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3. Connected, Path-Connected and Simply Connected Spaces

3.1. Connected Topological Spaces

Definition

A topological space X is said to be connected if the empty set ∅
and the whole space X are the only subsets of X that are both
open and closed.



3. Connected, Path-Connected and Simply Connected Spaces (continued)

Lemma 3.1

A topological space X is connected if and only if the intersection
of any two non-empty open sets in X that cover X is non-empty.
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Proof
Suppose that the topological space X has the property that the
intersection of any two non-empty open sets in X that cover X is
non-empty. Let V be a subset of X that is both open and closed in
X , and let W = X \ V . Then V ∩W = ∅ and V ∪W = X . It
follows that the open sets V and W cannot both be non-empty,
for if they were then V and W would be two disjoint non-empty
open sets in X covering X whose intersection is the empty set,
contradicting the stated property that, by assumption, is possessed
by the topological space X . Moreover W = ∅ if and only if
V = X . Thus either V = ∅ or else V = X . We conclude therefore
that a topological space having the stated property is connected.
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Conversely, suppose that the topological space X is connected. Let
V and W be non-empty open subsets of X that cover X . If these
sets were disjoint then W would be the complement of X in V ,
and thus V would be a non-empty open set whose complement is
a non-empty open set. Consequently V would be a subset of X
that was both open and closed, but that was neither the empty set
nor the whole space X , and thus the space X would not be
connected. We conclude therefore that the intersection of the sets
V and W must be non-empty. This completes the proof.
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Lemma 3.2

A topological space X is connected if and only if the union of any
two disjoint non-empty open sets in X is a proper subset of X .
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Proof
Suppose that the topological space X has the property that, given
any two disjoint non-empty open sets in X , the union of those
open sets is a proper subset of X . Let V be a subset of X that is
both open and closed in X , and let W = X \ V . Then V and W
are open sets in X for which V ∪W = X . Now, by assumption,
two disjoint non-empty open subsets of X cannot cover X . But
the open sets V and W are disjoint and cover X . Consequently
these open sets cannot both be non-empty, and thus either V = ∅
or else W = ∅. Moreover W = ∅ if and only if V = X . Thus
either V = ∅ or V = X . We conclude therefore that a topological
space having the stated property is connected.
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Conversely, suppose that the topological space X is connected. Let
V and W be disjoint non-empty open subsets of X . If it were the
case that V ∪W = X then W = X \ V , and thus the sets V and
X \ V would both be non-empty open sets. Consequently V would
be a subset of X that was both open and closed, but that was
neither the empty set ∅ nor the whole space X , and thus the
space X would not be connected. We conclude therefore that the
set V ∪W cannot be the whole of the topological space X and
thus must be a proper subset of X . This completes the proof.
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Definition

A topological space D is discrete if every subset of D is open in D.

Example
The set Z of integers with the usual topology is an example of a
discrete topological space. Indeed, given any integer n, the set {n}
is open in Z, because it is the intersection of Z with the open ball
in R of radius 1

2 about n. Any non-empty subset S of Z is the
union of the sets {n} as n ranges over the elements of S .
Therefore every subset of Z is open in Z, and thus Z, with the
usual topology, is a discrete topological space.
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Proposition 3.3

Let X be a non-empty topological space, and let D be a discrete
topological space with at least two elements. Then X is connected
if and only if every continuous function from X to D is constant.

Proof
Suppose that X is connected. Let f : X → D be a continuous
function from X to D, let d ∈ f (X ), and let Z = f −1({d}). Now
{d} is both open and closed in D. It follows from the continuity of
f : X → D that Z is both open and closed in X . Moreover Z is
non-empty. It follows from the connectedness of X that Z = X ,
and thus f : X → D is constant.
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Now suppose that X is not connected. Then there exists a
non-empty proper subset Z of X that is both open and closed in
X . Let d and e be elements of D, where d 6= e, and let f : X → D
be defined so that

f (x) =

{
d if x ∈ Z ;
e if x ∈ X \ Z .

If V is a subset of D then f −1(V ) is one of the following four sets:
∅; Z ; X \ Z ; X . It follows that f −1(V ) is open in X for all
subsets V of D. Therefore f : X → D is continuous. But the
function f : X → D is not constant, because Z is a non-empty
proper subset of X . The result follows.
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The following results follow immediately from Proposition 3.3.

Corollary 3.4

A non-empty topological space X is connected if and only if every
continuous function f : X → {0, 1} from X to the discrete
topological space {0, 1} is constant.

Corollary 3.5

A non-empty topological space X is connected if and only if every
continuous function f : X → Z from X to the set Z of integers is
constant.
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Example
Let X = {(x , y) ∈ R2 : x 6= 0}. The topological space X is not
connected. Indeed let f : X → Z be defined such that

f (x , y) =

{
1 if x > 0,
−1 if x < 0,

Then the function f is continuous on X but is not constant.
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Lemma 3.6

Let X be a topological space, and let A be a subset of X . Then A
is connected if and only if, whenever open sets V and W in X
cover the subset A and have non-empty intersections with the
set A, the intersection of the three sets A, V and W is non-empty,
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Proof
A subset of A is open in the subspace topology on A if and only if
it is the intersection with A of some open set in the topological
space X . It therefore follows that the subset A of the topological
space X is connected if and only if, given any open sets V and W
in X , where A ∩ V 6= ∅ and A ∩W 6= ∅ and
(A ∩ V ) ∪ (A ∩W ) = A, it is also the case that
(A ∩ V ) ∩ (A ∩W ) 6= ∅ (see Lemma 3.1). But standard set
identities ensure that

(A ∩ V ) ∪ (A ∩W ) = A ∩ (V ∪W )

and
(A ∩ V ) ∩ (A ∩W ) = A ∩ V ∩W .

It follows that
(A ∩ V ) ∪ (A ∩W ) = A

if and only if A ⊂ V ∪W .
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Also
(A ∩ V ) ∩ (A ∩W ) 6= ∅

if and only if A ∩ V ∩W 6= ∅. Thus the set A is connected if and
only if, given open sets V and W in X covering the set A whose
intersections with the set A are non-empty, the intersection of the
three sets A, V and W is non-empty, which is what we were
required to prove.
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Lemma 3.7

Let X be a topological space and let A be a connected subset
of X . Then the closure A of A is connected.

Proof
The intersection of an open set in X with the set A is non-empty if
and only if the intersection of that open set with the closure A of
A in X is non-empty (see Lemma 1.6). Let V and W be open sets
in X for which V ∩ A 6= ∅, W ∩ A 6= ∅, and A ⊂ V ∪W . Then
V ∩ A 6= ∅, W ∩ A 6= ∅, and A ⊂ V ∪W . It follows from the
connectness of the set A that A ∩ V ∩W 6= ∅ (see Lemma 3.6).
But then A ∩ V ∩W 6= ∅. Consequently we have established that
the closure A of A in X is connected, as required.
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Lemma 3.8

Let f : X → Y be a continuous function between topological
spaces X and Y , and let A be a connected subset of X . Then
f (A) is connected.

Proof
Let V and W be open sets in Y for which V ∩ f (A) 6= ∅,
W ∩ f (A) 6= ∅ and f (A) ⊂ V ∪W . Then A ∩ f −1(V ) 6= ∅,
A ∩ f −1(W ) 6= ∅ and A ⊂ f −1(V ) ∪ f −1(W ). It follows from the
connectedness of A that A ∩ f −1(V ) ∩ f −1(W ) 6= ∅. Let
p ∈ A ∩ f −1(V ) ∩ f −1(W ). Then f (p) ∈ V ∩W , and therefore
f (A) ∩ V ∩W 6= ∅. Applying Lemma 3.6, we conclude that the
subset f (A) of Y is connected, as required.
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Lemma 3.9

Let X be a topological space, and let A and B be connected
subsets of X . Suppose that the intersection of the sets A and B is
non-empty. Then the union A ∪ B of the sets A and B is
connected.
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Proof
Let V and W be open sets in X with the properties that
A ∪ B ⊂ V ∪W and (A ∪ B) ∩ V ∩W = ∅. Now the intersection
of A ∩ B with at least one of the sets V and W must be
non-empty. We may suppose, without loss of generality, that the
set A ∩ B ∩ V is non-empty. Now A ∩ V and A ∩W are disjoint
subsets of A whose union is the set A itself. These subsets of A are
then complements of one another. Moreover they are open with
respect to the subspace topology on A. It follows in particular that
the set A ∩ V is a subset of A that is both open and closed in the
subspace topology on A. Moreover this set is non-empty, because
A ∩ B ∩ V is non-empty. It follows from the connectedness of the
set A that A ⊂ V . Similarly B ⊂ V . It follows therefore that
A ∪ B ⊂ V , and consequently (A ∪ B) ∩W = ∅.
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We have now shown that there cannot exist open sets V and W in
X for which (A ∪ B) ⊂ V ∪W , (A ∪ B) ∩ V ∩W = ∅,
(A ∪ B) ∩ V 6= ∅ and (A ∪ B) ∩W 6= ∅. Consequently the set
A ∪ B cannot be expressed as the union of two disjoint non-empty
subsets that are both open in the subspace topology on A ∪ B. We
conclude therefore that the set A ∪ B is connected, which is what
we set out to prove.
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3.2. Connected Components of Topological Spaces

Proposition 3.10

Let X be a topological space. For each p ∈ X , let Sp be the union
of all connected subsets of X that contain p. Then

(i) Sp is connected,

(ii) Sp is closed,

(iii) if p, q ∈ X , then either Sp = Sq, or else Sp ∩ Sq = ∅.
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Proof
Let p be a point of the topological space X , and let V and W be
open sets in X whose union contains the set Sp. Suppose that
p ∈ V and that the intersection of the three sets Sp, V and W is
the empty set. Then Sp is the union of the sets Sp ∩ V and
Sp ∩W . Moreover these sets Sp ∩ V and Sp ∩W are disjoint
subsets of Sp.
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Now let A be a connected subset of X which the point p belongs.
The definition of the set Sp ensures that A ⊂ Sp. Consequently the
set A is the disjoint union of the sets A ∩ V and A ∩W . Moreover
these sets A ∩ V and A ∩W are both open in A relative to the
subspace topology on A, and they are complements in the set A of
one another. It follows that A ∩ V is a subset of A that is both
open and closed in A. Moreover the point p belongs to the set
A ∩ V . It follows from the connectedness of the set A that
A = A ∩ V , and therefore A ⊂ V .
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Now the set Sp is by definition the union of all connected subsets
of X that contain the point p. It follows from what has already
been shown that each of those connected subsets of X is contained
in the open set V . Therefore Sp ⊂ V . We conclude therefore that
if V and W are open subsets of X for which Sp ⊂ V ∪W and
Sp ∩ V ∩W = ∅, and if p ∈ V , then Sp ⊂ V and Sp ∩W = ∅. It
follows from this that the set Sp is connected. This establishes (i).
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Now the closure Sp of Sp is connected (see Lemma 3.7). It follows
from the definition of the set Sp that Sp ⊂ Sp, and therefore
Sp = Sp. Consequently the set Sp is closed. This establishes (ii).
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Finally, suppose that p and q are points of X for which
Sp ∩ Sq 6= ∅. The sets Sp and Sq are connected, and their
intersection is non-empty. It follows that Sp ∪ Sq is connected (see
Lemma 3.9). It then follows from the definition of the sets Sp and
Sq that Sp ∪ Sq ⊂ Sp and Sp ∪ Sq ⊂ Sq, and consequently
Sp = Sq. This establishes (iii), completing the proof.
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Given any topological space X , the connected subsets Sp of X
defined as in the statement of Proposition 3.10 are referred to as
the connected components of X . Now a point p of X belongs to
at least one connected component because it belongs to the
connected component Sp that it determines. Also we see from
Proposition 3.10, part (iii) that the point p cannot belong to more
than one distinct connected component, because two distinct
connected components cannot have non-empty intersection. It
follows that the topological space X is the disjoint union of its
connected components.
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Example
Let X be the subset of R2 defined so that
X = {(x , y) ∈ R2 : x 6= 0} Then the connected components of X
are the sets

{(x , y) ∈ R2 : x > 0} and {(x , y) ∈ R2 : x < 0}.
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Example
Let Y be the open subset of the real line defined so that

Y = {x ∈ R : |x − n| < 1
2 for some integer n}.

Then the connected components of the set Y are the sets Jn for all
integers n, where, for each integer n, Jn is the open interval with
endpoints n − 1

2 and n + 1
2 .
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3.3. Products of Connected Topological Spaces

Lemma 3.11

A Cartesian product X × Y of two connected topological spaces X
and Y is itself connected.
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Proof
Let (p, q) and (r , s) be points of X × Y . Then the sets

{(x , y) ∈ X × Y : y = q} and {(x , y) ∈ X × Y : x = r}

are connected subsets of X × Y , being homeomorphic to X and Y
respectively. Morever the point (r , q) of X × Y belongs to both
sets. It follows that both points (p, q) and (r , s) belong to the
same connected component of X × Y as the point (r , q). We
conclude therefore that any two points of the product space X ×Y
belong to the same connected component of that space, and
therefore the space is connected.
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We deduce immediately that a finite Cartesian product of
connected topological spaces is connected.
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3.4. Path-Connected Topological Spaces

A concept closely related to that of connectedness is
path-connectedness.

Definition

Let X be a topological space, and let p and q be points of X . A
path in X from p to q is defined to be a continuous function
γ : [a, b]→ X , defined over some closed interval with endpoints a
and b, where a < b, and mapping that closed interval into the
topological space X so that γ(a) = p and γ(b) = q.

We shall usually take the domain of a path to be the closed unit
interval [0, 1] with endpoints 0 and 1.
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Definition

A topological space X is said to be path-connected if and only if,
given any two points p and q of X , there exists a path
γ : [0, 1]→ X in X from the point p to the point q.



3. Connected, Path-Connected and Simply Connected Spaces (continued)

Proposition 3.12

Every path-connected topological space is connected.

Proof
Let X be a path-connected topological space, and let V and W be
disjoint non-empty open sets in X . We show that the union V ∪W
of the open sets V and W must then be a proper subset of X .
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Now X is path-connected and the open sets V and W are, by
assumption, non-empty. Therefore there exists a path
γ : [0, 1]→ X in X for which γ(0) ∈ V and γ(1) ∈W . Let D and
E denote the preimages of the open sets V and W respectively
under the map γ, so that

D = {t ∈ [0, 1] : γ(t) ∈ V } and E = {t ∈ [0, 1] : γ(t) ∈W }.

Then the subsets D and E of the closed unit interval [0, 1] are
open in that interval, because the path γ is a continuous map from
the closed unit interval [0, 1] to the topological space X . Also
0 ∈ D, 1 ∈ E , and D ∩ E = ∅.
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Let s be the least upper bound of the set D. Now D and E are
open in [0, 1], and the endpoints 0 and 1 of that interval belong to
D and E respectively. It follows that there exist positive real
numbers δ0 and δ1 for which [0, δ0) ⊂ D and (1− δ1, 1] ⊂ E . It
follows that 0 < s < 1. Now if s were to belong to the set D then
there would exist some positive real number δ small enough to
ensure that s − δ > 0, s + δ < 1 and (s − δ, s + δ) ⊂ D. But then
s would not be an upper bound of the set D, contradicting the
choice of s as the least upper bound of D.
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Next we note that if s were to belong to the set E then there
would exist some positive real number δ small enough to ensure
that s − δ > 0, s + δ < 1 and (s − δ, s + δ) ⊂ E . But then real
numbers t strictly between s − δ and s + δ would not belong to
the set D, because the open sets D and E are disjoint, and real
numbers t greater than s could not belong to the set D, being
greater than the least upper bound of that set, and therefore s − δ
would be an upper bound of the set D, contradicting the choice of
s as the least upper bound of that set. We conclude therefore that
the least upper bound s of the set D cannot belong to either of
the sets D and E , and therefore the point γ(s) of the topological
space X cannot belong to either of the open sets V and W . Thus
the union of the disjoint non-empty open sets V and W must be a
proper subset of the topological space X . The result follows.
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The topological spaces R, C and Rn are all path-connected.
Indeed, given any two points of one of these spaces, the straight
line segment joining these two points is a continuous path from
one point to the other. Also the n-dimensional sphere Sn is
path-connected for all positive integers n. We conclude that these
topological spaces are connected.
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Definition

A subset X of a real vector space is said to be convex if, given
points u and v of X , the point (1− t)u + tv belongs to X for all
real numbers t satisfying 0 ≤ t ≤ 1.
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Corollary 3.13

All convex subsets of real vector spaces are connected, and are
path-connected.
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Remark
Proposition 3.12 generalizes the Intermediate Value Theorem of
real analysis. Indeed let f : [a, b]→ R be a continuous real-valued
function on an interval [a, b], where a and b are real numbers
satisfying a ≤ b. The range f ([a, b]) is then a path-connected
subset of R. It follows from Proposition 3.12 that this set is
connected. Let c be a real number that lies strictly between f (a)
and f (b) and let

V = {y ∈ f ([a, b]) : y < c} and W = {y ∈ f ([a, b]) : y > c}.

Then V and W are non-empty open subsets of f ([a, b]), and
V ∩W = ∅. It follows from the connectness of f ([a, b]) that
V ∪W must be a proper subset of f ([a, b]) (see Lemma 3.2), and
therefore c ∈ f ([a, b]). Thus the range of the function f contains
all real numbers between f (a) and f (b).
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Example
Let f : R→ R be defined so that

f (x) =

 sin

(
1

x

)
if x 6= 0,

0 if x = 0,

and let
X = {(x , y) ∈ R2 : y = f (x)}.

We show that X is a connected set. Let

X+ = {(x , y) ∈ R2 : x > 0 and y = f (x)}

and
X− = {(x , y) ∈ R2 : x < 0 and y = f (x)}.
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Now the restriction of the function f to the set of (strictly)
positive real numbers is continuous on the set of positive real
numbers. It follows from this that the set X+ is path-connected. It
then follows that the set X+ is connected (see Proposition 3.12).
The connectedness of X+ can also be verified by noting that it is
the image of the connected space {x ∈ R : x > 0} under a
continuous map and is therefore itself connected (see Lemma 3.8).
Similarly the set X− is path-connected, and is therefore connected.
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For each positive integer n, let pn = ((nπ)−1, 0). Then pn ∈ X+

for all positive integers n, and pn → (0, 0) as n→ +∞. It follows
that (0, 0) belongs to the closure X+ of X+ in X . Connected
components of a topological space are closed (see
Proposition 3.10). Thus the connected component of X that
includes the connected subset X+ also contains the point (0, 0).
Similarly the connected component of X that includes X− also
contains the point (0, 0). Therefore the unique connected
component of X that contains the point (0, 0) is the whole of X
and thus X is a connected topological space.
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However X is not a path-connected topological space. If
γ : [0, 1]→ X is a continuous map from the closed unit interval
[0, 1] into X , and if γ(0) = (0, 0), then γ(t) = (0, 0) for all
t ∈ [0, 1]. Indeed let

s = sup{t ∈ [0, 1] : γ(t) = (0, 0)}.

It follows from the continuity of γ that γ(s) = (0, 0). There then
exists some positive real number δ such that |γ(t)− (0, 0)| < 1

2 for
all t ∈ [0, 1] satisfying |t − s| < δ. But γ([0, 1] ∩ [s, s + δ)) must
also be a connected subset of X . It follows that γ(t) = (0, 0) for
all t ∈ [0, 1] satisfying s ≤ t < s + δ. Consequently s = 1 and
γ(t) = (0, 0) for all t ∈ [0, 1]. (Essentially, the path γ cannot get
from (0, 0) to any other point of X because continuity prevents the
path from getting over intervening humps where the function f
takes values such as ±1.) We conclude that the connected
topological space X is not path-connected.
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3.5. Locally Path-Connected Topological Spaces

Definition

A topological space X is said to be locally connected if, given any
point p of X , and given any open set N in X for which p ∈ N,
there exists some connected open set V in X such that p ∈ V and
V ⊂ N.

Definition

A topological space X is said to be locally path-connected if, given
any point p of X , and given any open set N in X for which p ∈ N,
there exists some path-connected open set V in X such that
p ∈ V and V ⊂ N.

Every path-connected subset of a topological space is connected.
(This follows directly from Proposition 3.12.) Therefore every
locally path-connected topological space is locally connected.
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Proposition 3.14

Let X be a connected, locally path-connected topological space.
Then X is path-connected.

Proof
Choose a point p of X . Let Z be the subset of X consisting of all
points q of X with the property that q can be joined to p by a
path. We show that the subset Z is both open and closed in X .

Now, given any point q of X there exists a path-connected open
set Nq in X such that q ∈ Nq. We claim that if q ∈ Z then
Nq ⊂ Z , and if q 6∈ Z then Nq ∩ Z = ∅.
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Suppose first that q ∈ Z . Then, given any point r of Nq, there
exists a path in Nq from r to q. Moreover it follows from the
definition of the set Z that there exists a path in X from q to p.
These two paths can be concatenated to yield a path in X from r
to p, and therefore r ∈ Z . This shows that Nq ⊂ Z whenever
q ∈ Z .
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Next suppose that q 6∈ Z . Let r ∈ Nq. If it were the case that
r ∈ Z , then we would be able to concatenate a path in Nq from q
to r with a path in X from r to p in order to obtain a path in X
from q to p. But this is impossible, as q 6∈ Z . Therefore
Nq ∩ Z = ∅ whenever q 6∈ Z .
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Now the set Z is the union of the open sets Nq as q ranges over all
points of Z . It follows that Z is itself an open set. Similarly X \ Z
is the union of the open sets Nq as q ranges over all points of
X \ Z , and therefore X \ Z is itself an open set. It follows that Z
is a subset of X that is both open and closed. Moreover p ∈ Z ,
and therefore Z is non-empty. But the only subsets of X that are
both open and closed are ∅ and X itself, because X is connected.
Therefore Z = X , and thus every point of X can be joined to the
point p by a path in X . We conclude that X is path-connected, as
required.
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3.6. Simply Connected Topological Spaces

Definition

A topological space X is said to be simply connected if it is both
path-connected and also has the property that any continuous
function mapping the boundary circle of a closed disc into X can
be extended continuously over the whole of the disk.
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Example
Euclidean space Rn of dimension n is simply connected for all
positive integers n. Indeed any continuous map f : C → Rn

mapping the boundary circle C of the closed unit disk D into Rn

can be extended to a continuous map F : D → Rn mapping the
whole disk into Rn by setting

F (rp) = rf (p)

for all p ∈ C and r ∈ [0, 1].
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Lemma 3.15

Let A be a topological space that is homeomorphic to the closed
unit disk D, and let B be a subset of A that is the image of the
boundary circle C of the closed unit disk D under some
homeomorphism between the closed unit disk D and the
topological space A. Then a path-connected topological space X is
simply connected if and only if every continuous function mapping
the set B into the topological space X can be extended to a
continuous function mapping the whole of the topological space A
into X .

Proof
Let h : D → A be a homeomorphism from the closed unit disk D
to the topological space A that maps the boundary circle C of the
unit disk onto some subset B of A.
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Let us suppose first that every continuous map from B to the
topological space X extends to a continuous map from A to X .
Let f : C → X be a function mapping the boundary circle C of the
closed unit disk D into the topological space X . Then f
determines a corresponding continuous map g : B → X mapping
the set B into X , where g(h(p)) = f (p) for all points p of the
boundary circle C of the closed unit disk D. The map g extends,
by assumption, to a continuous map G : A→ X mapping the
whole of the topological space A into the topological space X . Let
F : D → X be the continuous map from D to X defined so that
F (x) = G (h(x)) for all x ∈ D. Then the function F extends the
the map f to a continuous map defined over the entire unit disk.
We conclude therefore that any continuous map from the boundary
circle of the closed unit disk to the topological space X can be
extended continuously over the whole of the disk, and therefore the
path-connected topological space X is simply connected.
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Conversely suppose that the topological space X is simply
connected. Let B be be the image of the boundary circle C of the
unit disk under the homeomorphism h, and let g : B → X be a
continuous map defined over B and mapping B into the
topological space X . There is then a corresponding map
f : C → X mapping the boundary circle C of the closed unit disk
into X which is defined so that f (p) = g(h(p)) for all points p of
that boundary circle. This map f extends to a continuous map
F : D → X defined over the entire closed unit disk D and mapping
that closed disk into the topological space X . This continuous
map F then corresponds to a continuous map G : A→ X between
the topological spaces A and X defined so that G (h(x)) = F (x) for
all points x of the unit disk D. The result follows.
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Proposition 3.16

Let K be a closed bounded subset of some finite-dimensional
Euclidean space, and let ϕ : K → L be a continuous function
mapping K onto a subset L of some Euclidean space. Then
ϕ : K → L is an identification map.
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Proof
Let W be a subset of L whose preimage ϕ−1(W ) under the map ϕ
is open in K , and let q ∈W . We claim that W is then a
neighbourhood in L of the point q.

Let G = K \ ϕ−1(W ). Suppose that the subset W of L were not a
neighbourhood in L of the point q. The surjectivity of the map ϕ
would then ensure the existence of an infinite sequence
p1,p2,p3, . . . of points of the closed bounded set G for which

lim
j→+∞

ϕ(pj) = q. The multidimensional Bolzano-Weierstrass

Theorem would then ensure the existence of a convergent
subsequence pk1 ,pk2 ,pk3 , . . . of the infinite sequence
p1,p2,p3, . . . . Let r = lim

j→+∞
pkj .



3. Connected, Path-Connected and Simply Connected Spaces (continued)

Now pkj would belong to the closed set G for all positive
integers j . and therefore r ∈ G . But the continuity of the map ϕ
would ensure that

ϕ(r) = ϕ

(
lim

j→+∞
pkj

)
= lim

j→+∞
ϕ(pkj ) = p.

Moreover p ∈W . It would therefore follow that r ∈ ϕ−1(W ). But
this would be an impossibility, because r ∈ G and
G ∩ ϕ−1(W ) = ∅. Thus the assumption that W was not a
neighbourhood of the point p would lead to a contradiction. We
conclude therefore that the set W must be a neighbourhood of the
point p, this point p being an arbitrary point chosen from the
set W . Thus the set W , being a neighbourhood of each of its
points, must be open in the set L.
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We have thus shown that if the preimage of a subset of L is open
in K then that subset is open in L. The converse follows
immediately from the continuity of the map ϕ. We can conclude
therefore that the function ϕ : K → L is an identification map,
which is what we were required to prove.
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Alternative Proof
The closed unit square, being a closed and bounded subset of the
plane, is a compact topological space (see Theorem 2.9). The
closed unit disk is a Hausdorff space, because any subset of a
Euclidean space is a metric space and is thus a Hausdorff space.
Now any continuous surjection from a compact topological space
to a Hausdorff space is an identification map (see
Proposition 2.15). The result follows.
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Proposition 3.17

A path-connected topological space X is simply connected if and
only if, given any loop γ : [0, 1]→ X in X , there exists a homotopy
between the loop γ and the constant loop at the point γ(0) of X
where the loop γ starts and ends, where this homotopy is a
homotopy relative to the set {0, 1} of endpoints of the closed unit
interval over which the continuous function γ is defined.
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Proof
First suppose that the space X is simply connected. Let
γ : [0, 1]→ X be a loop in X based at some point p of X . Now
the unit square is homeomorphic to the unit disk, and therefore
any continuous map defined over the boundary of the square can
be continuously extended over the whole of the square. It follows
that there exists a continuous map H : [0, 1]× [0, 1]→ X such that
H(t, 0) = γ(t) and H(t, 1) = p for all t ∈ [0, 1], and
H(0, τ) = H(1, τ) = p for all τ ∈ [0, 1]. The map H is then the
required homotopy between the loop γ and the constant loop at
the point p.
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Conversely suppose that, given any loop γ : [0, 1]→ X in the
topological space X , there exists a homotopy between the loop γ
and the constant loop at the point γ(0) of X where the loop γ
starts and ends, where this homotopy is a homotopy relative to the
set {0, 1} of endpoints of the closed unit interval. Let f : C → X
be a continuous function defined on the boundary circle C of the
closed unit disk D in R2, let γ be the function from the closed unit
interval to the topological space X defined so that
γ(t) = f (cos(2πt), sin(2πt)) for all t ∈ [0, 1], and let p = f (1, 0).
We must show that f can be extended continuously over the whole
of D. Now there exists a homotopy G between the loop γ and the
constant loop at p, this homotopy G being a homotopy relative to
the set of endpoints of the closed unit interval.
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Then G : [0, 1]× [0, 1]→ X is a continuous map, defined over the
closed unit square [0, 1]× [0, 1], and mapping that square into the
topological space X , with the properties that
G (t, 0) = f (cos(2πt), sin(2πt)) and G (t, 1) = p for all t ∈ [0, 1]
and G (0, τ) = G (1, τ) = p for all τ ∈ [0, 1] (see Proposition 3.17).
Moreover G (t1, τ1) = G (t2, τ2) whenever q(t1, τ1) = q(t2, τ2),
where

q(t, τ) =
(
(1− τ) cos(2πt) + τ, (1− τ) sin(2πt)

)
for all t, τ ∈ [0, 1]. It follows that there is a well-defined function
F : D → X mapping the closed unit disk D into the topological
space X , defined so as to ensure that F ◦ q = G .
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Now the function q : [0, 1]× [0, 1]→ D is a continuous surjection
from the closed unit square to the closed unit disk. Moreover the
closed unit square is a closed bounded subset of the plane. It
follows that the map q is an identification map (see
Proposition 3.16). Moreover the composition function F ◦ q is the
continuous function G . It follows that the function F must itself
be continuous (see Lemma 2.14). We conclude therefore that the
function F : D → X is a continuous function from the closed unit
disk D to the topological space X that extends the continuous
function f : C → X defined on the boundary circle C of the closed
unit disk. We can now conclude from the result just established
that the path-connected topological space X is simply connected,
which is what we were required to prove.
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Theorem 3.18

Let X be a topological space, and let V and W be open subsets of
X , with V ∪W = X . Suppose that V and W are simply
connected, and that V ∩W is non-empty and path-connected.
Then X is itself simply connected.
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Proof
We must show that any continuous function f : C → X defined on
the unit circle C can be extended continuously over the closed unit
disk D. Now the preimages f −1(V ) and f −1(W ) of V and W are
open in the circle C (because the function f is continuous), and
C = f −1(V ) ∪ f −1(W ). It follows from the Lebesgue Lemma
(Lemma 1.36) that there exists some positive real number δ which
is small enough to ensure that any arc in the circle C whose length
is less than δ is entirely contained in one or other of the sets
f −1(V ) and f −1(W ), and is therefore mapped by the function f
into one or other of the open sets V and W .
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Choose points q1,q2, . . . ,qn around the circle C to ensure that the
length of the arc joining qi−1 to qi is less than δ for each integer i
between 2 and n and similarly the length of the arc joining qn to
q1 is less than δ. Then, for each integer i between 2 and n, the
short arc joining qi−1 to qi is mapped by f into one or other of the
open sets V and W , and similarly the short arc joining qn to q1 is
also mapped by f into one or other of the open sets V and W .
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Let p be some point of V ∩W . Now the sets V , W and V ∩W are
all path-connected. Therefore we can choose paths αi : [0, 1]→ X
for i = 1, 2, . . . , n so as to satisfy the following properties:
αi (0) = p for i = 1, 2, . . . , n; αi (1) = f (qi ) for i = 1, 2, . . . , n;
αi ([0, 1]) ⊂ V for those integers i for which f (qi ) ∈ V ;
αi ([0, 1]) ⊂W for those integers i for which f (qi ) ∈W . For
convenience in what follows, let q0 = qn and α0 = αn.



3. Connected, Path-Connected and Simply Connected Spaces (continued)

Now, for each integer i between 1 and n, consider the sector Ti of
the closed unit disk bounded by the line segments joining the
centre of the disk to the points qi−1 and qi and by the short arc
joining qi−1 to qi . Now this sector is homeomorphic to the closed
unit disk, and therefore any continuous function mapping the
boundary Bi of Ti into a simply connected space can be extended
continuously over the whole of Ti . In particular, let hi be the
function on Bi defined so that

hi (q) =


f (q) if q ∈ Ti ∩ C ,
αi−1(t) if q = tqi−1 for some t ∈ [0, 1],
αi (t) if q = tqi for some t ∈ [0, 1].

Note that hi (Bi ) ⊂ V whenever the short arc joining qi−1 to qi is
mapped by the function f into V , and hi (Bi ) ⊂W whenever that
short arc is mapped by f into W .
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Now the open sets V and W are both simply connected. It follows
that each of the functions hi can be extended continuously to a
function Fi , defined over the whole of the sector Ti , which maps
that sector into one or other of the open sets V and W . Moreover
the functions defined in this fashion on each of the sectors Ti

agree with one another wherever the sectors intersect. It follows
from the Pasting Lemma (Lemma 1.25) that there exists a
continuous map F from the closed unit disk D to the topological
space X that coincides with the function Fi on the sector Ti for
each integer i between 1 and n. This map F extends the given
map f defined over the boundary circle of the disk. The required
result follows.
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The n-dimensional sphere Sn is the unit sphere in Rn+1, defined so
that

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 : x21 + x22 + · · ·+ x2n+1 = 1}.

Corollary 3.19

The n-dimensional sphere Sn is simply connected for all integers n
satisfying n > 1.
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Proof
Let

V = {(x1, x2, . . . , xn+1) ∈ Sn : xn+1 > −1
2}

and
W = {(x1, x2, . . . , xn+1) ∈ Sn : xn+1 <

1
2}.

Then V and W are homeomorphic to an n-dimensional ball, and
are therefore simply connected. Moreover V ∩W is
path-connected, provided that n > 1. It follows that the
n-dimensional sphere Sn is simply connected for all integers n for
which n > 1.
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3.7. Local and Semi-Local Simple Connectedness

Definition

A topological space X is said to be locally simply connected if,
given any point p of X , and given any open set N in X for which
p ∈ N, there exists some simply connected open set V in X such
that p ∈ V and V ⊂ N.
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Definition

A topological space X is said to be semi-locally simply connected
if, given any point p of X there exists an open set V for which
p ∈ V , where that open set V satisfies the following property:
given any continuous function f : C → V mapping the boundary
circle C of the closed unit disk D into the open set V , there exists
a continuous function F : D → X from the closed unit disk D into
the topological space X whose restriction to the boundary circle C
of that disk coincides with the function f .
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Remark
There is a classification theorem for covering maps over topological
spaces that are connected, locally path-connected and semi-locally
simply connected, which establishes that isomorphism classes of
covering maps over such a topological space are in one-to-one
correspondence with conjugacy classes of subgroups of the
fundamental group of the topological space at some chosen
basepoint of that topological space. In subsequent lectures we
shall establish the definitions and basic properties of covering maps
and the fundamental group and develop some portion of the theory
which ultimately yields the classification theorem for covering maps
over connected, locally path-connected and semi-locally simply
connected topological spaces just alluded to.
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