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6.1. Path-Lifting and the Fundamental Group

Let X̃ and X be topological spaces, let ρ : X̃ → X be a covering
map from X̃ to X , and let α : [0, 1]→ X and β : [0, 1]→ X be
paths in the base space X which both start at some point b0 of X
and finish at some point b1 of X , so that

α(0) = β(0) = b0 and α(1) = β(1) = b1.

Let b̃0 be some point of the covering space X̃ that projects down
to b0, so that ρ(b̃0) = b0. It follows from the Path-Lifting
Theorem (Theorem 4.13) that there exist paths α̃ : [0, 1]→ X̃ and
β̃ : [0, 1]→ X̃ in the covering space X̃ that both start at b̃0 and
are lifts of the paths α and β respectively.
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Thus
α̃(0) = β̃(0) = b̃0,

ρ(α̃(t)) = α(t) and ρ(β̃(t)) = β(t) for all t ∈ [0, 1].

These lifts α̃ and β̃ of the paths α and β are uniquely determined
by their starting point b̃0 (see Proposition 4.11).
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Now, though the lifts α̃ and β̃ of the paths α and β have been
chosen such that they start at the same point b̃0 of the covering
space X̃ , they need not in general end at the same point of X̃ .
However we shall prove that if α ' β rel {0, 1}, then the lifts α̃ and
β̃ of α and β respectively that both start at some point b̃0 of X̃
will both finish at some point b̃1 of X̃ , so that α̃(1) = β̃(1) = b̃1.
This result is established in Proposition 6.1 below.
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Proposition 6.1

Let X̃ and X be topological spaces, and let ρ : X̃ → X be a
covering map from X̃ to X . Also let α : [0, 1]→ X and
β : [0, 1]→ X be paths in X , where α(0) = β(0) and α(1) = β(1),
and let α̃ : [0, 1]→ X̃ and β̃ : [0, 1]→ X̃ be paths in X̃ such that
ρ ◦ α̃ = α and ρ ◦ β̃ = β. Suppose that α̃(0) = β̃(0) and that
α ' β rel {0, 1}. Then α̃(1) = β̃(1) and α̃ ' β̃ rel {0, 1}.
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Proof
Let b0 and b1 be the points of X given by

b0 = α(0) = β(0), b1 = α(1) = β(1).

Now α ' β rel {0, 1}, and therefore there exists a homotopy
F : [0, 1]× [0, 1]→ X such that

F (t, 0) = α(t) and F (t, 1) = β(t) for all t ∈ [0, 1],

and

F (0, τ) = b0 and F (1, τ) = b1 for all τ ∈ [0, 1].
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It then follows from the Homotopy-Lifting Theorem
(Theorem 4.14) that there exists a continuous map
G : [0, 1]× [0, 1]→ X̃ such that ρ ◦ G = F and G (0, 0) = α̃(0).
Then ρ(G (0, τ)) = b0 and ρ(G (1, τ)) = b1 for all τ ∈ [0, 1]. A
straightforward application of Proposition 4.11 shows that any
continuous lift of a constant path must itself be a constant path.
Therefore G (0, τ) = b̃0 and G (1, τ) = b̃1 for all τ ∈ [0, 1], where

b̃0 = G (0, 0) = α̃(0), b̃1 = G (1, 0).
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However
G (0, 0) = G (0, 1) = b̃0 = α̃(0) = β̃(0).

Also
ρ(G (t, 0)) = F (t, 0) = α(t) = ρ(α̃(t))

and
ρ(G (t, 1)) = F (t, 1) = β(t) = ρ(β̃(t))

for all t ∈ [0, 1]. It follows that the map that sends t ∈ [0, 1] to
G (t, 0) is a lift of the path α that starts at b̃0, and the map that
sends t ∈ [0, 1] to G (t, 1) is a lift of the path β that also starts at
b̃0.
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However the lifts α̃ and β̃ of the paths α and β are uniquely
determined by their starting points (see Proposition 4.11). It
follows that G (t, 0) = α̃(t) and G (t, 1) = β̃(t) for all t ∈ [0, 1]. In
particular,

α̃(1) = G (1, 0) = b̃1 = G (1, 1) = β̃(1).

Moreover the map G : [0, 1]× [0, 1]→ X̃ is a homotopy between
the paths α̃ and β̃ which satisfies G (0, τ) = b̃0 and G (1, τ) = b̃1
for all τ ∈ [0, 1]. It follows that α̃ ' β̃ rel {0, 1}, as required.
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Let X̃ and X be topological spaces, and let ρ : X̃ → X be a
covering map from X̃ to X . Also let b̃0 be a point of the covering
space X̃ , and let b0 = ρ(b̃0). Then the covering map ρ induces a
group homomorphism

ρ# : π1(X̃ , b̃0)→ π1(X , b0)

from the fundamental group π1(X̃ , b̃0) of the covering space with
basepoint b̃0 to the fundamental group π1(X , b0) of the base space
with basepoint b0. This induced homomorphism ρ# is defined so
that ρ#[γ̃] = [ρ ◦ γ̃] for all loops γ̃ in the covering space X̃ based
at the point b̃0 (see Proposition 5.2).
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Proposition 6.2

Let X̃ and X be topological spaces, and let ρ : X̃ → X be a
covering map from X̃ to X . Also let b̃0 be a point of the covering
space X̃ , and let b0 = ρ(b̃0). Then the homomorphism

ρ# : π1(X̃ , b̃0)→ π1(X , b0)

of fundamental groups induced by the covering map ρ is injective.
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Proof
Let σ0 and σ1 be loops in X̃ based at the point b̃0, representing
elements [σ0] and [σ1] of π1(X̃ , b̃0). Suppose that
ρ#[σ0] = ρ#[σ1]. Then ρ ◦ σ0 ' ρ ◦ σ1 rel {0, 1}. Also
σ0(0) = b̃0 = σ1(0). It therefore follows (on applying
Proposition 6.1) that σ0 ' σ1 rel {0, 1}, and thus [σ0] = [σ1]. We
conclude therefore that the homomorphism
ρ# : π1(X̃ , b̃0)→ π1(X , b0) is injective.
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Proposition 6.3

Let X̃ and X be topological spaces, and let ρ : X̃ → X be a
covering map from X̃ to X . Also let b̃0 be a point of the covering
space X̃ , let b0 = ρ(b̃0), and let γ be a loop in X based at b0.
Then [γ] ∈ ρ#

(
π1(X̃ , b̃0)

)
if and only if there exists a loop γ̃ in X̃ ,

based at the point b̃0, such that ρ ◦ γ̃ = γ.
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Proof
If γ = ρ ◦ γ̃ for some loop γ̃ in X̃ based at b̃0 then [γ] = ρ#[γ̃],
and therefore [γ] ∈ ρ#

(
π1(X̃ , b̃0)

)
.

Conversely suppose that [γ] ∈ ρ#
(
π1(X̃ , b̃0)

)
. We must show that

there exists some loop γ̃ in X̃ based at b̃0 such that γ = ρ ◦ γ̃.
Now there exists a loop σ in X̃ based at the point b̃0 such that
[γ] = ρ#([σ]) in π1(X , b0). Then γ ' ρ ◦ σ rel {0, 1}. It follows
from the Path-Lifting Theorem for covering maps (Theorem 4.13)
that there exists a unique path γ̃ : [0, 1]→ X̃ in X̃ for which
γ̃(0) = b̃0 and ρ ◦ γ̃ = γ. It then follows from Proposition 6.1 that
γ̃(1) = σ(1) and γ̃ ' σ rel {0, 1}. But σ(1) = b̃0. Therefore the
path γ̃ is the required loop in X̃ based the point b̃0 which satisfies
ρ ◦ γ̃ = γ.
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Corollary 6.4

Let X̃ and X be topological spaces, and let ρ : X̃ → X be a
covering map from X̃ to X . Also let q0 and q1 be points of X̃
satisfying ρ(q0) = ρ(q1), and let η : [0, 1]→ X̃ be a path in X̃
from q0 to q1. Suppose that [ρ ◦ η] ∈ ρ#

(
π1(X̃ , q0)

)
. Then the

path η is a loop in X̃ , and thus q0 = q1.

Proof
It follows from Proposition 6.3 that there exists a loop σ based at
q0 satisfying ρ ◦ σ = ρ ◦ η. Then η(0) = σ(0). Now
Proposition 4.11 ensures that the lift to X̃ of any path in X is
uniquely determined by its starting point. It follows that η = σ.
But then the path η must be a loop in X̃ , and therefore q0 = q1,
as required.
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Theorem 6.5

Let X̃ and X be topological spaces and let ρ : X̃ → X be a
covering map from X̃ to X . Suppose that X̃ is path-connected and
that X is simply connected. Then the covering map ρ : X̃ → X is a
homeomorphism.



6. Discontinuous Group Actions and Orbit Spaces (continued)

Proof
We show that the map ρ : X̃ → X is a bijection. This map is
surjective (because covering maps are by definition surjective). We
must show that it is injective. Let q0 and q1 be points of X̃ with
the property that ρ(q0) = ρ(q1). Then there exists a path
η : [0, 1]→ X̃ with η(0) = q0 and η(1) = q1, because the covering
space X̃ is path-connected. Then ρ ◦ η is a loop in X based at the
point b0, where b0 = ρ(q0). However π1(X , b0) is the trivial group,
because X is simply connected. It follows from Corollary 6.4 that
the path η is a loop in X̃ based at q0, and therefore q0 = q1. This
shows that the covering map ρ : X̃ → X is injective.
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Accordingly the map ρ : X̃ → X is a bijection. But any bijective
covering map is a homeomorphism (Corollary 4.8). The result
follows.
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6.2. Discontinuous Group Actions

Definition

Let G be a group, and let X be a set. The group G is said to act
on the set X (on the left) if each element g of G determines a
corresponding function θg : X → X from the set X to itself, where

(i) θgh = θg ◦ θh for all g , h ∈ G ;

(ii) the function θe determined by the identity element e of G is
the identity function of X .
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Let G be a group acting on a set X . Given any element p of X ,
the orbit [p]G of p (under the group action) is defined to be the
subset {θg (p) : g ∈ G} of X , and the stabilizer of p is defined to
the subgroup {g ∈ G : θg (p) = p} of the group G . Thus the orbit
of an element p of X is the set consisting of all points of X to
which p gets mapped under the action of elements of the group G .
The stabilizer of p is the subgroup of G consisting of all elements
of this group that fix the point p. The group G is said to act freely
on X if θg (p) 6= p for all p ∈ X and g ∈ G satisfying g 6= e. Thus
the group G acts freely on X if and only if the stabilizer of every
element of X is the trivial subgroup of G .

Let e be the identity element of G . Then p = θe(p) for all p ∈ X ,
and therefore p ∈ [p]G for all p ∈ X , where
[p]G = {θg (p) : g ∈ G}.
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Let p and q be elements of X for which [p]G ∩ [q]G is non-empty,
and let r ∈ [p]G ∩ [q]G . Then there exist elements h and k of G
such that r = θh(p) = θk(q). Then θg (r) = θgh(p) = θgk(q),
θg (p) = θgh−1(r) and θg (q) = θgk−1(r) for all g ∈ G . Therefore
[p]G = [r ]G = [q]G . It follows from this that the group action
partitions the set X into orbits, so that each element of X
determines an orbit which is the unique orbit for the action of G
on X to which it belongs. We denote by X/G the set of orbits for
the action of G on X .
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Now suppose that the group G acts on a topological space X .
Then there is a surjective function ρ : X → X/G , where
ρ(p) = [p]G for all p ∈ X . This surjective function induces a
quotient topology on the set of orbits: a subset W of X/G is open
in this quotient topology if and only if ρ−1(W ) is an open set in X
(see Lemma 2.13). We define the orbit space X/G for the action
of G on X to be the topological space whose underlying set is the
set of orbits for the action of G on X , the topology on X/G being
the quotient topology induced by the function ρ : X → X/G . This
function ρ : X → X/G is then an identification map: we shall refer
to it as the quotient map from X to X/G .

We shall be concerned here with situations in which a group action
on a topological space gives rise to a covering map. The relevant
group actions are those where the group acts freely and properly
discontinuously on the topological space.
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Definition

Let G be a group with identity element e, and let X be a
topological space. The group G is said to act freely and properly
discontinuously on X if each element g of G determines a
corresponding continuous map θg : X → X , where the following
conditions are satisfied:

(i) θgh = θg ◦ θh for all g , h ∈ G ;

(ii) the continuous map θe determined by the identity element e
of G is the identity map of X ;

(iii) given any point p of X , there exists an open set V in X such
that p ∈ V and θg (V ) ∩ V = ∅ for all g ∈ G satisfying g 6= e.
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Let G be a group which acts freely and properly discontinuously on
a topological space X . Given any element g of G , the
corresponding continuous function θg : X → X determined by g is
a homeomorphism. Indeed it follows from conditions (i) and (ii) in
the above definition that θg−1 ◦ θg and θg ◦ θg−1 are both equal to
the identity map of X , and therefore θg : X → X is a
homeomorphism with inverse θg−1 : X → X .
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Remark
The terminology ‘freely and properly discontinuously’ is traditional,
but is hardly ideal. The adverb ‘freely’ refers to the requirement
that θg (p) 6= p for all p ∈ X and for all g ∈ G satisfying g 6= e.
The adverb ‘discontinuously’ refers to the fact that, given any
point x of X , the elements of the orbit {θg (p) : g ∈ G} of p are
separated; it does not signify that the functions defining the action
are in any way discontinuous or badly-behaved. The adverb
‘properly’ refers to the fact that, given any compact subset K of
X , the number of elements g of the group G for which
K ∩ θg (K ) 6= ∅ is finite.
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Moreover the definitions of properly discontinuous actions in
textbooks and in sources of reference are not always in agreement:
some say that an action of a group G on a topological space X
(where each group element determines a corresponding
homeomorphism of the topological space) is properly discontinuous
if, given any p ∈ X , there exists an open set V in X such that the
number of elements g of the group for which g(V ) ∩ V 6= ∅ is
finite; others say that the action is properly discontinuous if it
satisfies the conditions given in the definition above for a group
acting freely and properly discontinuously on the set. William
Fulton, in his textbook Algebraic topology: a first course (Springer,
1995), introduced the term ‘evenly’ in place of ‘freely and properly
discontinuously’, but this change in terminology does not appear to
have been generally adopted.
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6.3. Orbit Spaces

Example
The cyclic group C2 of order 2 consists of a set {e, a} with two
elements e and a, together with a group multiplication operation
defined so that e2 = a2 = e and ea = ae = a. The identity
element of C2 is thus e.

Let us represent the n-dimensional sphere Sn as the unit sphere in
Rn+1 centred on the origin. Let θe : Sn → Sn be the identity map
of Sn and let θa : Sn → Sn be the antipodal map of Sn, defined
such that θa(p) = −p for all p ∈ Sn. Then the group C2 acts on
Sn (on the left) so that elements e and a of Sn correspond under
this action to the homeomorphisms θe and θa respectively. Points
p and q are said to be antipodal to one another if and only if
q = −p. Each orbit for the action of C2 on Sn thus consists of a
pair of antipodal points on Sn.
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Let n be a point on the n-dimensional sphere Sn, and let

V = {p ∈ Sn : p . n > 0}.

Then V is open in Sn and n ∈ V . Also

θa(V ) = {p ∈ Sn : p . n < 0},

and therefore V ∩ θa(V ) = ∅. Consequently the group C2 acts
freely and properly discontinuously on Sn.
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Distinct points of Sn belong to the same orbit under the action of
C2 on Sn if and only if the line in Rn+1 passing through those
points also passes through the origin. It follows that lines in Rn+1

that pass through the origin are in one-to-one correspondence with
orbits for the action of C2 on Sn. The orbit space Sn/C2 thus
represents the set of lines through the origin in Rn+1. We define
n-dimensional real projective space RPn to be the topological
space whose elements are the lines in Rn+1 passing through the
origin, with the topology obtained on identifying RPn with the
orbit space Sn/C2. The quotient map ρ : Sn → RPn then sends
each point p of Sn to the orbit consisting of the two points p and
−p. Thus each pair of antipodal points on the n-dimenionsional
sphere Sn determines a single point of n-dimensional real
projective space RPn.
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Proposition 6.6

Let G be a group acting freely and properly discontinuously on a
topological space X , let X/G denote the resulting orbit space, and
let ρ : X → X/G be the quotient map that sends each element of
X to its orbit under the action of the group G. Let ϕ : X → Y be
a continuous surjective map from X to a topological space Y .
Suppose that elements p and q of X satisfy ϕ(p) = ϕ(q) if and
only if ρ(p) = ρ(q). Suppose also ϕ(V ) is open in Y for every
open set V in X . Then the surjective continuous map ϕ : X → Y
induces a homeomorphism ψ : X/G → Y between the topological
spaces X/G and Y , where ψ(ρ(p)) = ϕ(p) for all p ∈ X.
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Proof
The function ψ : X/G → Y is continuous because ϕ : X → Y is
continuous and ρ : X → Y is a quotient map (see Lemma 2.14).
Moreover it is surjective because ϕ : X → Y is surjective, and it is
injective because elements p and q satisfy ϕ(p) = ϕ(q) if and only
if ρ(p) = ρ(q). It follows that ψ : X/G → Y is a bijection.

Let W be an open set in X/G . It follows from the definition of the
quotient topology that ρ−1(W ) is open in X . The map ϕ maps
open sets to open sets. Therefore ϕ(ρ−1(W )) is open in Y . But
ϕ(ρ−1(W )) = ψ(W ). Thus ψ(W ) is open in Y for every open
set W in X/G , and therefore the inverse of the map ψ is
continuous. Thus the continuous bijection ψ : X/G → Y is a
homeomorphism, as required.
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Corollary 6.7

Let the group Z act on the real line R by translation, where the
action sends each integer n to the translation function θn : R→ R
that is defined so that θn(t) = t + n for all real numbers t. Let
R/Z denote the orbit space for this action, and let ρ : R→ R/Z be
the quotient map that sends each real number to its orbit under
the action of the group Z. Let S1 denote the unit circle centred on
the origin in R2, let κ : R→ S1 be defined such that

κ(t) = (cos 2πt, sin 2πt)

for all real numbers t, and let ψ : R/Z→ S1 be the map defined
such that ψ(ρ(t)) = κ(t) for all real numbers t. Then
ψ : R/Z→ S1 is a homeomorphism.
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Proof
The map κ : R→ S1 maps open sets to open sets. The result
therefore follows directly on applying Proposition 6.6.



6. Discontinuous Group Actions and Orbit Spaces (continued)

Proposition 6.8

Let G be a group acting freely and properly discontinuously on a
topological space X , let X/G denote the resulting orbit space, and
let ρ : X → X/G be the quotient map that sends each element of
X to its orbit under the action of the group G. Let ϕ : X → Y be
a continuous surjective map from X to a Hausdorff topological
space Y . Suppose that elements p and q of X satisfy ϕ(p) = ϕ(q)
if and only if ρ(p) = ρ(q). Suppose also that there exists a
compact subset K of X that intersects every orbit for the action of
G on X . Then the surjective continuous map ϕ : X → Y induces a
homeomorphism ψ : X/G → Y between the topological spaces
X/G and Y , where ψ(ρ(p)) = ϕ(p) for all p ∈ X.
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Proof
The function ψ : X/G → Y is continuous because ϕ : X → Y is
continuous and ρ : X → X/G is a quotient map (see Lemma 2.14).
Moreover it is surjective because ϕ : X → Y is surjective, and it is
injective because elements p and q satisfy ϕ(p) = ϕ(q) if and only
if ρ(p) = ρ(q). It follows that ψ : X/G → Y is a bijection.

The orbit space X/G is compact, because it is the image ρ(K ) of
the compact set K under the continuous map ρ : X → X/G . (see
Lemma 1.29). Thus ψ : X/G → Y is a continuous bijection from a
compact topological space to a Hausdorff space. This map is
therefore a homeomorphism (see Theorem 1.35).
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Example
Let the group Z of integers under addition act on the real line R
by translation so that, under this action, an integer n corresponds
to the homeomorphism θn : R→ R defined such that θn(t) = t + n
for all real numbers t. Let ρ : R→ R/Z be the quotient map onto
the orbit space, and let κ : R→ S1 be defined such that

κ(t) = (cos 2πt, sin 2πt)

for all real numbers t, and let ψ : R/Z→ S1 be the map defined
such that ψ(ρ(t)) = κ(t) for all real numbers t.
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Now S1 is a Hausdorff space, as it is a subset of the metric space
R2. Also the map κ : R→ S1 is surjective. Real numbers t1 and t2
satisfy κ(t1) = κ(t2) if and only if t1 = t2 + n for some integer n.
It follows that κ(t1) = κ(t2) if and only if ρ(t1) = ρ(t2). The
compact subset [0, 1] of R intersects every orbit for the action of Z
on R. It therefore follows from Proposition 6.8 that ψ : R/Z→ S1

is a homeomorphism. (This result was also shown to follow from
the fact that κ : R→ S1 maps open sets to open sets: see
Corollary 6.7.)
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Proposition 6.9

Let G be a group acting freely and properly discontinuously on a
topological space X . Then the quotient map ρ : X → X/G from X
to the corresponding orbit space X/G is a covering map.

Proof
The quotient map ρ : X → X/G is surjective. Let V be an open
set in X . Then ρ−1(ρ(V )) is the union

⋃
g∈G θg (V ) of the open

sets θg (V ) as g ranges over the group G , because ρ−1(ρ(V )) is
the subset of X consisting of all elements of X that belong to the
orbit of some element of V . Moreover each set θg (V ) is an open
set in X , because each map θg is a homeomorphism mapping the
set X onto itself. Also any union of open sets in a topological
space is an open set. We conclude therefore that if V is an open
set in X then ρ(V ) is an open set in X/G .
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Let p be a point of X . Then there exists an open set V in X such
that p ∈ V and θg (V ) ∩ V = ∅ for all g ∈ G satisfying g 6= e.
Now ρ−1(ρ(V )) =

⋃
g∈G θg (V ). We claim that the sets θg (V ) are

pairwise disjoint. Let g and h be elements of G . Suppose that
θg (V ) ∩ θh(V ) 6= ∅. Then θh−1(θg (V ) ∩ θh(V )) 6= ∅. But
θh−1 : X → X is a bijection. Consequently

θh−1(θg (V )∩θh(V )) = θh−1(θg (V ))∩θh−1(θh(V )) = θh−1g (V )∩V ,

and therefore θh−1g (V ) ∩ V 6= ∅. It follows that h−1g = e, where
e denotes the identity element of G , and therefore g = h. It
follows from this that if g and h are elements of the group G , and
if g 6= h, then θg (V ) ∩ θh(V ) = ∅. We conclude therefore that the
preimage ρ−1(ρ(V )) of ρ(V ) is indeed the disjoint union of the
sets θg (V ) as g ranges over the group G . Moreover each of these
sets θg (V ) is an open set in X .
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Now V ∩ [p]G = {p} for all p ∈ V , because
[p]G = {θg (p) : g ∈ G} and V ∩ θg (V ) = ∅ whenever g is an
element of the group G distinct from the identity element of that
group. It follows that if p and q are elements of V , and if
ρ(p) = ρ(q) then [p]G = [q]G and therefore p = q. Consequently
the restriction ρ|V : V → X/G of the quotient map ρ to V is
injective, and therefore ρ maps V bijectively onto ρ(V ). But ρ
maps open sets onto open sets, and any continuous bijection that
maps open sets onto open sets is a homeomorphism. We conclude
therefore that the restriction of ρ : X → X/G to the open set V
maps V homeomorphically onto ρ(V ). Moreover, given any
element g of G , the quotient map ρ satisfies ρ = ρ ◦ θg−1 , and the
homeomorphism θg−1 maps θg (V ) homeomorphically onto V . It
follows that the quotient map ρ maps θg (V ) homeomorphically
onto ρ(V ) for all g ∈ V .
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We conclude therefore that ρ(V ) is an evenly covered open set in
X/G whose preimage ρ−1(ρ(V )) is the disjoint union of the open
sets θg (V ) as g ranges over the group G . Consequently the
quotient map ρ : X → X/G is a covering map, as required.
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6.4. Fundamental Groups of Orbit Spaces

Theorem 6.10

Let G be a group acting freely and properly discontinuously on a
path-connected topological space X , let ρ : X → X/G be the
quotient map from X to the orbit space X/G, let b0 be a point of
X , and let c0 = ρ(b0) = [b0]G . Then there exists a surjective
homomorphism λ : π1(X/G , c0)→ G characterized by the property
that γ̃(1) = θλ([γ])(b0) for any loop γ in X/G based at c0, where γ̃
denotes the unique path in X for which γ̃(0) = b0 and ρ ◦ γ̃ = γ.
The kernel of this homomorphism is the subgroup ρ#

(
π1(X , b0)

)
of π1(X/G , c0).
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Proof
Let γ : [0, 1]→ X/G be a loop in the orbit space with
γ(0) = γ(1) = c0. It follows from the Path-Lifting Theorem for
covering maps (Theorem 4.13) that there exists a unique path
γ̃ : [0, 1]→ X for which γ̃(0) = b0 and ρ ◦ γ̃ = γ. Now γ̃(0) and
γ̃(1) must belong to the same orbit under the action of the
group G on the topological space X , because

ρ(γ̃(0)) = γ(0) = γ(1) = ρ(γ̃(1)).

Therefore there exists some element g of G such that
γ̃(1) = θg (b0). This element g is uniquely determined, because the
group G acts freely on X . Moreover the value of g is determined
by the based homotopy class [γ] of γ in π1(X/G , c0).
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Indeed it follows from Proposition 6.1 that if σ is a loop in X/G
based at c0, if σ̃ is the lift of σ starting at b0 (so that ρ ◦ σ̃ = σ
and σ̃(0) = b0), and if [γ] = [σ] in π1(X/G , c0) (so that
γ ' σ rel {0, 1}), then γ̃(1) = σ̃(1). We conclude therefore that
there exists a well-defined function

λ : π1(X/G , c0)→ G ,

which is characterized by the property that γ̃(1) = θλ([γ])(b0) for
any loop γ in X/G based at c0, where γ̃ denotes the unique path
in X for which γ̃(0) = b0 and ρ ◦ γ̃ = γ.
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Now let α : [0, 1]→ X/G and β : [0, 1]→ X/G be loops in X/G
based at c0, and let α̃ : [0, 1]→ X and β̃ : [0, 1]→ X be the lifts of
α and β respectively starting at b0, so that ρ ◦ α̃ = α, ρ ◦ β̃ = β
and α̃(0) = β̃(0) = b0. Then α̃(1) = θλ([α])(b0) and

β̃(1) = θλ([β])(b0). Then the path θλ([α]) ◦ β̃ is also a lift of the
loop β, and is the unique lift of β starting at α̃(1). Let α . β be the
concatenation of the loops α and β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2 ;
β(2t − 1) if 1

2 ≤ t ≤ 1.

Then the unique lift of α . β to X starting at b0 is the
path σ : [0, 1]→ X , where

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2 ;

θλ([α])(β̃(2t − 1)) if 1
2 ≤ t ≤ 1.
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It follows that

θλ([α][β])(b0) = θλ([α.β])(b0) = σ(1) = θλ([α])(β̃(1))

= θλ([α])(θλ([β])(b0)) = θλ([α])λ([β])(b0).

Consequently λ([α][β]) = λ([α])λ([β]). Thus the function

λ : π1(X/G , c0)→ G

is a homomorphism.
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Let g ∈ G . Then there exists a path α in X from b0 to θg (b0),
because the space X is path-connected. Then ρ ◦ α is a loop in
X/G based at c0, and g = λ([ρ ◦ α]). This shows that the
homomorphism λ is surjective.
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Let γ : [0, 1]→ X/G be a loop in X/G based at c0. Suppose that
[γ] ∈ ker λ. Then γ̃(1) = θe(b0) = b0, and therefore γ̃ is a loop in
X based at b0. Moreover [γ] = ρ#[γ̃]. Consequently
[γ] ∈ ρ#

(
π1(X , b0)

)
. On the other hand, if [γ] ∈ ρ#

(
π1(X , b0)

)
then γ = ρ ◦ γ̃ for some loop γ̃ in X based at b0 (see
Proposition 6.3). But then b0 = γ̃(1) = θλ([γ])(b0), and therefore
λ([γ]) = e, where e is the identity element of G . Thus
ker λ = ρ#

(
π1(X , b0)

)
, as required.
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Corollary 6.11

Let G be a group acting freely and properly discontinuously on a
path-connected topological space X , let ρ : X → X/G be the
quotient map from X to the orbit space X/G, and let b0 be a
point of X . Then ρ#

(
π1(X , b0)

)
is a normal subgroup of the

fundamental group π1(X/G , c0) of the orbit space, and

π1(X/G , c0)

ρ#
(
π1(X , b0)

) ∼= G .
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Proof
The subgroup ρ#

(
π1(X , b0)

)
is the kernel of the homomorphism

λ : π1(X/G , c0)→ G

characterized by the property that γ̃(1) = θλ([γ])(b0) for any loop γ
in X/G based at c0, where γ̃ denotes the unique path in X for
which γ̃(0) = b0 and ρ ◦ γ̃ = γ. The image of π1(X , b0) under the
homomorphism ρ# of fundamental groups induced by the quotient
map ρ is therefore a normal subgroup of π1(X/G , c0), because the
kernel of any homomorphism is a normal subgroup. The
homomorphism λ is surjective, and the image of any group
homomorphism is isomorphic to the quotient of its domain by its
kernel. The result follows.
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Corollary 6.12

Let G be a group acting freely and properly discontinuously on a
simply connected topological space X , let ρ : X → X/G be the
quotient map from X to the orbit space X/G, and let b0 be a
point of X , and let c0 = ρ(b0) = [b0]G . Then π1(X/G , c0) ∼= G.

Proof
This is a special case of Corollary 6.11.
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