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1 Results concerning Metric and Topological

Spaces

1.1 Topological Spaces

A topological space (X, τ) consists of a set X which is provided with a col-
lection τ of subsets of X, where this collection τ of subsets of X is required
to satisfy appropriate axioms. The subsets of the set X that belong to the
collection τ are referred to as open sets. The axioms which this collection τ
is required to satisfy may therefore be expressed in the form of properties
that the collection of open sets in any topological space must satisfy.

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is
referred to as a topology on the set X.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, τ) the topological space whose underlying set
is X and whose topology is τ . However if no confusion will arise then it is
customary to denote this topological space simply by X.

1.2 The Topology on a Metric Space

We now discuss metric spaces. Metric spaces are sets provided with distance
functions. There are criteria, expressible through the utilization of distance
functions, that determine which infinite sequences in a metric space are con-
vergent, and which functions between metric spaces are continuous. However
any metric space has a collection of open sets, determined by the distance
function, that gives the metric space the structure of a topological space. The
concepts of convergence and continuity that arise within the theory of topo-
logical spaces are consistent with the criteria that characterize convergence
and continuity in metric space contexts using distance functions.
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Definition A metric space (X, d) consists of a set X together with a distance
function d : X ×X → [0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(x, z) ≤ d(x, y)+d(y, z) is referred
to as the Triangle Inequality. The elements of a metric space are usually re-
ferred to as points of that metric space.

An n-dimensional Euclidean space Rn is a metric space with respect to
the Euclidean distance function d, defined so that

d(x,y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2

for all x,y ∈ Rn. Any subset X of Rn may be regarded as a metric space
whose distance function is the restriction to X of the Euclidean distance
function on Rn.

Definition Let (X, d) be a metric space. Given a point p of X and a positive
real number η, the open ball BX(p, η) of radius η about p in X consisting
of all points of the metric space X that lie within a distance η of the given
point p.

Thus, given a point p of a topological space X, and given a positive real
number η, the open ball BX(p, η) of radius η centred on the point p is defined
so that

BX(p, η) = {x ∈ X : d(x, p) < η}.

Definition Let (X, d) be a metric space. A subset V of X is said to be an
open set (or is said, more specifically, to be open in X) if and only if, given
any point p of V , there exists some positive real number δ such that the open
ball of radius δ centred on the point p is contained within V .
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Thus a subset V of a metric space X is open in X if and only if, given any
point p of V there exists some positive real number δ for which BX(p, δ) ⊂ V .

The empty set is considered to be an open set in any metric space. This
can be justified on the grounds that, because the empty set has no points
at all, it cannot contain any points for which a corresponding open ball
contained in the empty set cannot be found.

Lemma 1.1 Let X be a metric space with distance function d, and let p be
a point of X. Then, for any positive real number η, the open ball BX(p, η)
of radius η about the point p is an open set in X.

Proof Let q ∈ BX(p, η). We must show that there exists some positive real
number δ such that BX(q, δ) ⊂ BX(p, η). Now d(q, p) < η, and hence δ > 0,
where δ = η − d(q, p). Moreover if x ∈ BX(q, δ) then

d(x, p) ≤ d(x, q) + d(q, p) < δ + d(q, p) = η,

by the Triangle Inequality, hence x ∈ BX(p, η). Thus BX(q, δ) ⊂ BX(p, η),
showing that BX(p, η) is an open set, as required.

Proposition 1.2 Let X be a metric space. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open sets;

(ii) the union of any collection of open sets is itself an open set;

(iii) the intersection of any finite collection of open sets is itself an open set.

Proof The empty set is considered to be an open subset of every metric
space. For, as the empty set does not contain any points, there can be no
point of the empty set that is not the centre of any open ball of positive
radius contained in the empty set.

The whole metric space is an open subset of itself because, given any
point of the metric space, every open ball of positive radius about that point
is contained within the metric space.

Let C be any collection of open sets in X, and let W denote the union of
all the open sets belonging to C. We must show that W is itself an open set.
Let p ∈ W . Then p ∈ V for some open set V belonging to the collection C.
Therefore there exists some positive real number δ such that BX(p, δ) ⊂ V .
But V ⊂ W , and thus BX(p, δ) ⊂ W . This shows that W is open. Thus (ii)
is satisfied.
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Finally let V1, V2, V3, . . . , Vk be a finite collection of open sets in X, and let
V = V1 ∩ V2 ∩ · · · ∩ Vk. Let p ∈ V . Now p ∈ Vj for all j, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(p, δj) ⊂ Vj
for j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0.
(This is where we need the fact that we are dealing with a finite collection
of open sets.) Moreover BX(p, δ) ⊂ BX(p, δj) ⊂ Vj for j = 1, 2, . . . , k, and
thus BX(p, δ) ⊂ V . This shows that the intersection V of the open sets
V1, V2, . . . , Vk is itself open. Thus (iii) is satisfied.

Any metric space may be regarded as a topological space. Indeed let X
be a metric space with distance function d. We recall that a subset V of X is
an open set if and only if, given any point v of V , there exists some positive
real number δ such that

{x ∈ X : d(x, v) < δ} ⊂ V.

Proposition 1.2 shows that the topological space axioms are satisfied by the
collection of open sets in any metric space. We refer to this collection of open
sets as the topology generated by the distance function d on X.

1.3 Further Examples of Topological Spaces

Example Given any set X, one can define a topology on X where every
subset of X is an open set. This topology is referred to as the discrete
topology on X.

Example Given any set X, one can define a topology on X in which the
only open sets are the empty set ∅ and the whole set X.

1.4 Closed Sets

Definition Let X be a topological space. A subset F of X is said to be a
closed set if and only if the complement X \ F of F in X is an open set.

We recall that the complement of the union of some collection of subsets
of some set X is the intersection of the complements of those sets, and the
complement of the intersection of some collection of subsets of X is the
union of the complements of those sets. The following result therefore follows
reasonably directly from the definition of a topological space.

Proposition 1.3 Let X be a topological space. Then the collection of closed
sets in X has the following properties:—
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(i) the empty set ∅ and the whole set X are closed sets,

(ii) the intersection of any collection of closed sets is itself a closed set,

(iii) the union of any finite collection of closed sets is itself a closed set.

1.5 Neighbourhoods of Points in Topological Spaces

Definition Let X be a topological space, let p be a point of X, and let
N be a subset of X which contains the point p. Then N is said to be a
neighbourhood of the point p if and only if there exists an open set W for
which p ∈ W and W ⊂ N .

Lemma 1.4 Let X be a topological space. A subset V of X is open in X if
and only if V is a neighbourhood of each of its points.

Proof It follows directly from the definition of neighbourhoods that an open
set V is a neighbourhood of any point belonging to V . Conversely, suppose
that V is a subset of X which is a neighbourhood of each of its points. Then,
given any point p of V , there exists an open set Wp such that p ∈ Wp and
Wp ⊂ V . Thus V is an open set, since it is the union of the open sets Wp as
p ranges over all points of V .

Let V be an open set in a topological space X, and let p be a point of
X belonging to the open set V . Then V is a neighbourhood of the point p,
because an open set is a neighbourhood of all of its points. Thus, given a
subset V of X, and given a point p of X, asserting that the set V is both a
neighbourhood of the point p and also an open set is equivalent to asserting
that the set V is an open set to which the point p belongs. It is therefore
appropriate to establish the following definition.

Definition Let X be a topological space, let p be a point of X and let V
be a subset of X. Then the set V is said to be an open neighbourhood of the
point p if V is an open set in X to which the point p belongs.

1.6 Interiors and Closures of Subsets of Topological
Spaces

Definition Let X be a topological space and let A be a subset of X. The
interior A◦ of A in X is defined to be the union of all open subsets of X that
are subsets of A.
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It follows directly from this definition that, given a subset A of a topo-
logical space X, and given a point p of that topological space, the point p
belongs to the interior of A if and only if it belongs to some open subset V of
X that is contained in the set A. Thus a point p of the topological space X
belongs to the interior A0 of the set A if and only if there exists some open
set V in X for which p ∈ V and V ⊂ A.

Let X be a topological space and let A be a subset of X. It follows from
the definition of a topological space that any union of open subsets of X is
itself a open subset of X. It follows that the interior of a subset A of the
topological space X is an open set in X, contained in A, that contains any
other open set that is also contained in A. The interior of a subset A of the
topological space X is thus the largest open set that is contained within the
set A.

Lemma 1.5 Let X be a topological space, let A be a subset of X, and let p
be a point of A. Then p belongs to the interior A◦ of the subset A if and only
if this subset A is a neighbourhood of the point p.

Proof It follows from the definition of interiors that the point p belongs to
the interior of A if and only if there exists an open set V such that p ∈ V
and V ⊂ A. It then follows from the definition of neighbourhoods that this
is the case if and only if the set A is a neighbourhood of the point p.

Definition Let X be a topological space and let A be a subset of X. The
closure A of A in X is defined to be the intersection of all of the closed
subsets of X that contain A.

Let X be a topological space and let A be a subset of X. Then any
intersection of closed subsets of X is itself a closed subset of X (see Proposi-
tion 1.3). It follows that the closure of a subset A of the topological space X
is a closed set in X, containing A, that is contained in any other closed set
that also contains A. The closure of a subset A of the topological space X
is thus the smallest closed set that contains the set A.

Lemma 1.6 Let X be a topological space, let A be a subset of X, and let V
be an open set. Then the open set V is disjoint from the closure A of the
set A if and only if it is disjoint from the set A itself. (Thus, for any open
subset V of X, V ∩ A = ∅ if and only if V ∩ A = ∅.)

Proof Suppose that V ∩ A = ∅. Then V ∩ A = ∅, because A is a subset of
A.
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Conversely suppose that V ∩ A = ∅. Then A ⊂ X \ V . Now the com-
plement X \ V of V is a closed set, and A is by definition the intersection
of all closed sets that contain the subset A. It follows that A ⊂ X \ V , and
therefore V ∩ A = ∅. The result follows.

Proposition 1.7 Let X be a topological space, and let A be a subset of X.
Then the complement X \ A of the closure A of A is equal to the interior
(X \A)◦ of the complement X \A of A. Also the complement X \A◦ of the
interior A◦ of A is equal to the closure X \ A of the complement of A. (Thus

X \ A = (X \ A)◦ and X \ A◦ = X \ A

for all subsets A of X.)

Proof Let p ∈ X \ A, where A is the closure of the set A. Then p 6∈ A.
Now A is by definition the intersection of all closed subsets of X that contain
the set A. It follows that there must exist some closed set F in X such
that A ⊂ F but p 6∈ F . Let V = X \ F . Then V is an open set, p ∈ V ,
and V ⊂ X \ A. It follows that p ∈ (X \ A)◦. We conclude from this that
X \ A ⊂ (X \ A)◦.

Now let p ∈ (X \A)◦. It follows from the definition of interiors that there
exists some open set V for which p ∈ V and V ⊂ X \ A. Let F = X \ V .
Then F is a closed set, A ⊂ F , but p 6∈ F . It now follows from the definition
of closures that p 6∈ A, and therefore p ∈ X \A. We conclude from this that
(X \ A)◦ ⊂ X \ A. But we have previously shown that X \ A ⊂ (X \ A)◦.
These set inclusions together ensure that (X \ A)◦ = X \ A.

It remains to show that X \ A◦ = X \ A. Now let B = X \ A. It
follows from the previous discussion, substituting the set B in place of A,
that (X \B)◦ = X \B. Thus A◦ = X \B. Taking complements, we deduce
that X \ A◦ = B = X \ A. The required result is therefore established.

Proposition 1.8 Let X be a topological space, let A be a subset of X and
let p be a point of X. Then the point p belongs to the closure of the set A
if and only if every neighbourhood of the point p has non-empty intersection
with the set A.

Proof First suppose that p 6∈ A. Then X \ A is a neighbourhood of the
point p that is disjoint from the set A.

Conversely suppose that the point p has a neighbourhood N that is dis-
joint from the set A. The definition of a neighbourhood of a point in a
topological space ensures the existence of an open set V for which p ∈ V and
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V ⊂ N . Then V ∩ A = ∅. It follows that V ∩ A = ∅, where A is the closure
of A. (Lemma 1.6). Now p ∈ V . It follows that p 6∈ A.

We have now shown that the point p belongs to the complement X \ A
of the closure A of the set A if and only if it has a neighbourhood that is
disjoint from the set A. It follows the point p belongs to the closure A of A
if and only if every neighbourhood of the point p has non-empty intersection
with the set A. This concludes the proof.

1.7 Relationships involving Preimages of Sets

Definition Let X and Y be sets, let ϕ : X → Y be a function from X to
Y , and let B be a subset of the set Y . The preimage ϕ−1(B) of B under
the function ϕ is the subset of X consisting of all points p of X for which
ϕ(p) ∈ B.

Thus, given a function ϕ : X → Y from a set X to a set Y , and given
a subset B of Y , the preimage ϕ−1(B) of the set B under the function ϕ is
defined so that

ϕ−1(B) = {p ∈ X : ϕ(p) ∈ B}.

We establish some basic results concerning preimages of sets under func-
tions between sets.

Lemma 1.9 Let ϕ : X → Y be a function from a set X to a set Y , and let
C be a collection of subsets of Y . Then the union of the preimages, under ϕ,
of the sets in the collection C is the preimage of the union of those sets.

Proof Let G denote the union of the subsets of the set Y that belong to the
collection C, and let F denote the union of the preimages, under ϕ, of the
sets belonging to the collection C. Then, for any point p of the set X,

p ∈ ϕ−1(G)

⇐⇒ ϕ(p) ∈ G
⇐⇒ there exists B ∈ C for which ϕ(p) ∈ B
⇐⇒ there exists B ∈ C for which p ∈ ϕ−1(B)

⇐⇒ p ∈ F.

It follows that ϕ−1(G) = F . Thus the preimage of the union of the sets
belonging to the collection C is the union of the preimages of those sets, as
required.
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Lemma 1.10 Let ϕ : X → Y be a function from a set X to a set Y , and
let C be a collection of subsets of Y . Then the intersection of the preimages,
under ϕ, of the sets in the collection C is the preimage of the intersection of
those sets.

Proof Let K denote the intersection of the subsets of the set Y that belong
to the collection C, and let H denote the intersection of the preimages, under
ϕ, of the sets belonging to the collection C. Then, for any point p of the
set X,

p ∈ ϕ−1(K)

⇐⇒ ϕ(p) ∈ K
⇐⇒ ϕ(p) ∈ B for all B ∈ C
⇐⇒ p ∈ ϕ−1(B) for all B ∈ C
⇐⇒ p ∈ H.

It follows that ϕ−1(K) = H. Thus the preimage of the intersection of the
sets belonging to the collection C is the intersection of the preimages of those
sets, as required.

Lemma 1.11 Let ϕ : X → Y be a function from a set X to a set Y , and let
B be a subset of Y . Then X \ ϕ−1(B) = ϕ−1(Y \B)

Proof Let p be a point of the domain X of the function. Then

p ∈ X \ ϕ−1(B)

⇐⇒ p 6∈ ϕ−1(B)

⇐⇒ ϕ(p) 6∈ B
⇐⇒ ϕ(p) ∈ Y \B
⇐⇒ p ∈ ϕ−1(Y \B).

It follows from this that X \ ϕ−1(B) = ϕ−1(Y \B), as required.

1.8 Induced Topologies and Subspace Topologies

Lemma 1.12 Let X be a set, let Y be a topological space, and let ϕ : X → Y
be a function from the set X to the topological space Y . Let τ be the collection
consisting of those subsets of X that are preimages, under ϕ, of open sets
in Y . Then the collection τ of subsets of X satisfies the topological space
axioms, and thus the set X, with the collection τ of open sets, is a topological
space.
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Proof The empty set is the preimage of the empty set, and the whole set X
is the preimage, under ϕ, of the whole of Y . Moreover the empty set and the
whole of the topological space Y are open subsets of Y . It follows that the
empty set and the whole set X belong to the collection τ of subsets of X.

Suppose that we are given a collection B of members of the collection τ .
Then there is a corresponding collection C of open sets in the topological
space Y determined so that the members of the collection B of subsets of
X are preimages, under the function ϕ, of corresponding members of the
collection C. It follows that the union of the members of the collection B is
the union of the preimages of the members of the collection C, and is thus the
preimage of the union of the members of the collection C (Lemma 1.9); it is
accordingly the preimage of a union of open sets in the topological space Y ,
and is therefore the preimage of an open set in the topological space Y . It
follows that the union of the members of the collection B belongs to the
collection τ of subsets of X.

Also, in cases where the collection B is finite, the intersection of the mem-
bers of the collection B is the intersection of the preimages of the members
of the collection C, and is thus the preimage of the intersection of the mem-
bers of the collection C (Lemma 1.10); it is accordingly the preimage of a
finite intersection of open sets in the topological space Y , and is therefore
the preimage of an open set in the topological space Y . It follows that, in
cases where the collection B is finite, the intersection of the members of the
collection B belongs to the collection τ of subsets of X.

These results establish that the collection τ of subsets of the set X does
indeed satisfy the topological space axioms, and thus the set X, with the
collection τ of open sets, is a topological space.

Definition Let X be a set, let Y be a topological space, and let ϕ : X → Y
be a function from the set X to the topological space Y . The induced topology
on X determined by the function ϕ is that topology whose collection τ of
open sets consists of those subsets of X that are preimages, under ϕ, of open
sets in Y .

An important special case of induced topologies arises when the func-
tions inducing the topologies are inclusion maps. The induced topologies
determined by inclusion maps are subspace topologies.

Definition Let X be a topological space with topology τ , and let A be a
subset of the set X. The subspace topology on A is the topology τA that
consists of those subsets of A that are the intersections of A with open sets
in X.
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Let i : A ↪→ X be the inclusion map embedding the subset A in the topo-
logical space X. Then A ∩ B = i−1(B) for all subsets B of X. Lemma 1.12
therefore ensures that the subspace topology is indeed a topology on the
set A: it is in fact the topology on the subset A induced by the inclusion
map i : A ↪→ X.

Lemma 1.13 Let X be a topological space, let A be a subset of X, and let
B be a subset of A. Then B is closed in A (relative to the subspace topology
on A) if and only if B = A ∩ F for some closed subset F of X.

Proof Suppose that B = A ∩ F for some closed subset F of X. Let V =
X \ F . Then V is an open set in X, and

A \B = A \ (A ∩ F ) = A ∩ (X \ F ) = A ∩ V.

Moreover the definition of the subpace topology on A ensures that A ∩ V is
open in A. Thus the complement A\B of B in A is open in A, and therefore
the subset B of A is itself closed in A.

Conversely suppose that B is closed in A. Then A \ B is open in the
subspace topology on A, and therefore there exists some open set V in X
such that A \B = A ∩ V . Let F = X \ V . Then F is closed in X, and

A ∩ F = A ∩ (X \ V ) = A \ (A ∩ V ) = A \ (A \B) = B.

The result follows.

Lemma 1.14 Let X be a topological space, let V be an open set in X, and
let W be a subset of V . Then W is open in V if and only if W is open in X.

Proof If W is open in X then W = V ∩W and therefore W is open in V .
Conversely suppose that the set W is open in V . It then follows from the

definition of subspace topologies that W = V ∩ E for some open set E in
X. But then W is an intersection of two open sets, and is thus itself open in
X.

Lemma 1.15 Let X be a topological space, let F be a closed set in X, and
let G be a subset of F . Then G is closed in F if and only if G is closed in
X.

Proof If G is closed in X then G = F ∩G and therefore G is closed in F .
Conversely suppose that the set G is closed in F . It then follows from

Lemma 1.13 that G = F ∩ H for some closed set H in X. But then G is
an intersection of two closed sets, and is thus itself closed in X (see Propo-
sition 1.3).
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1.9 Hausdorff Spaces

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

• if p and q are distinct points of X then there exist open sets U and V
in X such that p ∈ U , q ∈ V and U ∩ V = ∅.

Lemma 1.16 Any subset of a Hausdorff space is itself a Hausdorff space
(with respect to the subspace topology).

Proof Let A be a subset of a Hausdorff space X and let p and q be distinct
points of A. Then there exist open sets U and V in X such that p ∈ U ,
q ∈ V and U ∩ V = ∅. Let M = A∩U and N = A∩ V . Then M and N are
subsets of A that are open in the subspace topology on A. Moreover p ∈M ,
q ∈ N and M ∩N = ∅. The result follows.

Lemma 1.17 All metric spaces are Hausdorff spaces.

Proof Let X be a metric space with distance function d, and let p and q be
points of X, where p 6= q. Let ε = 1

2
d(p, q). Then the open balls BX(p, ε)

and BX(q, ε) of radius ε centred on the points p and q are open sets (see
Lemma 1.1). If BX(p, ε) ∩ BX(q, ε) were non-empty then there would exist
z ∈ X satisfying d(p, z) < ε and d(z, q) < ε. But this is impossible, since it
would then follow from the Triangle Inequality that d(p, q) < 2ε, contrary to
the choice of ε. Thus p ∈ BX(p, ε), q ∈ BX(q, ε) and BX(p, ε)∩BX(q, ε) = ∅.
This shows that the metric space X is a Hausdorff space.

We now give an example of a topological space which is not a Hausdorff
space.

Example Let X be an infinite set. The cofinite topology on X is defined as
follows: a subset U of X is open (with respect to the cofinite topology) if and
only if either U = ∅ or else X \U is finite. It is a straightforward exercise to
verify that the topological space axioms are satisfied, so that the set X is a
topological space with respect to this cofinite topology. Now the intersection
of any two non-empty open sets in this topology is always non-empty. (Indeed
if U and V are non-empty open sets then U = X \ F and V = X \G, where
F and G are finite subsets of X. But then U ∩ V = X \ (F ∪ G), which is
non-empty, since F ∪ G is finite and X is infinite.) It follows immediately
from this that an infinite set X is not a Hausdorff space with respect to the
cofinite topology on X.
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1.10 Continuous Maps between Topological Spaces

Definition A function ϕ : X → Y from a topological space X to a topolog-
ical space Y is said to be continuous if the preimage ϕ−1(V ) of every open
subset V of Y is an open set in X.

A continuous function from X to Y is often referred to as a map from X
to Y .

Lemma 1.18 Let X, Y and Z be topological spaces, and let ϕ : X → Y and
ψ : Y → Z be continuous functions. Then the composition ψ ◦ ϕ : X → Z of
the functions ϕ and ψ is continuous.

Proof Let V be an open set in Z. Then ψ−1(V ) is open in Y (because ψ is
continuous), and then ϕ−1(ψ−1(V )) is open in X (because ϕ is continuous).
But ϕ−1(ψ−1(V )) = (ψ ◦ ϕ)−1(V ). Thus the composition function ψ ◦ ϕ is
continuous.

Lemma 1.19 Let X and Y be topological spaces, and let ϕ : X → Y be a
function from X to Y . The function ϕ is continuous if and only if ϕ−1(G)
is closed in X for every closed subset G of Y .

Proof Suppose first that the function ϕ : X → Y is continuous and that G is
a closed set in Y . Then the complement Y \G of G in Y is an open set in Y .
It follows from the continuity of the function ϕ that the preimage ϕ−1(Y \G)
of the complement Y \ G of G is an open set in X. But ϕ−1(Y \ G) =
X \ ϕ−1(G). We conclude therefore that the complement X \ ϕ−1(G) of
the preimage ϕ−1(G) of G is an open set in X, and therefore the preimage
ϕ−1(G) of the set G is a closed set in X.

Conversely suppose that ϕ : X → Y is some function from X to Y with
the property that the preimage ϕ−1(G) of every closed subset of Y is a
closed set in X. We must show that the function ϕ is continuous. Let V be
an open set in Y . Then Y \V is a closed set in Y, and therefore its preimage
ϕ−1(Y \ V ) is a closed set in X. But ϕ−1(Y \ V ) = X \ ϕ−1(V ). It follows
that the preimage ϕ−1(V ) of the open set V is the complement of a closed
set, and is therefore an open set in the topological space X. We have thus
shown that the preimage of every open subset of Y is open in X. It follows
that the function ϕ : X → Y is continuous, as required.

1.11 Pointwise Continuity

Definition Let X and Y be topological spaces, let ϕ : X → Y be a function
from X to Y and let p be a point of X. The function ϕ is said to be continuous
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at p if, given any open neighbourhood V in Y of the point ϕ(p), the preimage
ϕ−1(V ) of V under the function ϕ is a neighbourhood in X of the point p.

Lemma 1.20 Let X and Y be topological spaces, let ϕ : X → Y be a function
from X to Y and let p be a point of X. The function ϕ is continuous at the
point p if and only if, for all neighbourhoods N in Y of ϕ(p), the preimage
ϕ−1(N) of N is a neighbourhood in X of the point p.

Proof If the preimage of any neighbourhood in Y of ϕ(p) under the func-
tion ϕ is a neighbourhood in X of the point p, then, in particular, the preim-
age of any open neighbourhood of ϕ(p) must be a neighbourhood of the
point p itself, and thus the function ϕ is continuous at the point p.

Conversely suppose that the function ϕ is continuous at the point p.
Let N be a neighbourhood of the point ϕ(p) in Y . The definition of a
neighbourhood of a point in a topological space ensures the existence of an
open set V for which p ∈ V and V ⊂ N . The continuity of the function ϕ
at p then ensures that the preimage ϕ−1(V ) under ϕ is a neighbourhood of
the point p. Now ϕ−1(V ) ⊂ ϕ−1(N), and any superset of a neighbourhood
of p is itself a neighbourhood of p. We deduce therefore that the preimage
ϕ−1(N) under ϕ of the neighbourhood N of ϕ(p) must be a neighbourhood
of the point p, as required.

Proposition 1.21 Let X and Y be topological spaces and let ϕ : X → Y be
a function from X to Y . Then the function ϕ is continuous on X if and only
if it is continuous at each point of X.

Proof Suppose that ϕ : X → Y is continuous on X. Let p be a point of X
and let V be an open neighbourhood in Y of the point ϕ(p). The continuity
of ϕ ensures that ϕ−1(V ) is open in X. Now an open set is a neighbourhood
of each of its points. We conclude therefore that the preimage ϕ−1(V ) of
the open set V is a neighbourhood of the point p, and therefore the function
ϕ : X → Y is continuous at the point p. Thus a continuous function is
continuous at each point of its domain.

Conversely suppose that ϕ : X → Y is continuous at each point of X. Let
V be an open set in Y . Then, the preimage of this open set V is a neighbour-
hood of each of its points, and is therefore open in X (see Lemma 1.4). Thus
the preimage of every open set V in Y is an open set in X, and therefore the
function ϕ : X → Y is continuous on X, as required.

Lemma 1.22 Let X and Y be topological spaces, let ϕ : X → Y be a func-
tion from X to Y and let p be a point of X. Then ϕ : X → Y is continuous
at p if and only if, given any neighbourhood N of ϕ(p), there exists a neigh-
bourhood M of p for which ϕ(M) ⊂ N .
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Proof Let N be a neighbourhood of ϕ(p) in Y . Suppose that there exists
a neighbourhood M of p in X for which ϕ(M) ⊂ N . The definition of
neighbourhoods of points in topological spaces then ensures that there exists
an open set W in X for which p ∈ W and W ⊂ M . Then ϕ(W ) ⊂ N and
therefore W ⊂ ϕ−1(N). It follows that ϕ−1(N) is a neighbourhood of p in
X, and thus the function ϕ is continuous at p.

Conversely suppose that the function ϕ is continuous at p. Let N be a
neighbourhood of ϕ(p) in Y , and let M = ϕ−1(N). Then M is a neighbour-
hood of p in X, because the function ϕ is continuous at p, and ϕ(M) ⊂ N .
The result follows.

Lemma 1.23 Let X, Y and Z be topological spaces, let ϕ : X → Y and
ψ : Y → Z be functions, and let p be a point of X. Suppose that ϕ : X → Y
is continuous at p and that ψ : Y → Z is continuous at ϕ(p). Then the
composition ψ ◦ ϕ : X → Z of the functions ϕ and ψ is continuous at p.

Proof Let N be a neighbourhood of ψ(ϕ(p)) in Z. Then ψ−1(N) is a
neighbourhood of ϕ(p) in Y , because ψ is continuous at ϕ(p). But then
ϕ−1(ψ−1(N)) is a neighbourhood of p in X, because ϕ is continuous at p.
But ϕ−1(ψ−1(N)) = (ψ ◦ ϕ)−1(N). Thus the composition function ψ ◦ ϕ is
continuous at p.

Proposition 1.24 Let X and Y be topological spaces and let ϕ : X → Y be
a function from X to Y . Then ϕ : X → Y is continuous if and only if, given
any point p of X, there exists some open set W in X such that p ∈ W and
the restriction ϕ|W : W → Y of the function ϕ to W is continuous on W .

Proof Suppose that ϕ : X → Y is continuous. Let W be an open set in X,
and let V be an open set in Y . Then the preimage ϕ−1(V ) of V is open in
X. Now (ϕ|W )−1(V ) = ϕ−1(V ) ∩W . It follows that (ϕ|W )−1(V ) is open
with respect to the subspace topology on W . Consequently the restriction
ϕ|W of the function ϕ to W is continuous on W .

We now establish the converse result. Let V be an open set in Y , and
let p ∈ ϕ−1(V ). Suppose that the restriction ϕ|W : W → Y of ϕ to some
open neighbourhood W of the point p is continuous. Then the preimage
(ϕ|W )−1(V ) of V under the restriction function ϕ|W is open with respect
to the subspace topology on W . Moreover (ϕ−1|W )(V ) = ϕ−1(V ) ∩W . It
follows from the definition of subspace topologies that there exists an open
set E in X for which ϕ−1(V )∩W = E∩W . Now E∩W is open in X, because
the sets E and W are both open in X. Also p ∈ E∩W and E∩W ⊂ ϕ−1(V ).
It follows that ϕ−1(V ) is a neighbourhood of p in X. We conclude from this
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that ϕ is continuous at the point p. Thus the function ϕ is thus continuous
at each point p of its domain. Such a function is continuous on its domain
(Proposition 1.21). Accordingly the function ϕ : X → Y is continuous, as
required.

1.12 Homeomorphisms

Definition Let X and Y be topological spaces. A function ϕ : X → Y
is said to be a homeomorphism if and only if the following conditions are
satisfied:

• the function ϕ : X → Y is both injective and surjective (so that the
function ϕ : X → Y has a well-defined inverse ϕ−1 : Y → X),

• the function ϕ : X → Y and its inverse ϕ−1 : Y → X are both contin-
uous.

Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism ϕ : X → Y from X to Y .

If ϕ : X → Y is a homeomorphism between topological spaces X and Y
then ϕ induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being essentially identical as topological spaces.

1.13 The Pasting Lemma

We now show that, if a topological space X is the union of a finite collection of
closed sets, and if a function from X to some topological space is continuous
on each of these closed sets, then that function is continuous on X. The
names Pasting Lemma and Gluing Lemma are both used to refer to this
result.

Lemma 1.25 (Pasting Lemma) Let X and Y be topological spaces, let
ϕ : X → Y be a function from X to Y , and let X = A1 ∪ A2 ∪ · · · ∪ Ak,
where A1, A2, . . . , Ak are closed sets in X. Suppose that the restriction of ϕ
to the closed set Ai is continuous for i = 1, 2, . . . , k. Then ϕ : X → Y is
continuous.

Proof Let p be a point of X, and let N be a neighbourhood of ϕ(p). The
continuity of the restriction of ϕ to each closed set Ai ensures the existence
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of open sets Wi for i = 1, 2, . . . , k such that Wi ∩ Ai = ∅ whenever p 6∈ Ai

and ϕ(Wi ∩ Ai) ⊂ N whenever p ∈ Ai. Let

W = W1 ∩W2 ∩ · · · ∩Wk

Then W is an open set in X, and p ∈ W . Moreover given any point q of W ,
there exists some integer i between 1 and k for which q ∈ Ai and p ∈ Ai.
Indeed the point q must belong to at least one of the sets A1, A2, . . . , Ak.
But the set W , being contained in each set Wi, is disjoint from those sets Ai

to which the point p does not belong. Therefore the point q must belong to
some set Ai to which the point p also belongs. But then q ∈ Wi ∩ Ai, and
therefore ϕ(q) ∈ N . We conclude from this that the function ϕ is continuous
at each point p of X. It follows that the function ϕ is continuous on X (see
Proposition 1.21).

Alternative Proof A function ϕ : X → Y is continuous if and only if the
preimage ϕ−1(G) of every closed subset G of the codomain Y is closed in the
domain X (Lemma 1.19). Let G be an closed set in Y . Then ϕ−1(G) ∩ Ai

is closed in the subspace topology on Ai for i = 1, 2, . . . , k, because the
restriction of ϕ to Ai is continuous for each i. But the set Ai is closed in X,
and therefore a subset of Ai is closed in Ai if and only if it is closed in X (see
Lemma 1.15). Consequently ϕ−1(G) ∩ Ai is closed in X for i = 1, 2, . . . , k.
Now ϕ−1(G) is the union of the sets ϕ−1(G)∩Ai for i = 1, 2, . . . , k. It follows
that ϕ−1(G), being a finite union of closed sets, is itself closed in X. It now
follows from Lemma 1.19 that ϕ : X → Y is continuous.

Example Let Y be a topological space, and let α : [0, 1]→ Y and β : [0, 1]→
Y be continuous functions defined on the interval [0, 1], where α(1) = β(0).
Let γ : [0, 1]→ Y be defined by

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Now γ|[0, 1
2
] = α◦ρ where ρ : [0, 1

2
]→ [0, 1] is the continuous function defined

by ρ(t) = 2t for all t ∈ [0, 1
2
]. Thus γ|[0, 1

2
] is continuous, being a composition

of two continuous functions. Similarly γ|[1
2
, 1] is continuous. The subinter-

vals [0, 1
2
] and [1

2
, 1] are closed in [0, 1], and [0, 1] is the union of these two

subintervals. One applying the Pasting Lemma (Lemma 1.25), we conclude
that γ : [0, 1]→ Y is continuous.

Example Let X be the surface of a closed cube in R3 and let ϕ : X → Y be
a function mapping X into a topological space Y . The topological space X
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is the union of the six square faces of the cube, and each of these faces is
a closed subset of X. The Pasting Lemma Lemma 1.25 ensures that the
function ϕ is continuous if and only if its restrictions to each of the six faces
of the cube is continuous on that face.

We now present a couple of examples to show that the conclusions of the
Pasting Lemma (Lemma 1.25) do not follow when the conditions stated in
that lemma are relaxed.

Example Let f : R→ R be defined so that

f(x) =

{
0 if x ≤ 0,
1 if x > 0,

and let A1 = {x ∈ R : x ≤ 0} and A2 = {x ∈ R : x > 0}. The restriction
of the function f to each of the subsets A1 and A2 of R is continuous on
that subset, but the function f itself is not continuous on R. This does not
contradict the Pasting Lemma because the subset A2 of R is not closed in R.

Example Let

X = {0} ∪
{

1

n
: n ∈ Z and n > 0

}
,

and let f : X → R be defined so that f(0) = 0 and f(1/n) = n for all
positive integers n. For each x ∈ X, the set {x} is a closed subset of X,
and the restriction of f to each of these one-point subsets is continuous on
that subset. But the function f itself is not continuous on X. This does not
contradict the Pasting Lemma because the number of these one-point closed
subsets of X is infinite.

1.14 Compact Topological Spaces

Let X be a topological space, and let A be a subset of X. A collection
of subsets of X is said to cover the set A if and only if every point of A
belongs to at least one of these subsets. In particular, an open cover of X is
a collection of open sets in X that covers X.

If C and D are open covers of some topological space X then D is said to
be a subcover of C if and only if every open set belonging to D also belongs
to C.

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.
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Lemma 1.26 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection C
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to C such that A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof Given a collection D of subsets of A, where the members of this
collection are open with respect to the subspace topology on A, there exists
a corresponding collection C of open sets in X whose intersections with the
set A are the members of the collection D. It follows that the open cover D
of the set A has a finite subcover if and only if some finite subcollection of
the collection C of open sets in X covers A. The result follows.

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the Least Upper Bound Principle which states that, given any non-
empty set S of real numbers which is bounded above, there exists a least
upper bound (or supremum) supS for the set S.

Theorem 1.27 (Heine-Borel Theorem in One Dimension) Let a and
b be real numbers satisfying a < b. Then the closed bounded interval [a, b] is
a compact subset of R.

Proof Let C be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the subset of [a, b] defined so that a real number τ in the interval
[a, b] belongs to the set S if and only if the closed bounded interval [a, τ ]
is covered by some finite collection of open sets belonging to C. Also let
u = supS. Now u ∈ W for some open set W belonging to C. Moreover W is
open in R, and therefore there exists some positive real number δ such that
(u−δ, u+δ) ⊂ W . Moreover u−δ is not an upper bound for the set S, hence
there exists some τ ∈ S satisfying τ > u − δ. It follows from the definition
of S that [a, τ ] is covered by some finite collection V1, V2, . . . , Vr of open sets
belonging to C.

Let t ∈ [a, b] satisfy τ ≤ t < u+ δ. Then

[a, t] ⊂ [a, τ ] ∪ (u− δ, u+ δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W,

and thus t ∈ S. In particular u ∈ S, and moreover u = b, since otherwise u
would not be an upper bound of the set S. Thus b ∈ S, and therefore [a, b]
is covered by a finite collection of open sets belonging to C, as required.
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Lemma 1.28 Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof Let C be any collection of open sets in X covering A. On adjoining
the open set X \ A to C, we obtain an open cover of X. This open cover of
X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection C that belong to this finite subcover. It
follows (applying Lemma 1.26) that A is compact, as required.

Lemma 1.29 Let ϕ : X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X. Then ϕ(A) is a compact
subset of Y .

Proof Let C be a collection of open sets in Y which covers ϕ(A). Then A is
covered by the collection of all open sets of the form ϕ−1(V ) for some V ∈ C.
It follows from the compactness of A that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to C such that

A ⊂ ϕ−1(V1) ∪ ϕ−1(V2) ∪ · · · ∪ ϕ−1(Vk).

But then ϕ(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that ϕ(A) is compact.

Lemma 1.30 Let f : X → R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.

Proof For each positive integer j, let Vj = {p ∈ X : −j < f(p) < j}. Then,
for each positive integer j, the subset Vj of X is the preimage under the
continuous map f of the open interval (−j, j), and moreover (−j, j) is open
in R. It follows from the continuity of f that Vj is an open set in X for
all positive integers j. Moreover the compact topological space X is covered
by these open sets. It follows from the compactness of X that there exist
positive integers j1, j2, . . . , jk such that

X = Vj1 ∪ Vj2 ∪ · · · ∪ Vjk .

Let N be the largest of the positive integers j1, j2, . . . , jk. Then −N < f(p) <
N for all p ∈ X. The result follows.

Proposition 1.31 Let f : X → R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
f(u) ≤ f(p) ≤ f(v) for all p ∈ X.
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Proof The function f : X → R is bounded on X (Lemma 1.30). Let m =
inf{f(p) : p ∈ X} and M = sup{f(p) : p ∈ X}. For each positive integer j
let Vj = {p ∈ X : f(p) < M − 1/j}. Then the set Vj is an open set in X,
being the preimage of an open interval in R under the continuous map f . If
j1, j2, . . . , jk are positive integers then

Vj1 ∪ Vj2 ∪ · · · ∪ Vjk = VN

where N is the largest of the positive integers j1, j2, . . . , jk. Moreover VN is a
proper subset of X, because M−1/N is not an upper bound on the values of
the function f on X. It follows that X cannot covered by any finite collection
of sets from the collection (Vj : j ∈ N). It then follows from the compactness
of X that (Vj : j ∈ N) is not an open cover of X, and therefore there exists
v ∈ X for which f(v) = M . Applying this argument with f replaced by
−f , we conclude that there also exists u ∈ X for which f(u) = m. Then
f(u) ≤ f(p) ≤ f(v) for all p ∈ X, as required.

1.15 Compact Subsets of Hausdorff Spaces

Proposition 1.32 Let X be a Hausdorff topological space, and let K be a
compact subset of X. Let p be a point of X \K. Then there exist open sets
V and W in X such that p ∈ V , K ⊂ W and V ∩W = ∅.

Proof For each point q ∈ K there exist open sets Vp,q and Wp,q such that
p ∈ Vp,q, q ∈ Wp,q and Vp,q ∩Wp,q = ∅ (since X is a Hausdorff space). But
then there exists a finite set {q1, q2, . . . , qr} of points of K such that K is
contained in Wp,q1 ∪Wp,q2 ∪ · · · ∪Wp,qr , since K is compact. Define

V = Vp,q1 ∩ Vp,q2 ∩ · · · ∩ Vp,qr , W = Wp,q1 ∪Wp,q2 ∪ · · · ∪Wp,qr .

Then V and W are open sets, p ∈ V , K ⊂ W and V ∩W = ∅, as required.

Corollary 1.33 A compact subset of a Hausdorff topological space is closed.

Proof Let K be a compact subset of a Hausdorff topological space X. It
follows immediately from Proposition 1.32 that, for each p ∈ X \ K, there
exists an open set Vp such that p ∈ Vp and Vp ∩K = ∅. It follows that the
complement X \K of K in X is a neighbourhood of each of its points, and
consequently is an open set in X (see Lemma 1.4). Thus the compact set K,
being the complement of an open set, is itself closed in X.

Lemma 1.34 Let ϕ : X → Y be a continuous function from a compact topo-
logical space X to a Hausdorff space Y . Then ϕ(K) is closed in Y for every
closed set K in X.
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Proof If K is a closed set in X, then K is compact (Lemma 1.28), and
therefore ϕ(K) is compact (Lemma 1.29). But any compact subset of a
Hausdorff space is closed (Corollary 1.33). Thus ϕ(K) is closed in Y , as
required.

Theorem 1.35 A continuous bijection ϕ : X → Y from a compact topolog-
ical space X to a Hausdorff space Y is a homeomorphism.

Proof Let µ : Y → X be the inverse of the bijection ϕ : X → Y . If W is
open in X then X \W is closed in X, and hence ϕ(X \W ) is closed in Y
(see Lemma 1.34). But

ϕ(X \W ) = µ−1(X \W ) = Y \ µ−1(W )

(see Lemma 1.11). It follows that µ−1(W ) is open in Y for every open
set W in X. Therefore µ : Y → X is continuous, and thus ϕ : X → Y is a
homeomorphism.

1.16 The Lebesgue Lemma and Uniform Continuity

Definition Let X be a metric space with distance function d. A subset A
of X is said to be bounded if there exists a non-negative real number K with
the property that d(u, v) ≤ K for all u, v ∈ A. The smallest real number K
with this property is referred to as the diameter of A, and is denoted by
diamA. (Note that the diameter of the set A is the least upper bound of the
values of the distances between pairs of points of the set A.)

Lemma 1.36 (Lebesgue Lemma) Let (X, d) be a compact metric space
and let C be an open cover of X. Then there exists a positive real number δ
with the following property: every subset of X whose diameter is less than δ
is contained wholly within at least one of the open sets belonging to the open
cover C.

Proof Every point of X belongs to at least one of the open sets belonging to
the open cover C. It follows from this that, for each point p of X, there exists
some positive real number δp such that the open ball B(p, 2δp) of radius 2δp
centred on the point p is contained wholly within at least one of the open sets
belonging to the open cover C. But then the collection consisting of the open
balls B(p, δp) of radius δp centred on the points p of X forms an open cover
of the compact space X. There therefore exists a finite set p1, p2, . . . , pk of
points of X such that

B(p1, δ1) ∪B(p2, δ2) ∪ · · · ∪B(pk, δk) = X,
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where δi = δpi for i = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk.
Then δ > 0. Suppose that A is a subset of X whose diameter is less than δ.
Let u be a point of A. Then, for some integer i between 1 and k, the point
u belongs to B(pi, δi). It then follows that A ⊂ B(pi, 2δi), since, for each
point v of A,

d(v, pi) ≤ d(v, u) + d(u, pi) < δ + δi ≤ 2δi.

But B(pi, 2δi) is contained wholly within at least one of the open sets be-
longing to the open cover C. Thus A is contained wholly within at least one
of the open sets belonging to C, as required.

Definition Let C be an open cover of a compact metric space X. A Lebesgue
number for the open cover C is a positive real number δ with the following
property: every subset of X whose diameter is less than a Lebesgue number δ
is contained wholly within one of the open sets belonging to the open cover C.

The Lebesgue Lemma thus states that there exists a Lebesgue number
for every open cover of a compact metric space.

Definition Let X and Y be metric spaces with distance functions dX and
dY respectively, and let ϕ : X → Y be a function from X to Y . The func-
tion ϕ is said to be uniformly continuous on X if and only if, given any
positive real number ε, there exists some positive real number δ such that
dY (ϕ(u), ϕ(v)) < ε for all points u and v of X satisfying dX(u, v) < δ. (The
value of δ should be independent of both u and v.)

Theorem 1.37 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.

Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let ϕ : X → Y be a continuous function from X to Y .
We must show that the function ϕ is uniformly continuous.

Let some positive real number ε be given. For each q ∈ Y , define

Vq = {p ∈ X : dY (ϕ(p), q) < 1
2
ε}.

Note that Vq = ϕ−1
(
BY (q, 1

2
ε)
)
, where BY (q, 1

2
ε) denotes the open ball of

radius 1
2
ε centred on the point q in Y . Now the open ball BY (q, 1

2
ε) is an

open set in Y , and ϕ is continuous. Therefore Vq is open in X for all q ∈ Y .
Note that p ∈ Vϕ(p) for all p ∈ X.

Now {Vq : q ∈ Y } is an open cover of the compact metric space X.
It follows from the Lebesgue Lemma (Lemma 1.36) that there exists some
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positive real number δ such that every subset of X whose diameter is less
than δ is a subset of some set Vq.

Now let u and v be points of X satisfying dX(u, v) < δ. The diameter
of the set {u, v} is dX(u, v), which is less than δ. Therefore there exists
some q ∈ Y such that u ∈ Vq and v ∈ Vq. But then dY (ϕ(u), q) < 1

2
ε and

dY (ϕ(v), q) < 1
2
ε, and hence

dY (ϕ(u), ϕ(v)) ≤ dY (ϕ(u), q) + dY (q, ϕ(v)) < ε.

This shows that ϕ : X → Y is uniformly continuous, as required.
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