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1. Basic Results concerning Topological Spaces

1.1. Topological Spaces

A topological space (X, T) consists of a set X which is provided
with a collection 7 of subsets of X, where this collection 7 of
subsets of X is required to satisfy appropriate axioms. The subsets
of the set X that belong to the collection 7 are referred to as open
sets. The axioms which this collection 7 is required to satisfy may
therefore be expressed in the form of properties that the collection
of open sets in any topological space must satisfy.
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Definition

A topological space X consists of a set X together with a
collection of subsets, referred to as open sets, such that the
following conditions are satisfied:—

(i) the empty set () and the whole set X are open sets,
(ii) the union of any collection of open sets is itself an open set,
(iii) the intersection of any finite collection of open sets is itself an
open set.

The collection consisting of all the open sets in a topological
space X is referred to as a topology on the set X.
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Remark

If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, 7) the topological space whose
underlying set is X and whose topology is 7. However if no
confusion will arise then it is customary to denote this topological

space simply by X.
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1.2. The Topology on a Metric Space

We now discuss metric spaces. Metric spaces are sets provided
with distance functions. There are criteria, expressible through the
utilization of distance functions, that determine which infinite
sequences in a metric space are convergent, and which functions
between metric spaces are continuous. However any metric space
has a collection of open sets, determined by the distance function,
that gives the metric space the structure of a topological space.
The concepts of convergence and continuity that arise within the
theory of topological spaces are consistent with the criteria that
characterize convergence and continuity in metric space contexts
using distance functions.
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Definition

A metric space (X, d) consists of a set X together with a distance
function d: X x X — [0, +00) on X satisfying the following
axioms:

(i) d(xy
(ii) d(x,y
(iii) d(x,z
(iv) d(x,y

>0 for all x,y € X,

=d(y,x) for all x,y € X,

< d(x,y)+d(y,z) forall x,y,z € X,
=0 if and only if x = y.

~— ~— ~—— ~—
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The quantity d(x,y) should be thought of as measuring the
distance between the points x and y. The inequality

d(x,z) < d(x,y)+d(y, z) is referred to as the Triangle Inequality.
The elements of a metric space are usually referred to as points of
that metric space.
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An n-dimensional Euclidean space R" is a metric space with
respect to the Euclidean distance function d, defined so that

> (xi = yi)?

i=1

d(x,y) =[x —y| =

for all x,y € R". Any subset X of R” may be regarded as a metric
space whose distance function is the restriction to X of the
Euclidean distance function on R".
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Definition

Let (X, d) be a metric space. Given a point p of X and a positive
real number 7, the open ball Bx(p,n) of radius n about p in X
consisting of all points of the metric space X that lie within a
distance 1 of the given point p.

Thus, given a point p of a topological space X, and given a
positive real number 7, the open ball Bx(p,n) of radius 1 centred
on the point p is defined so that

Bx(p,n) = {x € X : d(x,p) <n}.
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Definition

Let (X, d) be a metric space. A subset V of X is said to be an
open set (or is said, more specifically, to be open in X) if and only
if, given any point p of V/, there exists some positive real number §
such that the open ball of radius d centred on the point p is
contained within V.

Thus a subset V' of a metric space X is open in X if and only if,
given any point p of V there exists some positive real number § for
which Bx(p,0) C V.

The empty set is considered to be an open set in any metric space.
This can be justified on the grounds that, because the empty set
has no points at all, it cannot contain any points for which a
corresponding open ball contained in the empty set cannot be
found.
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Let X be a metric space with distance function d, and let p be a
point of X. Then, for any positive real number 7, the open ball
Bx(p,n) of radius n about the point p is an open set in X.

Proof

Let g € Bx(p,n). We must show that there exists some positive
real number ¢ such that Bx(q,d) C Bx(p,n). Now d(q,p) < n,
and hence § > 0, where 6 =7 — d(q, p). Moreover if x € Bx(q,d)
then

d(x,p) < d(x,q) +d(q,p) <0+ d(q,p) =n,

by the Triangle Inequality, hence x € Bx(p,n). Thus
Bx(q,0) C Bx(p,n), showing that Bx(p,n) is an open set, as
required. |}
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Proposition 1.2

Let X be a metric space. The collection of open sets in X has the
following properties:—

(i) the empty set () and the whole set X are both open sets;
(ii) the union of any collection of open sets is itself an open set;

(iii) the intersection of any finite collection of open sets is itself an
open set.

4
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Proof

The empty set is considered to be an open subset of every metric
space. For, as the empty set does not contain any points, there
can be no point of the empty set that is not the centre of any open
ball of positive radius contained in the empty set.
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The whole metric space is an open subset of itself because, given
any point of the metric space, every open ball of positive radius
about that point is contained within the metric space.
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Let C be any collection of open sets in X, and let W denote the
union of all the open sets belonging to C. We must show that W
is itself an open set. Let p € W. Then p € V for some open set V
belonging to the collection C. Therefore there exists some positive
real number ¢ such that Bx(p,d) C V. But V C W, and thus
Bx(p,0) C W. This shows that W is open. Thus (ii) is satisfied.
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Finally let V4, Vo, V3, ..., Vi be a finite collection of open sets in
X,andlet V=ViNnVon---NV,. Let pc V. Now p € V] for all
J, and therefore there exist strictly positive real numbers

01,02, ...,0k such that Bx(p,0;) C V, for j=1,2,... k. Let § be
the minimum of 01,02, ...,dk. Then § > 0. (This is where we
need the fact that we are dealing with a finite collection of open
sets.) Moreover Bx(p,d) C Bx(p,d;) C V; for j =1,2,...,k, and
thus Bx(p,d) C V. This shows that the intersection V of the
open sets Vi, Vo, ..., Vi is itself open. Thus (iii) is satisfied. |}
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Any metric space may be regarded as a topological space. Indeed
let X be a metric space with distance function d. We recall that a
subset V of X is an open set if and only if, given any point v of V,
there exists some positive real number § such that

{xeX:d(x,v) <d} C V.

Proposition 1.2 shows that the topological space axioms are
satisfied by the collection of open sets in any metric space. We
refer to this collection of open sets as the topology generated by
the distance function d on X.
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1.3. Further Examples of Topological Spaces

Example

Given any set X, one can define a topology on X where every
subset of X is an open set. This topology is referred to as the
discrete topology on X.
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Example
Given any set X, one can define a topology on X in which the only
open sets are the empty set () and the whole set X.
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1.4. Closed Sets

Definition

Let X be a topological space. A subset F of X is said to be a
closed set if and only if the complement X \ F of F in X is an
open set.
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We recall that the complement of the union of some collection of
subsets of some set X is the intersection of the complements of
those sets, and the complement of the intersection of some
collection of subsets of X is the union of the complements of those
sets. The following result therefore follows reasonably directly from
the definition of a topological space.
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Proposition 1.3

Let X be a topological space. Then the collection of closed sets
in X has the following properties:—

(i) the empty set ) and the whole set X are closed sets,
(ii) the intersection of any collection of closed sets is itself a
closed set,
(iii) the union of any finite collection of closed sets is itself a
closed set. )
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1.5. Neighbourhoods of Points in Topological Spaces

Definition

Let X be a topological space, let p be a point of X, and let N be a
subset of X which contains the point p. Then N is said to be a
neighbourhood of the point p if and only if there exists an open
set W for which p € W and W C N.
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Let X be a topological space. A subset VV of X is open in X if and
only if V is a neighbourhood of each of its points.

Proof

It follows directly from the definition of neighbourhoods that an
open set V is a neighbourhood of any point belonging to V.
Conversely, suppose that V' is a subset of X which is a
neighbourhood of each of its points. Then, given any point p

of V, there exists an open set W), such that p € W, and W, C V.
Thus V is an open set, since it is the union of the open sets W, as
p ranges over all points of V. |}
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Let V be an open set in a topological space X, and let p be a point
of X belonging to the open set V. Then V is a neighbourhood of
the point p, because an open set is a neighbourhood of all of its
points. Thus, given a subset V of X, and given a point p of X,
asserting that the set V is both a neighbourhood of the point p
and also an open set is equivalent to asserting that the set V is an
open set to which the point p belongs. It is therefore appropriate
to establish the following definition.

Definition

Let X be a topological space, let p be a point of X and let V be a
subset of X. Then the set V is said to be an open neighbourhood
of the point p if V is an open set in X to which the point p
belongs.
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1.6. Interiors and Closures of Subsets of Topological Spaces

Definition

Let X be a topological space and let A be a subset of X. The
interior A° of A in X is defined to be the union of all open subsets
of X that are subsets of A.

It follows directly from this definition that, given a subset A of a
topological space X, and given a point p of that topological space,
the point p belongs to the interior of A if and only if it belongs to
some open subset V of X that is contained in the set A. Thus a
point p of the topological space X belongs to the interior A? of the
set A if and only if there exists some open set V' in X for which
peVand V CA.
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Let X be a topological space and let A be a subset of X. It follows
from the definition of a topological space that any union of open
subsets of X is itself a open subset of X. It follows that the
interior of a subset A of the topological space X is an open set in
X, contained in A, that contains any other open set that is also
contained in A. The interior of a subset A of the topological

space X is thus the largest open set that is contained within the
set A.
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Let X be a topological space, let A be a subset of X, and let p be
a point of A. Then p belongs to the interior A° of the subset A if
and only if this subset A is a neighbourhood of the point p.

Proof

It follows from the definition of interiors that the point p belongs
to the interior of A if and only if there exists an open set V' such
that p € V and V C A. It then follows from the definition of
neighbourhoods that this is the case if and only if the set A is a
neighbourhood of the point p. |}
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Definition

Let X be a topological space and let A be a subset of X. The
closure A of A in X is defined to be the intersection of all of the
closed subsets of X that contain A.
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Let X be a topological space and let A be a subset of X. Then
any intersection of closed subsets of X is itself a closed subset of
X (see Proposition 1.3). It follows that the closure of a subset A
of the topological space X is a closed set in X, containing A, that
is contained in any other closed set that also contains A. The
closure of a subset A of the topological space X is thus the
smallest closed set that contains the set A.
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Let X be a topological space, let A be a subset of X, and let V be
an open set. Then the open set V is disjoint from the closure A of
the set A if and only if it is disjoint from the set A itself. (Thus,
for any open subset V of X, VA= ifand only if VNA=(.)

Proof

Suppose that V NA=0. Then VN A =0, because A is a subset
of A.

Conversely suppose that VN A=(. Then AC X\ V. Now the
complement X \ V of V is a closed set, and A is by definition the

intersection of all closed sets that contain the subset A. It follows
that A C X'\ V, and therefore VN A = (). The result follows. |}
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Proposition 1.7

Let X be a topological space, and let A be a subset of X. Then
the complement X \ A of the closure A of A is equal to the interior
(X \ A)° of the complement X \ A of A. Also the complement
X\ A° of the interior A° of A is equal to the closure X \ A of the
complement of A. (Thus

X\A=(X\A)P° and X\A°=X)\A

for all subsets A of X.)




1. Basic Results concerning Topological Spaces (continued)

Proof

Let p € X \ A, where A is the closure of the set A. Then p ¢ A.
Now A is by definition the intersection of all closed subsets of X
that contain the set A. It follows that there must exist some closed
set Fin X suchthat AC Fbutp¢g F. Let V=X\F. Then Vis
an open set, p € V, and V C X \ A. It follows that p € (X \ A)°.
We conclude from this that X \ A C (X \ A)°.
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Now let p € (X \ A)°. It follows from the definition of interiors
that there exists some open set V for which p € V and V C X'\ A.
Let F =X\ V. Then F is a closed set, A C F, but p ¢ F. It now
follows from the definition of closures that p & A, and therefore

p € X\ A. We conclude from this that (X \ A)° C X \ A. But we
have previously shown that X \ A C (X \ A)°. These set inclusions
together ensure that (X \ A)° = X'\ A.
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It remains to show that X \ A° = X \ A. Now let B = X \ A. It
follows from the previous discussion, substituting the set B in place
of A, that (X \ B)° = X \ B. Thus A° = X \ B. Taking
complements, we deduce that X \ A° = B = X \ A. The required
result is therefore established. |
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Proposition 1.8

Let X be a topological space, let A be a subset of X and let p be a
point of X. Then the point p belongs to the closure of the set A if
and only if every neighbourhood of the point p has non-empty
intersection with the set A.




1. Basic Results concerning Topological Spaces (continued)

Proof
First suppose that p € A. Then X \ A is a neighbourhood of the
point p that is disjoint from the set A.

Conversely suppose that the point p has a neighbourhood N that
is disjoint from the set A. The definition of a neighbourhood of a
point in a topological space ensures the existence of an open set V
for which pe V and V C N. Then VN A = (. It follows that

V NA={, where A is the closure of A. (Lemma 1.6). Now

p € V. It follows that p & A.

We have now shown that the point p belongs to the complement
X \ A of the closure A of the set A if and only if it has a
neighbourhood that is disjoint from the set A. It follows the

point p belongs to the closure A of A if and only if every
neighbourhood of the point p has non-empty intersection with the
set A. This concludes the proof. |}
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1.7. Relationships involving Preimages of Sets

Definition

Let X and Y be sets, let ¢: X — Y be a function from X to Y,
and let B be a subset of the set Y. The preimage ¢~1(B) of B
under the function ¢ is the subset of X consisting of all points p of
X for which ¢(p) € B.

Thus, given a function ¢: X — Y from a set X to a set Y, and
given a subset B of Y, the preimage o ~!(B) of the set B under
the function ¢ is defined so that

¢ (B)={p € X:p(p)c B}
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We establish some basic results concerning preimages of sets under
functions between sets.
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Let ¢: X — Y be a function from a set X to a set Y, and let C be
a collection of subsets of Y. Then the union of the preimages,
under ¢, of the sets in the collection C is the preimage of the union
of those sets.
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Proof

Let G denote the union of the subsets of the set Y that belong to
the collection C, and let F denote the union of the preimages,
under ¢, of the sets belonging to the collection C. Then, for any
point p of the set X,

pe¢(G)

p(p) € G

there exists B € C for which ¢(p) € B
there exists B € C for which p € p™}(B)
peF.

1o

It follows that ¢ ~1(G) = F. Thus the preimage of the union of the
sets belonging to the collection C is the union of the preimages of
those sets, as required. |}
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Let ¢: X — Y be a function from a set X to a set Y, and let C be
a collection of subsets of Y. Then the intersection of the
preimages, under @, of the sets in the collection C is the preimage
of the intersection of those sets.
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Proof

Let K denote the intersection of the subsets of the set Y that
belong to the collection C, and let H denote the intersection of the
preimages, under ¢, of the sets belonging to the collection C.
Then, for any point p of the set X,

pep (K)

o(p) € K

o(p) € Bforall BeC
peye YB)forall BeC
p € H.

1o

It follows that ¢ 1(K) = H. Thus the preimage of the intersection
of the sets belonging to the collection C is the intersection of the
preimages of those sets, as required. |}
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Let o: X = Y be a function from a set X to a set Y, and let B
be a subset of Y. Then X \ ¢~ 1(B) = ¢~ 1(Y \ B)
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Proof
Let p be a point of the domain X of the function. Then

peX\¢ (B)
p& e '(B)
o(p) ¢ B

p(p) e Y\B
peyp(Y\B).

It follows from this that X \ ¢™1(B) = p~1(Y \ B), as
required. [

(R
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1.8. Induced Topologies and Subspace Topologies

Let X be a set, let Y be a topological space, and let o: X — Y be
a function from the set X to the topological space Y. Let T be the
collection consisting of those subsets of X that are preimages,
under @, of open sets in Y. Then the collection T of subsets of X
satisfies the topological space axioms, and thus the set X, with the
collection T of open sets, is a topological space.

V,
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Proof

The empty set is the preimage of the empty set, and the whole
set X is the preimage, under @, of the whole of Y. Moreover the
empty set and the whole of the topological space Y are open
subsets of Y. It follows that the empty set and the whole set X
belong to the collection 7 of subsets of X.
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Suppose that we are given a collection 5 of members of the
collection 7. Then there is a corresponding collection C of open
sets in the topological space Y determined so that the members of
the collection B of subsets of X are preimages, under the

function ¢, of corresponding members of the collection C. It
follows that the union of the members of the collection B is the
union of the preimages of the members of the collection C, and is
thus the preimage of the union of the members of the collection C
(Lemma 1.9); it is accordingly the preimage of a union of open sets
in the topological space Y, and is therefore the preimage of an
open set in the topological space Y. It follows that the union of
the members of the collection B belongs to the collection 7 of
subsets of X.
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Also, in cases where the collection B is finite, the intersection of
the members of the collection B is the intersection of the preimages
of the members of the collection C, and is thus the preimage of the
intersection of the members of the collection C (Lemma 1.10); it is
accordingly the preimage of a finite intersection of open sets in the
topological space Y, and is therefore the preimage of an open set
in the topological space Y. It follows that, in cases where the
collection B is finite, the intersection of the members of the
collection B belongs to the collection 7 of subsets of X.
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These results establish that the collection 7 of subsets of the set X
does indeed satisfy the topological space axioms, and thus the
set X, with the collection 7 of open sets, is a topological

space. |i
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Definition

Let X be a set, let Y be a topological space, and let ¢: X — Y be
a function from the set X to the topological space Y. The induced
topology on X determined by the function ¢ is that topology
whose collection 7 of open sets consists of those subsets of X that
are preimages, under ¢, of open sets in Y.
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An important special case of induced topologies arises when the
functions inducing the topologies are inclusion maps. The induced
topologies determined by inclusion maps are subspace topologies.
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Definition

Let X be a topological space with topology 7, and let A be a
subset of the set X. The subspace topology on A is the topology
T4 that consists of those subsets of A that are the intersections of

A with open sets in X.
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Let i: A< X be the inclusion map embedding the subset A in the
topological space X. Then AN B = i~1(B) for all subsets B of X.
Lemma 1.12 therefore ensures that the subspace topology is indeed
a topology on the set A: it is in fact the topology on the subset A
induced by the inclusion map i: A — X.
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Let X be a topological space, let A be a subset of X, and let B be
a subset of A. Then B is closed in A (relative to the subspace
topology on A) if and only if B= AN F for some closed subset F
of X.
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Proof
Suppose that B = AN F for some closed subset F of X. Let
V =X\ F. Then V is an open set in X, and

A\B=A\(ANF)=AN(X\F)=ANV.

Moreover the definition of the subpace topology on A ensures that
ANV isopenin A. Thus the complement A\ B of B in A is open
in A, and therefore the subset B of A is itself closed in A.
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Conversely suppose that B is closed in A. Then A\ B is open in
the subspace topology on A, and therefore there exists some open
set V in X such that A\ B=ANV. Let F=X\ V. Then F is

closed in X, and
ANF=AN(X\V)=A\(ANnV)=A\(A\B)=B.

The result follows. |
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Let X be a topological space, let V' be an open set in X, and let
W be a subset of V. Then W is open in V if and only if W is
open in X.

Proof
If W is open in X then W = VN W and therefore W is open in V.

Conversely suppose that the set W is open in V. It then follows
from the definition of subspace topologies that W = V N E for
some open set E in X. But then W is an intersection of two open
sets, and is thus itself open in X. |}
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Let X be a topological space, let F be a closed set in X, and let G
be a subset of F. Then G is closed in F if and only if G is closed
in X.

Proof
If G is closed in X then G = F N G and therefore G is closed in F.

Conversely suppose that the set G is closed in F. It then follows
from Lemma 1.13 that G = F N H for some closed set H in X.
But then G is an intersection of two closed sets, and is thus itself
closed in X (see Proposition 1.3). |}
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1.9. Hausdorff Spaces

Definition

A topological space X is said to be a Hausdorff space if and only if
it satisfies the following Hausdorff Axiom:

@ if p and g are distinct points of X then there exist open sets
Uand Vin Xsuchthat pe U, ge Vand UNV = (.
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Any subset of a Hausdorff space is itself a Hausdorff space (with
respect to the subspace topology).

Proof

Let A be a subset of a Hausdorff space X and let p and g be
distinct points of A. Then there exist open sets U and V in X
suchthat pe U, ge Vand UNV =0. Let M= AN U and

N =ANV. Then M and N are subsets of A that are open in the
subspace topology on A. Moreover p € M, g € N and MN N = ().
The result follows. |
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All metric spaces are Hausdorff spaces.

Proof

Let X be a metric space with distance function d, and let p and g
be points of X, where p # q. Let ¢ = %d(p, q). Then the open
balls Bx(p, ¢) and Bx(q, €) of radius & centred on the points p and
g are open sets (see Lemma 1.1). If Bx(p,c) N Bx(q,¢) were
non-empty then there would exist z € X satisfying d(p,z) < ¢ and
d(z,q) < . But this is impossible, since it would then follow from
the Triangle Inequality that d(p, g) < 2¢, contrary to the choice
of . Thus p € Bx(p,¢), q € Bx(q,¢) and

Bx(p,e) N Bx(g,g) = 0. This shows that the metric space X is a
Hausdorff space. |}
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We now give an example of a topological space which is not a
Hausdorff space.

Example

Let X be an infinite set. The cofinite topology on X is defined as
follows: a subset U of X is open (with respect to the cofinite
topology) if and only if either U = () or else X \ U is finite. It is a
straightforward exercise to verify that the topological space axioms
are satisfied, so that the set X is a topological space with respect
to this cofinite topology. Now the intersection of any two
non-empty open sets in this topology is always non-empty. (Indeed
if U and V are non-empty open sets then U = X \ F and

V = X\ G, where F and G are finite subsets of X. But then
UNnV =X\ (FUG), which is non-empty, since F U G is finite
and X is infinite.) It follows immediately from this that an infinite
set X is not a Hausdorff space with respect to the cofinite
topology on X.
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1.10. Continuous Maps between Topological Spaces

Definition

A function ¢: X — Y from a topological space X to a topological
space Y is said to be continuous if the preimage ¢~1(V) of every
open subset V of Y is an open set in X.

A continuous function from X to Y is often referred to as a map
from X to Y.
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Lemma 1.18

Let X, Y and Z be topological spaces, and let o: X — Y and
¥:Y — Z be continuous functions. Then the composition
o p: X = Z of the functions © and 1 is continuous.

Proof

Let V be an open set in Z. Then ¢y~1(V) is open in Y (because v
is continuous), and then () ~1(V)) is open in X (because ¢ is
continuous). But o~} (¢¥"1(V)) = (v o )~ (V). Thus the
composition function 1) o ¢ is continuous. |
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Let X and Y be topological spaces, and let p: X — Y be a
function from X to Y. The function ¢ is continuous if and only if
0 Y(G) is closed in X for every closed subset G of Y.
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Proof

Suppose first that the function ¢: X — Y is continuous and that
G is a closed set in Y. Then the complement Y \ G of G in Y is
an open set in Y. It follows from the continuity of the function ¢
that the preimage ¢~ 1(Y \ G) of the complement Y \ G of G is
an open set in X. But o }(Y\ G) = X \ ¢ }(G). We conclude
therefore that the complement X \ »~1(G) of the

preimage ¢ 1(G) of G is an open set in X, and therefore the
preimage ¢~ 1(G) of the set G is a closed set in X.
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Conversely suppose that ¢: X — Y is some function from X to Y
with the property that the preimage ¢ ~1(G) of every closed subset
of Y is a closed set in X. We must show that the function ¢ is
continuous. Let V be an open set in Y. Then Y \ V is a closed
set in Y, and therefore its preimage o~ }(Y \ V) is a closed set in
X. But o} (Y'\ V) = X\ ¢ 1(V). It follows that the preimage
@ 1(V) of the open set V is the complement of a closed set, and
is therefore an open set in the topological space X. We have thus
shown that the preimage of every open subset of Y is open in X. It
follows that the function ¢: X — Y is continuous, as required. |}
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1.11. Pointwise Continuity

Definition

Let X and Y be topological spaces, let ¢: X — Y be a function
from X to Y and let p be a point of X. The function ¢ is said to
be continuous at p if, given any open neighbourhood V in Y of
the point (p), the preimage (V) of V under the function ¢ is
a neighbourhood in X of the point p.
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Let X and Y be topological spaces, let ¢: X — Y be a function
from X to Y and let p be a point of X. The function @ is
continuous at the point p if and only if, for all neighbourhoods N
in Y of o(p), the preimage ¢~1(N) of N is a neighbourhood in X
of the point p.

A

Proof

If the preimage of any neighbourhood in Y of ¢(p) under the
function ¢ is a neighbourhood in X of the point p, then, in
particular, the preimage of any open neighbourhood of ¢(p) must
be a neighbourhood of the point p itself, and thus the function ¢
is continuous at the point p.
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Conversely suppose that the function ¢ is continuous at the
point p. Let N be a neighbourhood of the point ¢(p) in Y. The
definition of a neighbourhood of a point in a topological space
ensures the existence of an open set V for which p € V and

V C N. The continuity of the function ¢ at p then ensures that
the preimage ¢ ~1(V) under ¢ is a neighbourhood of the point p.
Now ¢~ 1(V) C ¢~1(N), and any superset of a neighbourhood of
p is itself a neighbourhood of p. We deduce therefore that the
preimage ¢ 1(N) under ¢ of the neighbourhood N of ¢(p) must
be a neighbourhood of the point p, as required. |}
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Proposition 1.21

Let X and Y be topological spaces and let o: X — Y be a
function from X to Y. Then the function ¢ is continuous on X if
and only if it is continuous at each point of X.
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Proof

Suppose that ¢: X — Y is continuous on X. Let p be a point of
X and let V be an open neighbourhood in Y of the point ¢(p).
The continuity of ¢ ensures that (V) is open in X. Now an
open set is a neighbourhood of each of its points. We conclude
therefore that the preimage ¢ ~1(V/) of the open set V is a
neighbourhood of the point p, and therefore the function

@: X — Y is continuous at the point p. Thus a continuous
function is continuous at each point of its domain.
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Conversely suppose that ¢: X — Y is continuous at each point of
X. Let V be an open set in Y. Then, the preimage of this open
set V is a neighbourhood of each of its points, and is therefore
open in X (see Lemma 1.4). Thus the preimage of every open

set V in Y is an open set in X, and therefore the function

¢: X — Y is continuous on X, as required. |}
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Let X and Y be topological spaces, let ¢o: X — Y be a function
from X to Y and let p be a point of X. Then ¢: X — Y is
continuous at p if and only if, given any neighbourhood N of (p),
there exists a neighbourhood M of p for which o(M) C N.

Proof

Let N be a neighbourhood of ¢(p) in Y. Suppose that there exists
a neighbourhood M of p in X for which ¢(M) C N. The definition
of neighbourhoods of points in topological spaces then ensures
that there exists an open set W in X for which p € W and

W C M. Then o(W) C N and therefore W C ¢~ 1(N). It follows
that ¢ ~1(N) is a neighbourhood of p in X, and thus the

function ¢ is continuous at p.
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Conversely suppose that the function ¢ is continuous at p. Let N
be a neighbourhood of ¢(p) in Y, and let M = = 1(N). Then M
is a neighbourhood of p in X, because the function ¢ is continuous
at p, and (M) C N. The result follows. |}
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Let X, Y and Z be topological spaces, let p: X — Y and

¥: Y — Z be functions, and let p be a point of X. Suppose that
w: X = Y is continuous at p and that v): Y — Z is continuous at
©(p). Then the composition 1) o @: X — Z of the functions ¢
and 1 is continuous at p.

.

Proof

Let N be a neighbourhood of ¥(,o(p)) in Z. Then ¢»~1(N) is a
neighbourhood of ¢(p) in Y, because 1 is continuous at ¢(p).
But then ¢~ 1(y"}(N)) is a neighbourhood of p in X, because ¢ is
continuous at p. But ¢~} (¢p"1(N)) = (v 0 ¢)H(N). Thus the
composition function ¢ o ¢ is continuous at p. |
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Proposition 1.24

Let X and Y be topological spaces and let o: X — Y be a
function from X to Y. Then ¢: X — Y s continuous if and only
if, given any point p of X, there exists some open set W in X such
that p € W and the restriction o|W: W — Y of the function ¢ to
W is continuous on W .

o

Proof

Suppose that ¢: X — Y is continuous. Let W be an open set in
X, and let V be an open set in Y. Then the preimage o~ (V) of
V is open in X. Now (p|W)~1(V) = ¢~ 1(V) N W. It follows that
(o|W)~1(V) is open with respect to the subspace topology on W.
Consequently the restriction ¢|W of the function ¢ to W is
continuous on W.
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We now establish the converse result. Let V' be an open set in Y,
and let p € p~1(V). Suppose that the restriction p|W: W — Y
of ¢ to some open neighbourhood W of the point p is continuous.
Then the preimage (¢|W)~1(V) of V under the restriction
function ¢|W is open with respect to the subspace topology on
W. Moreover (o~ W)(V) = ¢~ }(V) N W. It follows from the
definition of subspace topologies that there exists an open set E in
X for which p=}(V)N W = ENnW. Now E N W is open in X,
because the sets E and W are both openin X. Alsope ENW
and ENW C p~}(V). It follows that ¢~ 1(V) is a neighbourhood
of p in X. We conclude from this that ¢ is continuous at the point
p. Thus the function ¢ is thus continuous at each point p of its
domain. Such a function is continuous on its domain

(Proposition 1.21). Accordingly the function p: X — Y'is
continuous, as required. |}
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1.12. Homeomorphisms

Definition
Let X and Y be topological spaces. A function ¢: X — Y is said
to be a homeomorphism if and only if the following conditions are
satisfied:
@ the function ¢: X — Y is both injective and surjective (so
that the function ¢: X — Y has a well-defined inverse
e Y = X),
e the function ¢: X — Y and its inverse ¢~ !: Y — X are both
continuous.
Two topological spaces X and Y are said to be homeomorphic if
there exists a homeomorphism ¢: X — Y from X to Y.

A
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If o: X — Y is a homeomorphism between topological spaces X
and Y then ¢ induces a one-to-one correspondence between the
open sets of X and the open sets of Y. Thus the topological
spaces X and Y can be regarded as being essentially identical as
topological spaces.
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1.13. The Pasting Lemma

We now show that, if a topological space X is the union of a finite
collection of closed sets, and if a function from X to some
topological space is continuous on each of these closed sets, then
that function is continuous on X. The names Pasting Lemma and
Gluing Lemma are both used to refer to this result.

Lemma 1.25 (Pasting Lemma)

Let X and Y be topological spaces, let ¢: X — Y be a function
from X to Y, and let X = A U Ay, U ---U Ay, where

A1, Ao, ..., Ak are closed sets in X. Suppose that the restriction of
© to the closed set A; is continuous for i = 1,2, ... k. Then
p: X = Y is continuous.

.
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Proof

Let p be a point of X, and let N be a neighbourhood of ¢(p). The
continuity of the restriction of ¢ to each closed set A; ensures the
existence of open sets W; for i = 1,2,..., k such that W, N A; =0
whenever p ¢ A; and p(W; N A;) C N whenever p € A;. Let

W=wnWn---nNn W,

Then W is an open set in X, and p € W. Moreover given any
point g of W, there exists some integer i between 1 and k for
which g € A; and p € A;. Indeed the point ¢ must belong to at
least one of the sets A;, As, ..., Ax. But the set W, being
contained in each set W;, is disjoint from those sets A; to which
the point p does not belong. Therefore the point g must belong to
some set A; to which the point p also belongs. But then

g € W; N Aj, and therefore ¢(q) € N. We conclude from this that
the function ¢ is continuous at each point p of X. It follows that
the function ¢ is continuous on X (see Proposition 1.21). |}
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Alternative Proof

A function ¢: X — Y is continuous if and only if the preimage
¢~ 1(G) of every closed subset G of the codomain Y is closed in
the domain X (Lemma 1.19). Let G be an closed set in Y. Then
0 Y(G)N A; is closed in the subspace topology on A; for
i=1,2,...,k, because the restriction of ¢ to A; is continuous for
each /. But the set A; is closed in X, and therefore a subset of A;
is closed in A; if and only if it is closed in X (see Lemma 1.15).
Consequently ¢ ~1(G) N A; is closed in X for i =1,2,..., k. Now
©~1(G) is the union of the sets ¢ 1(G)N A, for i =1,2,... k. It
follows that go_l(G), being a finite union of closed sets, is itself
closed in X. It now follows from Lemma 1.19 that p: X — Y is
continuous. |
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Example

Let Y be a topological space, and let a: [0,1] — Y and
B:[0,1] = Y be continuous functions defined on the interval
[0, 1], where a(1) = 5(0). Let : [0,1] — Y be defined by

[ a(2t) ifo<t<s;
V(t)_{ BRt—1) ifl<t<l

Now 7|[0, 3] = a0 p where p: [0, 3] — [0,1] is the continuous
function defined by p(t) = 2t for all t € [0, 1]. Thus 7|[0, 3] is
continuous, being a composition of two continuous functions.
Similarly v|[3, 1] is continuous. The subintervals [0, 3] and [}, 1]
are closed in [0, 1], and [0, 1] is the union of these two subintervals.
One applying the Pasting Lemma (Lemma 1.25), we conclude that
v:[0,1] — Y is continuous.
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Example

Let X be the surface of a closed cube in R3 and let ¢: X — Y be
a function mapping X into a topological space Y. The topological
space X is the union of the six square faces of the cube, and each
of these faces is a closed subset of X. The Pasting Lemma
Lemma 1.25 ensures that the function ¢ is continuous if and only
if its restrictions to each of the six faces of the cube is continuous
on that face.



1. Basic Results concerning Topological Spaces (continued)

We now present a couple of examples to show that the conclusions
of the Pasting Lemma (Lemma 1.25) do not follow when the
conditions stated in that lemma are relaxed.

Example
Let f: R — R be defined so that

0 ifx<0o,
f(X)_{ 1 if x>0,

and let Ay = {x e R: x <0} and Ay ={x € R:x>0}. The
restriction of the function f to each of the subsets A; and A, of R
is continuous on that subset, but the function f itself is not
continuous on R. This does not contradict the Pasting Lemma
because the subset A, of R is not closed in R.
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Example
Let

1
X:{O}U{n:nEZandn>0},

and let f: X — R be defined so that f(0) =0 and 7(1/n) = n for
all positive integers n. For each x € X, the set {x} is a closed
subset of X, and the restriction of f to each of these one-point
subsets is continuous on that subset. But the function f itself is
not continuous on X. This does not contradict the Pasting Lemma
because the number of these one-point closed subsets of X is
infinite.
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1.14. Compact Topological Spaces

Let X be a topological space, and let A be a subset of X. A
collection of subsets of X is said to cover the set A if and only if
every point of A belongs to at least one of these subsets. In
particular, an open cover of X is a collection of open sets in X
that covers X.

If C and D are open covers of some topological space X then D is
said to be a subcover of C if and only if every open set belonging
to D also belongs to C.

Definition

A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.
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Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any
collection C of open sets in X covering A, there exists a finite
collection Vi, Vi, ..., V, of open sets belonging to C such that
ACViuWVoU---UV,.

Proof

Given a collection D of subsets of A, where the members of this
collection are open with respect to the subspace topology on A,
there exists a corresponding collection C of open sets in X whose
intersections with the set A are the members of the collection D.
It follows that the open cover D of the set A has a finite subcover
if and only if some finite subcollection of the collection C of open
sets in X covers A. The result follows. |}
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We now show that any closed bounded interval in the real line is
compact. This result is known as the Heine-Borel Theorem. The
proof of this theorem uses the Least Upper Bound Principle which
states that, given any non-empty set S of real numbers which is
bounded above, there exists a least upper bound (or supremum)
sup S for the set S.

Theorem 1.27 (Heine-Borel Theorem in One Dimension)

Let a and b be real numbers satisfying a < b. Then the closed
bounded interval [a, b] is a compact subset of R.




1. Basic Results concerning Topological Spaces (continued)

Proof

Let C be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open
sets. We must show that [a, b] is covered by finitely many of these
open sets.

Let S be the subset of [a, b] defined so that a real number 7 in the
interval [a, b] belongs to the set S if and only if the closed
bounded interval [a, 7] is covered by some finite collection of open
sets belonging to C. Also let u =supS. Now u € W for some
open set W belonging to C. Moreover W is open in R, and
therefore there exists some positive real number § such that
(u—9,u+0) C W. Moreover u — ¢ is not an upper bound for the
set S, hence there exists some 7 € S satisfying 7 > u — 4. It
follows from the definition of S that [a, 7] is covered by some finite
collection Vi, Vi, ..., V, of open sets belonging to C.
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Let t € [a, b] satisfy 7 < t < u+ . Then
[a,t] C [a,7]U(u—0,u+d)C ViU VL U---UV,UW,

and thus t € S. In particular v € S, and moreover u = b, since
otherwise u would not be an upper bound of the set S. Thus

b € S, and therefore [a, b| is covered by a finite collection of open
sets belonging to C, as required. |
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Lemma 1.28

Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof

Let C be any collection of open sets in X covering A. On adjoining
the open set X \ A to C, we obtain an open cover of X. This open
cover of X possesses a finite subcover, since X is compact.
Moreover A is covered by the open sets in the collection C that
belong to this finite subcover. It follows (applying Lemma 1.26)
that A is compact, as required. |}



1. Basic Results concerning Topological Spaces (continued)

Let p: X — Y be a continuous function between topological
spaces X and Y, and let A be a compact subset of X. Then p(A)
is @ compact subset of Y.

Proof

Let C be a collection of open sets in Y which covers ¢(A). Then A
is covered by the collection of all open sets of the form ¢ ~1(V) for
some V € C. It follows from the compactness of A that there
exists a finite collection Vi, V5, ..., V| of open sets belonging to C
such that

ACp M (Vi) Up N (V) U - Up M (Vi)

But then p(A) C V4 U Vo U--- U V. This shows that ¢(A) is
compact. |}
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Let f: X — R be a continuous real-valued function on a compact
topological space X. Then f is bounded above and below on X.

Proof

For each positive integer j, let V; = {p e X : —j < f(p) < j}.
Then, for each positive integer j, the subset V; of X is the
preimage under the continuous map f of the open interval (—j, ),
and moreover (—j, ) is open in R. It follows from the continuity of
f that V; is an open set in X for all positive integers j. Moreover
the compact topological space X is covered by these open sets. It
follows from the compactness of X that there exist positive
integers ji1,j2, - .., jk such that

»
Let N be the largest of the positive integers ji,Jj2,...,jk. Then
—N < f(p) < N for all p € X. The result follows. [
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Proposition 1.31

Let f: X — R be a continuous real-valued function on a compact
topological space X. Then there exist points u and v of X such
that f(u) < f(p) < f(v) for all p € X.

Proof
The function f: X — R is bounded on X (Lemma 1.30). Let
m = inf{f(p) : p € X} and M = sup{f(p) : p € X}. For each
positive integer j let V; = {p € X : f(p) < M —1/j}. Then the
set Vj is an open set in X, being the preimage of an open interval
in R under the continuous map f. If ji, o, ..., jx are positive
integers then

ViuV,u.---JV, =Wy

where N is the largest of the positive integers ji, jo, ..., jk.
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Moreover V) is a proper subset of X, because M — 1/N is not an
upper bound on the values of the function f on X. It follows that
X cannot covered by any finite collection of sets from the
collection (V; : j € N). It then follows from the compactness of X
that (V; : j € N) is not an open cover of X, and therefore there
exists v € X for which f(v) = M. Applying this argument with f
replaced by —f, we conclude that there also exists u € X for which
f(u) =m. Then f(u) < f(p) < f(v) forall pe X, as

required. |}
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1.15. Compact Subsets of Hausdorff Spaces

Proposition 1.32

Let X be a Hausdorff topological space, and let K be a compact
subset of X. Let p be a point of X \ K. Then there exist open sets
V and W in X such thatpe V, KC W and VN W = 0.

Proof

For each point g € K there exist open sets V,, 4 and W, 4 such
that p € Vpq, g€ Wpqand V, g N Wy q =0 (since X is a
Hausdorff space). But then there exists a finite set {q1,q2,...,q,}
of points of K such that K is contained in

Wp g UWp g, U---UW,g,, since K is compact. Define

V=VoaMVpeN NV, W= WpqUWp U - -UWp q,.

Then V and W are opensets, pc V, KC Wand VNW =0, as
required. |
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Corollary 1.33

A compact subset of a Hausdorff topological space is closed.

Proof

Let K be a compact subset of a Hausdorff topological space X. It
follows immediately from Proposition 1.32 that, for each

p € X\ K, there exists an open set V), such that p € V, and

Vo N K = 0. It follows that the complement X \ K of K in X is a
neighbourhood of each of its points, and consequently is an open
set in X (see Lemma 1.4). Thus the compact set K, being the
complement of an open set, is itself closed in X. |}
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Let ¢o: X — Y be a continuous function from a compact
topological space X to a Hausdorff space Y. Then ¢(K) is closed
in'Y for every closed set K in X.

Proof

If K is a closed set in X, then K is compact (Lemma 1.28), and
therefore ¢(K) is compact (Lemma 1.29). But any compact
subset of a Hausdorff space is closed (Corollary 1.33). Thus ¢(K)
is closed in Y, as required. |}
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A continuous bijection ¢: X — Y from a compact topological
space X to a Hausdorff space Y is a homeomorphism.

Proof

Let u: Y — X be the inverse of the bijection ¢: X — Y. If W is
open in X then X \ W is closed in X, and hence p(X \ W) is
closed in Y (see Lemma 1.34). But

P(X\ W) = HX\ W) =Y\ H(W)

(see Lemma 1.11). It follows that x~1(W) is open in Y for every
open set W in X. Therefore u: Y — X is continuous, and thus
@: X = Y is a homeomorphism. |}
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1.16. The Lebesgue Lemma and Uniform Continuity

Definition

Let X be a metric space with distance function d. A subset A of X
is said to be bounded if there exists a non-negative real number K
with the property that d(u, v) < K for all u,v € A. The smallest
real number K with this property is referred to as the diameter of
A, and is denoted by diam A. (Note that the diameter of the set A
is the least upper bound of the values of the distances between
pairs of points of the set A.)
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Lemma 1.36 (Lebesgue Lemma)

Let (X, d) be a compact metric space and let C be an open cover
of X. Then there exists a positive real number § with the following
property: every subset of X whose diameter is less than § is
contained wholly within at least one of the open sets belonging to
the open cover C.
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Proof

Every point of X belongs to at least one of the open sets
belonging to the open cover C. It follows from this that, for each
point p of X, there exists some positive real number d, such that
the open ball B(p, 26,,) of radius 25, centred on the point p is
contained wholly within at least one of the open sets belonging to
the open cover C. But then the collection consisting of the open
balls B(p, 6p) of radius d, centred on the points p of X forms an
open cover of the compact space X. There therefore exists a finite
set p1, p2, ..., pk of points of X such that

B(p1,01) U B(p2,02) U--- U B(px, 6x) = X,

where §; = 0p, for i =1,2,..., k. Let 6 be the minimum of
01,02,...,0k. Then § > 0.
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Suppose that A is a subset of X whose diameter is less than 4. Let
u be a point of A. Then, for some integer i between 1 and k, the
point u belongs to B(p;,d;). It then follows that A C B(p;, 26;),
since, for each point v of A,

d(v,pi) < d(v,u)+d(u,p;j) <6+ 0; <24

But B(pi, 29;) is contained wholly within at least one of the open
sets belonging to the open cover C. Thus A is contained wholly
within at least one of the open sets belonging to C, as required. |}
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Definition

Let C be an open cover of a compact metric space X. A Lebesgue
number for the open cover C is a positive real number § with the
following property: every subset of X whose diameter is less than a
Lebesgue number § is contained wholly within one of the open sets
belonging to the open cover C.

The Lebesgue Lemma thus states that there exists a Lebesgue
number for every open cover of a compact metric space.
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Definition

Let X and Y be metric spaces with distance functions dx and dy
respectively, and let ¢p: X — Y be a function from X to Y. The
function ¢ is said to be uniformly continuous on X if and only if,
given any positive real number €, there exists some positive real
number 0 such that dy(p(u), ¢(v)) < e for all points u and v of
X satisfying dx(u,v) < 0. (The value of 0 should be independent
of both v and v.)
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Let X and Y be metric spaces. Suppose that X is compact. Then
every continuous function from X to Y is uniformly continuous.

Proof

Let dx and dy denote the distance functions for the metric spaces
X and Y respectively. Let ¢: X — Y be a continuous function
from X to Y. We must show that the function ¢ is uniformly
continuous.
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Let some positive real number ¢ be given. For each g € Y, define
Vo = {p € X : dy(¢(p), q) < 3¢}-

Note that Vg = ¢! (By(q, 3¢)), where By(gq, 3¢) denotes the
open ball of radius %5 centred on the point g in Y. Now the open
ball By(q, %5) is an open set in Y, and ¢ is continuous. Therefore

Vq is open in X for all g € Y. Note that p € V,,,,) for all p € X.

Now {Vg : g € Y} is an open cover of the compact metric
space X. It follows from the Lebesgue Lemma (Lemma 1.36) that
there exists some positive real number § such that every subset of
X whose diameter is less than J is a subset of some set V.



1. Basic Results concerning Topological Spaces (continued)

Now let u and v be points of X satisfying dx(u,v) < 4. The
diameter of the set {u, v} is dx(u, v), which is less than ¢.
Therefore there exists some g € Y such that u€ Vg and v € V.

But then dy(p(u), g) < ie and dy(¢(v),q) < 3¢, and hence

dy(e(u),(v)) < dy(e(u), q) + dv (g, o(v)) <e.

This shows that ¢: X — Y is uniformly continuous, as
required. |}
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