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2. Product and Quotient Topologies

2. Product and Quotient Topologies

2.1. Topologies on Products of Topological Spaces

A product topology is a topology on a Cartesian product of
topological spaces that is determined in a suitably natural fashion
by the topologies on the spaces that constitute the Cartesian
product.

We begin with some preliminary discussion of Cartesian products
of sets. Let X1,X2, . . . ,Xn be sets. The Cartesian product of the
sets X1,X2, . . . ,Xn consists of all ordered n-tuples (p1, p2, . . . , pn)
in which the ith component pi is an element, or point, of the
set Xi for i = 1, 2, . . . , n.



2. Product and Quotient Topologies (continued)

Let X1,X2, . . . ,Xn be sets, and let Bi be a subset of Xi for
i = 1, 2, . . . , n. The very definition of a Cartesian product of n
sets, representing the elements of the Cartesian product as ordered
n-tuples, with components taken from the respective sets, ensures
that the Cartesian product B1 × B2 × · · · × Bn of the sets
B1,B2, . . . ,Bn is a subset of the Cartesian product
X1 × X2 × · · · × Xn.



2. Product and Quotient Topologies (continued)

Lemma 2.1

Let X1,X2, . . . ,Xn be topological spaces and let

X = X1 × X2 × · · · × Xn.

Also let τ be the collection of subsets W of X which have the
property that, given any point (p1, p2, . . . , pn) of W , there exist
open sets V1,V2, . . . ,Vn, where pi ∈ Vi for i = 1, 2, . . . , n, such
that

V1 × V2 × · · · × Vn ⊂W .

Then the collection τ of subsets of the Cartesian product set X is
a topology on X .
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Proof
Let X = X1 × X2 × · · · × Xn. For the purposes of this proof we
refer to those subsets of X that belong to the collection τ as open
sets. We must verify that, if open sets are defined in this fashion,
then the topological space axioms are all satisfied.

The definition of open sets (i.e., the definition of the collection τ
of subsets of X ) ensures that the empty set and the whole set X
are open in X . We must prove that any union or finite intersection
of open sets in X is an open set.



2. Product and Quotient Topologies (continued)

We next show that any union of open sets in X is itself an open
set. Let E be a union of some given collection of open sets in X
and let (p1, p2, . . . , pn) be some given point of E . Then
(p1, p2, . . . , pn) ∈ D for some open set D in the given collection.
There then exist open sets Vi in Xi for i = 1, 2, . . . , n such that
pi ∈ Vi for i = 1, 2, . . . , n and

V1 × V2 × · · · × Vn ⊂ D ⊂ E .

Consequently the set E is open in X .



2. Product and Quotient Topologies (continued)

Finally we show that any finite intersection of open sets in X is
itself an open set. Let W1,W2, . . . ,Ws be open sets in X , and let
W = W1 ∩W2 ∩ · · · ∩Ws . Also let some point p of W be given,
and let pi in Xi be determined for i = 1, 2, . . . , n so that
p = (p1, p2, . . . , pn). Then there exist open sets Vr ,i in Xi for
r = 1, 2, . . . , s and i = 1, 2, . . . , n such that pi ∈ Vr ,i for
r = 1, 2, . . . , s and i = 1, 2, . . . , n and

Vr ,1 × Vr ,2 × · · · × Vr ,n ⊂Wr

for r = 1, 2, . . . , s. Let Vi = V1,i ∩ V2,i ∩ · · · ∩ Vs,i for
i = 1, 2, . . . , n. Then pi ∈ Vi for i = 1, 2, . . . , n. Also

V1 × V2 × · · · × Vn ⊂ Vr ,1 × Vr ,2 × · · · × Vr ,n ⊂Wr

for r = 1, 2, . . . , s. But then V1 ×V2 × · · · ×Vn ⊂W , because the
set W is the intersection of the sets Wr for r = 1, 2, . . . , s. It
follows that W is open in X , as required.



2. Product and Quotient Topologies (continued)

Definition

Let X1,X2, . . . ,Xn be topological spaces and let

X = X1 × X2 × · · · × Xn.

The product topology on the Cartesian product X of the
topological spaces X1,X2, . . . ,Xn is that topology on X whose
open sets are the subsets W characterized by the property that,
given any point (p1, p2, . . . , pn) of W , there exist open sets
V1,V2, . . . ,Vn, where pi ∈ Vi for i = 1, 2, . . . , n, such that

V1 × V2 × · · · × Vn ⊂W .

Lemma 2.1 ensures that the collection of open sets in a Cartesian
product of topological spaces characterized as set out above is
indeed a topology on the Cartesian product of the underlying sets.



2. Product and Quotient Topologies (continued)

Lemma 2.2

Let X1,X2, . . . ,Xn be topological spaces, and let Vi be an open set
in Xi for i = 1, 2, . . . , n. Then V1 × V2 × · · · × Vn is open in
X1 × X2 × · · · × Xn.

Proof
It follows directly from the definition of the product topology on
X1 × X2 × · · · × Xn.



2. Product and Quotient Topologies (continued)

Lemma 2.3

Let X1,X2, . . . ,Xn be topological spaces, let

X = X1 × X2 × · · · × Xn,

let pi ∈ Xi for i = 1, 2, . . . , n, and let p = (p1, p2, . . . , pn). A
subset N of X is a neighbourhood of p (with respect to the
product topology on X ) if and only if there exist open
neighbourhoods Vi of pi in Xi for i = 1, 2, . . . , n for which

V1 × V2 × · · · × Vn ⊂ N.



2. Product and Quotient Topologies (continued)

Proof
First suppose that N is a subset of X to which the point p
belongs. Suppose also that there exist open neighbourhoods Vi of
pi in Xi for i = 1, 2, . . . , n for which

V1 × V2 × · · · × Vn ⊂ N.

Then the product of the open sets Vi for i = 1, 2, . . . , n is an open
subset of X contained in the set N, and the point p belongs to this
product of open sets. The definition of neighbourhoods in a
topological space therefore ensures that the set N is a
neighbourhood of the point p.
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Conversely suppose that N is a subset of the Cartesian product X
that is a neighbourhood of the point p (with respect to the product
topology on X . Then there exists an open neighbourhood W of p
in X that is contained in the neighbourhood N of p. The definition
of the product topology then ensures the existence of open
neighbourhoods Vi of pi in Xi for i = 1, 2, . . . , n for which

V1 × V1 × · · · × Vn ⊂W ⊂ N.

The result follows.
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2.2. Continuity of Maps defined on Product Spaces

Proposition 2.4

Let X1,X2, . . . ,Xn be topological spaces, and let
X = X1 × X2 × · · · × Xn. Also let ϕ : X → Y be a function
mapping the product space X into some topological space Y , let p
be a point of X , and let p = (p1, p2, . . . , pn), where pi ∈ Xi for
i = 1, 2, . . . , n. Then the function ϕ is continuous at the point p,
if and only if, given any open neighbourhood W of ϕ(p) in Y ,
there exist neighbourhoods Mi of pi in Xi for i = 1, 2, . . . , n, where
those neighbourhoods Mi are small enough to ensure that
ϕ(M1 ×M2 × · · · ×Mn) ⊂W .
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Proof
First suppose that ϕ is continuous at the point p. Then given any
open neighbourhood W of ϕ(p) in Y , the preimage ϕ−1(W ) is a
neighbourhood of the point p, and therefore there exist open
neighbourhoods Vi of pi in Xi for i = 1, 2, . . . , n for which

V1 × V2 × · · · × Vn ⊂ ϕ−1(W )

(see Lemma 2.3). The open set Vi is then the required
neighbourhood of the point pi for i = 1, 2, . . . , n.
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Conversely suppose that ϕ : X → Y is any function from X to Y
with the property that, given any open neighbourhood W of ϕ(p),
there exist neighbourhoods Mi of pi in Xi for i = 1, 2, . . . , n whose
Cartesian product is mapped by ϕ into the given open
neighbourhood. Let some open neighbourhood W of ϕ(p) in Y be
given, and let M1,M2, . . . ,Mn be neighbourhoods of p1, p2, . . . , pn
respectively whose Cartesian product is mapped by ϕ into the open
neighbourhood W of ϕ(p). Then there exist open sets Vi in the
topological spaces Xi such that pi ∈ Vi and Vi ⊂ Mi for
i = 1, 2, . . . , n. Then

V1 × V2 × · · · × Vn ⊂ ϕ−1(W ).



2. Product and Quotient Topologies (continued)

It follows from this that the preimage ϕ−1(W ) of the open
neighbourhood W of ϕ(p) is a neighbourhood of the point p in the
Cartesian product space X (see Lemma 2.3). We have now shown
that the preimage of any open neighbourhood of the point ϕ(p) in
Y is a neighbourhood of the point p. It follows that the function ϕ
is continuous at the point p. This completes the proof.
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2.3. Continuity of Maps into Product Spaces

Theorem 2.5

Let X = X1 × X2 × · · · × Xn, where X1,X2, . . . ,Xn are topological
spaces and X is given the product topology, and for each i , let
πi : X → Xi denote the projection function which sends each point
(p1, p2, . . . , pn) of the product space X to its ith component pi .
Then the functions π1, π2, . . . , πn are continuous. Moreover a
function ϕ : Z → X mapping a topological space Z into X is
continuous if and only if πi ◦ ϕ : Z → Xi is continuous for
i = 1, 2, . . . , n.
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Proof
Let Vi be an open set in Xi for some integer i between 1 and n.
Then

π−1
i (Vi ) = X1 × · · · × Xi−1 × Vi × Xi+1 × · · · × Xn.

It follows that π−1
i (Vi ), being a product of open sets, is itself an

open set in X (Lemma 2.2). Thus, for each integer i between 1
and n, the preimage under πi of any open set in the topological
space Xi is open in the product space X , and thus the projection
function πi : X → Xi is continuous.
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Now let ϕ : Z → X be a continuous function mapping some
topological space Z into the product space X . Then, for each
integer i between 1 and n, the function πi ◦ ϕ : Z → Xi is a
composition of continuous functions, and is thus itself continuous.

Conversely suppose that ϕ : Z → X is a function with the property
that πi ◦ ϕ is continuous for all i . Let W be an open set in X . We
must show that ϕ−1(W ) is open in Z .
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Let q be a point of ϕ−1(W ), and let ϕ(q) = (p1, p2, . . . , pn). Now
W is open in X , and therefore there exist open sets V1,V2, . . . ,Vn

in X1,X2, . . . ,Xn respectively such that pi ∈ Vi for all i and
V1 × V2 × · · · × Vn ⊂W . Let

N = ϕ−1
1 (V1) ∩ ϕ−1

2 (V2) ∩ · · · ∩ ϕ−1
n (Vn),

where ϕi = πi ◦ ϕ for i = 1, 2, . . . , n. Now ϕ−1
i (Vi ) is an open

subset of Z for i = 1, 2, . . . , n, since Vi is open in Xi and
ϕi : Z → Xi is continuous. Thus N, being a finite intersection of
open sets, is itself open in Z . Moreover

ϕ(N) ⊂ V1 × V2 × · · · × Vn ⊂W ,

so that N ⊂ ϕ−1(W ). It follows that the preimage ϕ−1(W ) of the
open subset W of the product space is a neighbourhood of the
point q in Z .
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But q was an arbitrary point of ϕ−1(W ). We conclude therefore
that the preimage ϕ−1(W ) of W under the function ϕ is a
neighbourhood of each of its points, and is therefore an open set in
Z (see Lemma 1.4). We have accordingly shown that the function
ϕ : Z → X is continuous, as required.



2. Product and Quotient Topologies (continued)

Proposition 2.6

Let X1,X2, . . . ,Xn be topological spaces, where n > 2. Then the
product X1 ×X2 × · · · ×Xn of these topological spaces Xi (with its
product topology) is naturally homeomorphic to the product (with
the product topology) of the product space X1 × X2 × · · · × Xn−1

(with its product topology) and the topological space Xn.

Remark
The term natural has a technical meaning, in the context of
category theory, which we ignore for the purposes of the present
discussion, but which is nevertheless valid in the present context,
where we take the word to suggest, informally, that the
homeomorphism in question is canonical and not arbitrary.
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Proof
Let functions

λ : (X1 × X2 × · · · × Xn−1)× Xn → X1 × X2 × · · · × Xn

and

µ : X1 × X2 × · · · × Xn → (X1 × X2 × · · · × Xn−1)× Xn

be defined so that

λ((p1, p2, . . . , pn−1), pn) = (p1, p2, . . . , pn)

and
µ(p1, p2, . . . , pn) = ((p1, p2, . . . , pn−1), pn)

for all (p1, p2, . . . , pn) ∈ X1 × X2 × · · · × Xn.
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We verify the continuity of the functions λ and µ through repeated
applications of Theorem 2.5. For convenience, let

X = X1 × X2 × · · · × Xn,

Y = X1 × X2 × · · ·Xn−1

and Z = Y × Xn. The functions λ : Z → X and µ : X → Z are
obviously bijections which are inverses of one another. Thus our
task is to establish that both of these bijections are continuous.
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Now the projection function from Z to Y that maps each element
of Z of the form ((p1, p2, . . . , pn−1), pn) to its first component
(p1, p2, . . . , pn−1) is a continuous function. Therefore, for each
integer i between 1 and n− 1, the function from Z to Xi that maps
each element ((p1, p2, . . . , pn−1), pn) of Z to the ith component pi
of its first component is the composition of two continuous
functions, and is therefore continuous. The function from Z to Xn

mapping each element ((p1, p2, . . . , pn−1), pn) of Z to its second
component pn is also continuous. Thus the components of the
function λ : Z → X are continuous functions, and therefore the
function λ : Z → X is a continuous function from Z to X .



2. Product and Quotient Topologies (continued)

Next we note that if, for any integer i between 1 and n − 1, the
projection function from X to Y mapping (p1, p2, . . . , pn) to
(p1, p2, . . . , pn−1) for all (p1, p2, . . . , pn) ∈ X is composed with the
projection function mapping (p1, p2, . . . , pn−1) to pi , then the
resultant function is the projection function from X to Xi , which,
as we have already noted (Theorem 2.5), is continuous. It follows
from this that the projection function from X to Y mapping
(p1, p2, . . . , pn) to (p1, p2, . . . , pn−1) for all (p1, p2, . . . , pn) ∈ X is
itself continuous. And also the projection function mapping
(p1, p2, . . . , pn) to pn is continuous. Thus the two components of
the function µ : X → Z are continuous. It follows that the function
µ : X → Z is itself continuous. Moreover the function µ is the
inverse of the continuous function λ. Therefore the functions λ
and µ are both homeomorphisms. The result follows.



2. Product and Quotient Topologies (continued)

2.4. Products of Compact Topological Spaces

Proposition 2.7

Let X and Y be compact topological spaces. Then the Cartesian
product X × Y of the topological spaces X and Y , with the
product topology, is a compact topological space.

Proof
Let C be a collection of open sets in X × Y which covers X × Y .
Then, for each point (p, q) of X × Y , there exist an open set Dp,q

in X and an open set Ep,q in Y whose Cartesian product
Dp,q × Ep,q is contained in at least one of the members of the
collection C of open sets. Indeed, because the members of this
collection cover X × Y , given a point (p, q) of X × Y , some
member W of this collection may be chosen for which (p, q) ∈W .
There will then exist an open set Dp,q in X and an open set Ep,q in
Y for which Dp,q × Ep,q ⊂W .
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Now, because the topological space Y is compact, we can
associate to each point p of the topological space X a finite set
Γ(p) of points of Y so as to ensure that

Y =
⋃

q∈Γ(p)
Ep,q.

For each point p of X , having first determined Γ(p), let Vp be the
intersection of the open sets Dp,q in X for which q ∈ Γ(p).

Vp =
⋂

q∈Γ(p)
Dp,q.

Then

Vp × Y =
⋃

q∈Γ(p)
Vp × Ep,q ⊂

⋃
q∈Γ(p)

Dp,q × Ep,q.
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The compactness of X then ensures the existence of a finite set ∆
of points of X for which the corresponding open sets Vp with
p ∈ ∆ cover X . Then

X × Y =
⋃

p∈∆
Vp × Y

=
⋃

p∈∆

⋃
q∈Γ(p)

Vp × Ep,q

⊂
⋃

p∈∆

⋃
q∈Γ(p)

Dp,q × Ep,q.

It follows that

X × Y =
⋃

(p,q)∈Λ
Dp,q × Ep,q,

where
Λ = {(p, q) : p ∈ ∆ and q ∈ Γ(p)}.
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The set Λ is a finite set of points of the Cartesian product X × Y .
For each (p, q) ∈ Λ there exists a member Wp,q of the given
collection C of open sets covering X × Y for which
Dp,q × Ep,q ⊂Wp,q. Then the sets Wp,q with (p, q) ∈ Λ constitute
a finite collection of open sets taken from the collection C which
covers the product space X × Y . We have thus shown that every
open cover C of this product space has a finite subcover.
Consequently the product of the compact topological spaces X
and Y is indeed compact. This completes the proof.
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Corollary 2.8

A Cartesian product of a finite number of compact topological
spaces is itself compact.

Proof
The result for Cartesian products of two compact spaces has
already been established (see Proposition 2.7). If the number n of
compact spaces constituting the product is greater than two, then
a product of n compact spaces (with the product topology) is
homeomorphic to a product whose first factor is a product of n− 1
compact spaces and whose second factor is a compact topological
space. (This follows on applying Proposition 2.6.) It therefore
follows by induction on n that, for any positive integer n, a any
product of n compact topological spaces, with the product
topology, is itself a compact topological space, which is what we
were required to prove.
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Theorem 2.9

Let K be a subset of Rn. Then K is compact if and only if K is
both closed and bounded.

Proof
Suppose that K is compact. Then K is closed, since Rn is
Hausdorff, and every compact subset of a Hausdorff space is closed
(see Corollary 1.33).
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For each positive integer m, let Vm be the open cube consisting of
all ordered n-tuples of real numbers (x1, x2, . . . , xn) with the
property that −m < xi < m for each integer i between 1 and n.
Then Vm is open in Rn for each positive integer m, and the
collection consisting of all these open sets Vm as m ranges over the
set of positive integers is an open cover of Rn. It follows from the
compactness of K that there exist natural numbers m1,m2, . . . ,mk

such that K ⊂ Vm1 ∪ Vm2 ∪ · · · ∪ Vmk
. But then K ⊂ VM , where

M is the maximum of m1,m2, . . . ,mk . Thus the compact set K is
bounded.
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Conversely suppose that K is both closed and bounded. Then
there exists some real number L such that K is contained within
the closed cube C given by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.

Now the closed interval [−L, L] is compact, by the one-dimensional
Heine-Borel Theorem (Theorem 1.27). Moreover the closed
cube C is the Cartesian product of n copies of this compact set,
and any finite product of compact topological spaces is itself
compact (Corollary 2.8). Therefore the closed cube C is compact.
But K is a closed subset of C , and a closed subset of a compact
topological space is itself compact, by Lemma 1.28. Thus K is
compact, as required.
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2.5. Homotopies between Continuous Maps

Definition

Let f : X → Y and g : X → Y be continuous maps between
topological spaces X and Y . The maps f and g are said to be
homotopic if there exists a continuous map H : X × [0, 1]→ Y
such that H(p, 0) = f (p) and H(p, 1) = g(p) for all p ∈ X . If the
maps f and g are homotopic then we denote this fact by
writing f ' g . The map H with the properties stated above is
referred to as a homotopy between f and g .

Continuous maps f and g from X to Y are homotopic if and only
if it is possible to ‘continuously deform’ the map f into the map g .
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Let X and Y be topological spaces. The relation of being
homotopic to one another is an equivalence relation on the set of
continuous functions from the space X to the space Y . This result
will eventually be noted (as Corollary 2.11), but as a corollary of a
more general result subsequently to be stated and proved.
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It is useful to introduce the concept of homotopy relative to a
subset of the domain of the functions in question. Homotopies
between continuous functions relative to a subset of a common
domain are employed in defining many of the basic concepts and
invariants that are the subject matter of algebraic topology.
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Definition

Let X and Y be topological spaces, and let A be a subset of X .
Let f : X → Y and g : X → Y be continuous maps from X to
some topological space Y , where f |A = g |A (i.e., f (s) = g(s) for
all s ∈ A). We say that f and g are homotopic relative to A
(denoted by f ' g rel A) if and only if there exists a (continuous)
homotopy H : X × [0, 1]→ Y such that H(p, 0) = f (p) and
H(p, 1) = g(p) for all p ∈ X and H(s, t) = f (s) = g(s) for all
s ∈ A and t ∈ [0, 1].
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Proposition 2.10

Let X and Y be topological spaces, and let A be a subset of X .
The relation of being homotopic relative to the subset A is then an
equivalence relation on the set of all continuous maps from X
to Y .

Proof
Given f : X → Y , let H0 : X × [0, 1]→ Y be defined so that
H0(p, t) = f (p) for all p ∈ X and t ∈ [0, 1]. Then
H0(p, 0) = H0(p, 1) = f (p) for all p ∈ X and H0(s, t) = f (s) for
all s ∈ A and t ∈ [0, 1], and therefore f ' f rel A. Thus the
relation of homotopy relative to A is reflexive.
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Let f and g be continuous maps from X to Y that satisfy
f (s) = g(s) for all s ∈ A. Suppose that f ' g rel A. Then there
exists a homotopy H : X × [0, 1]→ Y with the properties that
H(p, 0) = f (p) and H(p, 1) = g(p) for all p ∈ X and
H(s, t) = f (s) = g(s) for all s ∈ A and t ∈ [0, 1]. Let
K : X × [0, 1]→ Y be defined so that K (p, t) = H(p, 1− t) for all
t ∈ [0, 1]. Then K is a homotopy between g and f , and
K (s, t) = g(s) = f (s) for all s ∈ A and t ∈ [0, 1]. It follows that
g ' f rel A. Thus the relation of homotopy relative to A is
symmetric.
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Finally let f , g and h be continuous maps from X to Y with the
property that f (s) = g(s) = h(s) for all s ∈ A. Suppose that
f ' g rel A and g ' h rel A. Then there exist homotopies
H1 : X × [0, 1]→ Y and H2 : X × [0, 1]→ Y satisfying the
following properties:

H1(p, 0) = f (p),

H1(p, 1) = g(p) = H2(p, 0),

H2(p, 1) = h(p)

for all p ∈ X ;

H1(s, t) = H2(s, t) = f (s) = g(s) = h(s)

for all s ∈ A and t ∈ [0, 1].
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Define H : X × [0, 1]→ Y by

H(p, t) =

{
H1(p, 2t) if 0 ≤ t ≤ 1

2 ;
H2(p, 2t − 1) if 1

2 ≤ t ≤ 1.

Now H|X × [0, 1
2 ] and H|X × [ 1

2 , 1] are continuous. It follows from
the Pasting Lemma (Lemma 1.25) that H is continuous on
X × [0, 1]. Moreover H(p, 0) = f (p) and H(p, 1) = h(p) for all
p ∈ X . Thus f ' h rel A. Thus the relation of homotopy relative
to the subset A of X is transitive. This relation has now been
shown to be reflexive, symmetric and transitive. It is therefore an
equivalence relation.
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Remark
Let X and Y be topological spaces, and let H : X × [0, 1]→ Y be
a function whose restriction to the sets X × [0, 1

2 ] and X × [ 1
2 , 1] is

continuous. Then the function H is continuous on X × [0, 1]. The
Pasting Lemma (Lemma 1.25) was applied in the proof of
Proposition 2.10 to justify this assertion. We consider in more
detail how the Pasting Lemma guarantees the continuity of this
function. Let p ∈ X . If t ∈ [0, 1] and t 6= 1

2 then the point (p, t) is
contained in an open subset of X × [0, 1] over which the function
H is continuous, and therefore the function H is continuous at
(p, t). In order to complete the proof that the function H is
continuous everywhere on X × [0, 1] it suffices to verify continuity
of H at (p, 1

2 ), where p ∈ X .
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Let V be an open set in Y for which H(p, 1
2 ) ∈ V . Then the

continuity of the restrictions of H to X × [0, 1
2 ] and X × [ 1

2 , 1]
ensures the existence of open sets W1 and W2 in X × [0, 1] such
that (p, 1

2 ) ∈W1 ∩W2, H(W1 ∩ (X × [0, 1
2 ])) ⊂ V and

H(W2 ∩ (X × [ 1
2 , 1])) ⊂ V . Let W = W1 ∩W2. Then H(W ) ⊂ V .

This completes the verification that the function H is continuous
at (p, 1

2 ).
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The Pasting Lemma is a basic tool for establishing the continuity
of functions occurring in algebraic topology that are similar in
nature to the function H whose continuity was justified in some
detail in the foregoing discussion. The continuity of such functions
can typically be established directly using arguments analogous to
that employed here.
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Corollary 2.11

Let X and Y be topological spaces. The homotopy relation ' is
an equivalence relation on the set of all continuous maps from X
to Y .

Proof
This result follows on applying Proposition 2.10 in the case where
homotopies are relative to the empty set.
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Proposition 2.12

Let X and Y be topological spaces, let H : X × [0, 1]→ Y be a
continuous map defined on the product space X × [0, 1], let p be
an element of the topological space X and let τ be a real number
satisfying 0 ≤ τ ≤ 1. Then, given any open subset W of Y to
which the point H(p, τ) belongs, there exists a neighbourhood N
of p in X and a positive real number δ such that H(p′, τ ′) ∈W for
all p′ ∈ N and for all τ ′ ∈ [0, 1] satisfying τ − δ < τ ′ < τ + δ.

The result just stated is nothing more than a special case of
Proposition 2.4.
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2.6. Identification Maps and Quotient Topologies

Definition

Let X and Q be topological spaces and let χ : X → Q be a
function from X to Q. The function χ is said to be an
identification map if and only if the following conditions are
satisfied:

the function χ : X → Q is surjective,

a subset W of Q is open in Q if and only if χ−1(W ) is open
in X .
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It follows directly from the definition that any identification map is
continuous. Moreover, in order to show that a continuous
surjection χ : X → Q is an identification map, it suffices to prove
that if W is a subset of Q with the property that χ−1(W ) is open
in X then W is open in Q.
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Example
Let S1 be the unit circle in R2, and let κ : R→ S1 be the
continuous map that sends each real number t to
(cos 2πt, sin 2πt). Then κ : R→ S1 is an identification map.
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Indeed let W be a subset of the circle S1 whose preimage κ−1(W )
under the map κ is open in the real line, and let p be a point on
the circle S1 that belongs to W . Then there exists some real
number s for which p = κ(s). Then s ∈ κ−1(W ), and κ−1(W ) is
open in R, by assumption. Therefore there exists some positive
real number δ for which the open interval (s − δ, s + δ) is
contained in W . Then κ maps that open interval either to an open
arc in the circle S1 that contains the point p or else (in the case
when δ > 1

2 ) to the entire circle. It follows in either case that the
set W contains some open neighbourhood of the point p, and is
thus itself a neighbourhood of p.
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This argument shows that the subset W of the circle S1 is a
neighbourhood of each of its points. It is therefore open in the
circle (see Lemma 1.4). Thus if W is a subset of the circle S1 and
if the preimage κ−1(W ) of W under the map κ is open in the real
line R then W itself is open in the circle S1. Conversely if W is a
subset of the circle S1 which is open in the circle, then the
continuity of the map κ ensures that the preimage κ−1(W ) of W
under the map κ is open in the real line. It follows that the
surjective map κ : R→ S1 is indeed an identification map.
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Example
Let S1 be the unit circle in R2, and let η : [0, 1]→ S1 be the
continuous map that sends each real number t in the closed
bounded interval [0, 1] to (cos 2πt, sin 2πt). Then η : [0, 1]→ S1 is
an identification map.
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Let W be a subset of the circle S1 whose preimage η−1(W ) under
the function η is open in the closed unit interval [0, 1]. Let p be a
point of the circle belonging to W which is distinct from the
point (1, 0). Then there exists some real number s satisfying
0 < s < 1 for which η(s) = p. Now η−1(W ) is open in [0, 1], by
assumption. It follows that there exists some positive real
number δ satisfying the inequalities 0 < s − δ < s + δ < 1 for
which the open interval (s − δ, s + δ) is contained in η−1(W ).
Then the image of this open interval under the map η is an open
set contained in W to which the point p belongs. It follows that
W is a neighbourhood of any point of W that is distinct from the
point (1, 0) of the circle to which the endpoints of the closed unit
interval [0, 1] are sent by the map η.
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Now suppose that the point p0 belongs to W , where p0 = (1, 0).
We show that W is a neighbourhood, in the circle S1, of the point
p0.

Now the points of the closed unit interval [0, 1] that are mapped
by η to the point p0 are the endpoints 0 and 1 of the closed unit
interval. Now the preimage η−1(W ) of W under the map η is
assumed to be open in the closed unit interval [0, 1]. The definition
of the subspace topology on [0, 1] then ensures the existence of
real numbers δ0 and δ1 with values strictly between 0 and 1

2 for
which [0, δ0) ⊂ η−1(W ) and (1− δ1, 1] ⊂ η−1(W ). Then the
set W contains the open arc in the circle with endpoints η(1− δ1)
and η(δ0) that contains the point p0. It follows that the set W is a
neighbourhood of the point p0 in the circle, as previously claimed.
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We have now shown that if W is a subset of the circle S1 whose
preimage η−1(W ) under the continuous map η is open in the
closed unit interval [0, 1] then W itself is a neighbourhood of each
of its points. Consequently if η−1(W ) is open in [0, 1] then W
itself is open in the circle S1. Conversely if W is a subset of the
circle that is open in the circle, then the continuity of the map
η : [0, 1]→ S1 ensures that the preimage W under the map η is
open in the closed unit interval. It follows that the surjective map
η : [0, 1]→ S1 is indeed an identification map.
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Lemma 2.13

Let X be a topological space, let Q be a set, and let χ : X → Q be
a surjection. Then there is a unique topology on Q that ensures
that the function χ : X → Q mapping the topological space X
onto Q is an identification map.

Proof
Let τ be the collection consisting of all subsets W of Q for which
χ−1(W ) is open in X . Now χ−1(∅) = ∅, and χ−1(Q) = X . Thus
the empty set ∅ and the whole set Q both belong to the
collection τ .
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Now, given any collection of subsets of Q, the preimage, under the
function χ, of the union of those sets is the union of the preimages
of the sets (Lemma 1.9). Also the preimages under χ of sets
belonging to the collection τ are open sets in X . It follows that,
the preimage of any union of subsets of Q belonging to the
collection τ is a union of open sets in X , and must therefore itself
be an open set in X . Consequently any union of subsets of Q
belonging to the collection τ must itself belong to that collection τ .
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Furthermore, given any collection of subsets of Q, the preimage,
under the function χ, of the intersection of those sets is the
intersection of the preimages of the sets (Lemma 1.10). We have
moreover already noted that the preimages under χ of sets
belonging to the collection τ are open sets in X . It follows that,
the preimage of any finite intersection of subsets of Q belonging to
the collection τ is a finite intersection of open sets in X , and must
therefore itself be an open set in X . Consequently any finite
intersection of subsets of Q belonging to the collection τ must
itself belong to that collection τ .
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We have now shown that the empty set and the whole of the set Q
belong to the collection τ , the union of any collection of subsets of
Q belonging to τ must itself belong to the collection τ , and
intersection of any finite collection of subsets of Q belonging to τ
must itself belong to the collection τ . Consequently τ is a
topology on Q. Moreover the definition of this topology ensures
that the map χ : X → Q mapping the topological space X onto Q
is an identification map when the topology on the set Q is the
topology τ . Now the very definition of quotient topologies ensures
that if the function mapping the topological space X onto Q is to
be an identification map, then the open sets in Q must be those
whose preimages are open in the topological space X . It follows
that τ is the unique topology on Q that ensures that the
function χ mapping the topological space X onto Q is an
identification map.
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Definition

Let X be a topological space, let Q be a set, and let χ : X → Q be
a surjection. The unique topology on Q that ensures that the
function χ is an identification map is referred to as the quotient
topology (or identification topology) on Q.
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Lemma 2.14

Let X and Q be topological spaces and let χ : X → Q be an
identification map. Let Z be a topological space, and let
ψ : Q → Z be a function from Q to Z . Then the function ψ is
continuous if and only if the composition function ψ ◦ χ : X → Z is
continuous.
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Proof
Suppose that ψ is continuous. Then the composition
function ψ ◦ χ is a composition of continuous functions and hence
is itself continuous.

Conversely suppose that ψ ◦ χ is continuous. Let V be an open set
in Z . Then χ−1(ψ−1(V )) is open in X , because this subset of X is
the preimage of the open set V under the composition function
ψ ◦ χ, and that composition function is assumed to be continuous.
It follows that ψ−1(V ) is open in Q, because the function χ is an
identification map. Therefore the function ψ is continuous, as
required.
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Example
Let Sn be the n-sphere, consisting of all points p in Rn+1

satisfying |p| = 1. Let RPn be the set of all lines in Rn+1 passing
through the origin (i.e., RPn is the set of all one-dimensional
vector subspaces of Rn+1).
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Let χ : Sn → RPn be the function which sends a point p of Sn to
the element of RPn represented by the line in Rn+1 that passes
through both p and the origin. Note that each element of the
set RPn is the image (under χ) of exactly two antipodal points p
and −p of Sn. The function χ induces a corresponding quotient
topology on RPn which ensures that the surjective function
χ : Sn → RPn is an identification map. The set of lines in
(n + 1)-dimensional Euclidean space that pass through the centre
of the unit sphere, with the quotient topology just described, is the
topological space referred to as n-dimensional real projective space.
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The space RP2 is then the image of the two-dimensional sphere S2

under the identification map just described that identifies pairs of
antipodal points on the sphere. This topological space is referred
to as the real projective plane.
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Note that a function ψ : RPn → Z mapping RPn into a
topological space Z is continuous if and only if the composition
function ψ ◦ χ : Sn → Z is continuous. (This follows on applying
Lemma 2.14.)
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Proposition 2.15

A continuous surjection ϕ : X → Q from a compact topological
space X to a Hausdorff space Q is an identification map.

Proof
Let W be a subset of the Hausdorff space Q. The surjectivity of
the map ϕ ensures that Q \W = ϕ(ϕ−1(Q \W )). It follows that

Q \W = ϕ(ϕ−1(Q \W )) = ϕ(X \ ϕ−1(W )),

because the preimage of the complement in Q of the subset W of
Q is the complement in X of the preimage of W under the map ϕ
(see Lemma 1.11).
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Now suppose that the preimage ϕ−1(W ) of W under the map ϕ is
an open set in X . Then its complement is closed in X . But the
topological space X is compact, and any closed subset of a
compact topological space is itself compact. It follows that
X \ ϕ−1(W ) is a compact set. Now continuous functions map
compact sets to compact sets. It follows that the
complement Q \W in Q of the subset W of Q is a compact set,
being the image of the compact set X \ ϕ−1(W ) under the
continuous map ϕ. Now compact subsets of Hausdorff spaces are
closed. It follows therefore that Q \W is closed in Q, and
therefore the set W itself is open in Q. Thus the preimage of a
subset of Q under the map ϕ is open in the topological space X
then that subset W of Q is open in Q. We conclude therefore that
a continuous surjection ϕ : X → Q, mapping a compact space onto
a Hausdorff space must necessarily be an identification map, which
is what we were required to prove.
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Example
Let S1 be the unit circle in R2, defined so that
S1 = {(x , y) ∈ R2 : x2 + y2 = 1}, and let η : [0, 1]→ S1 be
defined so that η(t) = (cos 2πt, sin 2πt) for all t ∈ [0, 1]. It has
been shown that the map η is an identification map. This also
follows directly from the fact that η : [0, 1]→ S1 is a continuous
surjection from the compact space [0, 1] to the Hausdorff space S1.
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