemma 7.8) that
n(γ1, 0) = n(η, 0) = m.
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Now if the polynomial P is everywhere non-zero then the loops γ0
and γ1 have the same winding number about zero. (This follows
directly on applying Proposition 7.6.) But γ0 is the constant loop
defined so that γ0(t) = P(0) for all t ∈ [0, 1], and consequently
the winding number of the loop γ0 about zero is equal to zero. It
follows that if the polynomial P is everywhere non-zero then the
winding number of the loop γ1 about zero is also equal to zero.
But we have already shown that this winding number is equal to
the degree m of the polynomial P. It follows that if the
polynomial P is everywhere non-zero, then it must be a constant
polynomial. Consequently every non-constant polynomial with
complex coefficients must have at least one root in the complex
plane. This completes the proof of the Fundamental Theorem of
Algebra.
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