
Module MAU34201: Algebraic Topology I
Michaelmas Term 2022

Section 2: Product and Quotient Topologies

D. R. Wilkins

© Trinity College Dublin 2020–22

Contents

2 Product and Quotient Topologies 25
2.1 Topologies on Products of Topological Spaces . . . . . . . . . 25
2.2 Continuity of Maps defined on Product Spaces . . . . . . . . . 27
2.3 Continuity of Maps into Product Spaces . . . . . . . . . . . . 28
2.4 Products of Compact Topological Spaces . . . . . . . . . . . . 31
2.5 Homotopies between Continuous Maps . . . . . . . . . . . . . 33
2.6 Identification Maps and Quotient Topologies . . . . . . . . . . 35

i



2 Product and Quotient Topologies

2.1 Topologies on Products of Topological Spaces

A product topology is a topology on a Cartesian product of topological spaces
that is determined in a suitably natural fashion by the topologies on the
spaces that constitute the Cartesian product.

We begin with some preliminary discussion of Cartesian products of sets.
Let X1, X2, . . . , Xn be sets. The Cartesian product of the sets X1, X2, . . . , Xn

consists of all ordered n-tuples (p1, p2, . . . , pn) in which the ith component pi
is an element, or point, of the set Xi for i = 1, 2, . . . , n.

Let X1, X2, . . . , Xn be sets, and let Bi be a subset of Xi for i = 1, 2, . . . , n.
The very definition of a Cartesian product of n sets, representing the elements
of the Cartesian product as ordered n-tuples, with components taken from
the respective sets, ensures that the Cartesian product B1×B2×· · ·×Bn of
the sets B1, B2, . . . , Bn is a subset of the Cartesian product X1×X2×· · ·×Xn.

Lemma 2.1 Let X1, X2, . . . , Xn be topological spaces and let

X = X1 ×X2 × · · · ×Xn.

Also let τ be the collection of subsets W of X which have the property that,
given any point (p1, p2, . . . , pn) of W , there exist open sets V1, V2, . . . , Vn,
where pi ∈ Vi for i = 1, 2, . . . , n, such that

V1 × V2 × · · · × Vn ⊂ W.

Then the collection τ of subsets of the Cartesian product set X is a topology
on X.

Proof Let X = X1×X2× · · · ×Xn. For the purposes of this proof we refer
to those subsets of X that belong to the collection τ as open sets. We must
verify that, if open sets are defined in this fashion, then the topological space
axioms are all satisfied.

The definition of open sets (i.e., the definition of the collection τ of subsets
of X) ensures that the empty set and the whole set X are open in X. We
must prove that any union or finite intersection of open sets in X is an open
set.

We next show that any union of open sets in X is itself an open set. Let E
be a union of some given collection of open sets in X and let (p1, p2, . . . , pn)
be some given point of E. Then (p1, p2, . . . , pn) ∈ D for some open set D in
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the given collection. There then exist open sets Vi in Xi for i = 1, 2, . . . , n
such that pi ∈ Vi for i = 1, 2, . . . , n and

V1 × V2 × · · · × Vn ⊂ D ⊂ E.

Consequently the set E is open in X.
Finally we show that any finite intersection of open sets in X is itself an

open set. Let W1,W2, . . . ,Ws be open sets in X, and let W = W1∩W2∩· · ·∩
Ws. Also let some point p of W be given, and let pi in Xi be determined for
i = 1, 2, . . . , n so that p = (p1, p2, . . . , pn). Then there exist open sets Vr,i in
Xi for r = 1, 2, . . . , s and i = 1, 2, . . . , n such that pi ∈ Vr,i for r = 1, 2, . . . , s
and i = 1, 2, . . . , n and

Vr,1 × Vr,2 × · · · × Vr,n ⊂ Wr

for r = 1, 2, . . . , s. Let Vi = V1,i ∩ V2,i ∩ · · · ∩ Vs,i for i = 1, 2, . . . , n. Then
pi ∈ Vi for i = 1, 2, . . . , n. Also

V1 × V2 × · · · × Vn ⊂ Vr,1 × Vr,2 × · · · × Vr,n ⊂ Wr

for r = 1, 2, . . . , s. But then V1 × V2 × · · · × Vn ⊂ W , because the set W is
the intersection of the sets Wr for r = 1, 2, . . . , s. It follows that W is open
in X, as required.

Definition Let X1, X2, . . . , Xn be topological spaces and let

X = X1 ×X2 × · · · ×Xn.

The product topology on the Cartesian product X of the topological spaces
X1, X2, . . . , Xn is that topology on X whose open sets are the subsets W
characterized by the property that, given any point (p1, p2, . . . , pn) of W ,
there exist open sets V1, V2, . . . , Vn, where pi ∈ Vi for i = 1, 2, . . . , n, such
that

V1 × V2 × · · · × Vn ⊂ W.

Lemma 2.1 ensures that the collection of open sets in a Cartesian product
of topological spaces characterized as set out above is indeed a topology on
the Cartesian product of the underlying sets.

Lemma 2.2 Let X1, X2, . . . , Xn be topological spaces, and let Vi be an open
set in Xi for i = 1, 2, . . . , n. Then V1 × V2 × · · · × Vn is open in X1 ×X2 ×
· · · ×Xn.
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Proof It follows directly from the definition of the product topology on
X1 ×X2 × · · · ×Xn.

Lemma 2.3 Let X1, X2, . . . , Xn be topological spaces, let

X = X1 ×X2 × · · · ×Xn,

let pi ∈ Xi for i = 1, 2, . . . , n, and let p = (p1, p2, . . . , pn). A subset N of
X is a neighbourhood of p (with respect to the product topology on X) if and
only if there exist open neighbourhoods Vi of pi in Xi for i = 1, 2, . . . , n for
which

V1 × V2 × · · · × Vn ⊂ N.

Proof First suppose that N is a subset of X to which the point p belongs.
Suppose also that there exist open neighbourhoods Vi of pi in Xi for i =
1, 2, . . . , n for which

V1 × V2 × · · · × Vn ⊂ N.

Then the product of the open sets Vi for i = 1, 2, . . . , n is an open subset
of X contained in the set N , and the point p belongs to this product of
open sets. The definition of neighbourhoods in a topological space therefore
ensures that the set N is a neighbourhood of the point p.

Conversely suppose that N is a subset of the Cartesian product X that
is a neighbourhood of the point p (with respect to the product topology on
X. Then there exists an open neighbourhood W of p in X that is contained
in the neighbourhood N of p. The definition of the product topology then
ensures the existence of open neighbourhoods Vi of pi in Xi for i = 1, 2, . . . , n
for which

V1 × V1 × · · · × Vn ⊂ W ⊂ N.

The result follows.

2.2 Continuity of Maps defined on Product Spaces

Proposition 2.4 Let X1, X2, . . . , Xn be topological spaces, and let X = X1×
X2 × · · · × Xn. Also let ϕ : X → Y be a function mapping the product
space X into some topological space Y , let p be a point of X, and let p =
(p1, p2, . . . , pn), where pi ∈ Xi for i = 1, 2, . . . , n. Then the function ϕ is
continuous at the point p, if and only if, given any open neighbourhood W
of ϕ(p) in Y , there exist neighbourhoods Mi of pi in Xi for i = 1, 2, . . . , n,
where those neighbourhoods Mi are small enough to ensure that ϕ(M1×M2×
· · · ×Mn) ⊂ W .
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Proof First suppose that ϕ is continuous at the point p. Then given any
open neighbourhood W of ϕ(p) in Y , the preimage ϕ−1(W ) is a neighbour-
hood of the point p, and therefore there exist open neighbourhoods Vi of pi
in Xi for i = 1, 2, . . . , n for which

V1 × V2 × · · · × Vn ⊂ ϕ−1(W )

(see Lemma 2.3). The open set Vi is then the required neighbourhood of the
point pi for i = 1, 2, . . . , n. Conversely suppose that ϕ : X → Y is any func-
tion from X to Y with the property that, given any open neighbourhood W
of ϕ(p), there exist neighbourhoods Mi of pi in Xi for i = 1, 2, . . . , n whose
Cartesian product is mapped by ϕ into the given open neighbourhood. Let
some open neighbourhood W of ϕ(p) in Y be given, and let M1,M2, . . . ,Mn

be neighbourhoods of p1, p2, . . . , pn respectively whose Cartesian product is
mapped by ϕ into the open neighbourhood W of ϕ(p). Then there exist
open sets Vi in the topological spaces Xi such that pi ∈ Vi and Vi ⊂ Mi for
i = 1, 2, . . . , n. Then

V1 × V2 × · · · × Vn ⊂ ϕ−1(W ).

It follows from this that the preimage ϕ−1(W ) of the open neighbourhood W
of ϕ(p) is a neighbourhood of the point p in the Cartesian product space X
(see Lemma 2.3). We have now shown that the preimage of any open neigh-
bourhood of the point ϕ(p) in Y is a neighbourhood of the point p. It follows
that the function ϕ is continuous at the point p. This completes the proof.

2.3 Continuity of Maps into Product Spaces

Theorem 2.5 Let X = X1×X2×· · ·×Xn, where X1, X2, . . . , Xn are topolog-
ical spaces and X is given the product topology, and for each i, let πi : X → Xi

denote the projection function which sends each point (p1, p2, . . . , pn) of the
product space X to its ith component pi. Then the functions π1, π2, . . . , πn
are continuous. Moreover a function ϕ : Z → X mapping a topological
space Z into X is continuous if and only if πi ◦ϕ : Z → Xi is continuous for
i = 1, 2, . . . , n.

Proof Let Vi be an open set in Xi for some integer i between 1 and n. Then

π−1
i (Vi) = X1 × · · · ×Xi−1 × Vi ×Xi+1 × · · · ×Xn.

It follows that π−1
i (Vi), being a product of open sets, is itself an open set

in X (Lemma 2.2). Thus, for each integer i between 1 and n, the preimage
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under πi of any open set in the topological space Xi is open in the product
space X, and thus the projection function πi : X → Xi is continuous.

Now let ϕ : Z → X be a continuous function mapping some topological
space Z into the product space X. Then, for each integer i between 1 and
n, the function πi ◦ϕ : Z → Xi is a composition of continuous functions, and
is thus itself continuous.

Conversely suppose that ϕ : Z → X is a function with the property that
πi ◦ ϕ is continuous for all i. Let W be an open set in X. We must show
that ϕ−1(W ) is open in Z.

Let q be a point of ϕ−1(W ), and let ϕ(q) = (p1, p2, . . . , pn). Now W is
open in X, and therefore there exist open sets V1, V2, . . . , Vn in X1, X2, . . . , Xn

respectively such that pi ∈ Vi for all i and V1 × V2 × · · · × Vn ⊂ W . Let

N = ϕ−1
1 (V1) ∩ ϕ−1

2 (V2) ∩ · · · ∩ ϕ−1
n (Vn),

where ϕi = πi ◦ ϕ for i = 1, 2, . . . , n. Now ϕ−1
i (Vi) is an open subset of Z for

i = 1, 2, . . . , n, since Vi is open in Xi and ϕi : Z → Xi is continuous. Thus
N , being a finite intersection of open sets, is itself open in Z. Moreover

ϕ(N) ⊂ V1 × V2 × · · · × Vn ⊂ W,

so that N ⊂ ϕ−1(W ). It follows that the preimage ϕ−1(W ) of the open
subset W of the product space is a neighbourhood of the point q in Z. But q
was an arbitrary point of ϕ−1(W ). We conclude therefore that the preimage
ϕ−1(W ) of W under the function ϕ is a neighbourhood of each of its points,
and is therefore an open set in Z (see Lemma 1.4). We have accordingly
shown that the function ϕ : Z → X is continuous, as required.

Proposition 2.6 Let X1, X2, . . . , Xn be topological spaces, where n > 2.
Then the product X1 ×X2 × · · · ×Xn of these topological spaces Xi (with its
product topology) is naturally homeomorphic to the product (with the product
topology) of the product space X1×X2×· · ·×Xn−1 (with its product topology)
and the topological space Xn.

Remark The term natural has a technical meaning, in the context of cate-
gory theory, which we ignore for the purposes of the present discussion, but
which is nevertheless valid in the present context, where we take the word
to suggest, informally, that the homeomorphism in question is canonical and
not arbitrary.

Proof Let functions

λ : (X1 ×X2 × · · · ×Xn−1)×Xn → X1 ×X2 × · · · ×Xn
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and
µ : X1 ×X2 × · · · ×Xn → (X1 ×X2 × · · · ×Xn−1)×Xn

be defined so that

λ((p1, p2, . . . , pn−1), pn) = (p1, p2, . . . , pn)

and
µ(p1, p2, . . . , pn) = ((p1, p2, . . . , pn−1), pn)

for all (p1, p2, . . . , pn) ∈ X1 ×X2 × · · · ×Xn.
We verify the continuity of the functions λ and µ through repeated ap-

plications of Theorem 2.5. For convenience, let

X = X1 ×X2 × · · · ×Xn,

Y = X1 ×X2 × · · ·Xn−1

and Z = Y × Xn. The functions λ : Z → X and µ : X → Z are obviously
bijections which are inverses of one another. Thus our task is to establish
that both of these bijections are continuous.

Now the projection function from Z to Y that maps each element of Z
of the form ((p1, p2, . . . , pn−1), pn) to its first component (p1, p2, . . . , pn−1) is
a continuous function. Therefore, for each integer i between 1 and n − 1,
the function from Z to Xi that maps each element ((p1, p2, . . . , pn−1), pn) of
Z to the ith component pi of its first component is the composition of two
continuous functions, and is therefore continuous. The function from Z to Xn

mapping each element ((p1, p2, . . . , pn−1), pn) of Z to its second component
pn is also continuous. Thus the components of the function λ : Z → X are
continuous functions, and therefore the function λ : Z → X is a continuous
function from Z to X.

Next we note that if, for any integer i between 1 and n − 1, the projec-
tion function from X to Y mapping (p1, p2, . . . , pn) to (p1, p2, . . . , pn−1) for
all (p1, p2, . . . , pn) ∈ X is composed with the projection function mapping
(p1, p2, . . . , pn−1) to pi, then the resultant function is the projection function
from X to Xi, which, as we have already noted (Theorem 2.5), is continu-
ous. It follows from this that the projection function from X to Y mapping
(p1, p2, . . . , pn) to (p1, p2, . . . , pn−1) for all (p1, p2, . . . , pn) ∈ X is itself con-
tinuous. And also the projection function mapping (p1, p2, . . . , pn) to pn is
continuous. Thus the two components of the function µ : X → Z are contin-
uous. It follows that the function µ : X → Z is itself continuous. Moreover
the function µ is the inverse of the continuous function λ. Therefore the
functions λ and µ are both homeomorphisms. The result follows.
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2.4 Products of Compact Topological Spaces

Proposition 2.7 Let X and Y be compact topological spaces. Then the
Cartesian product X×Y of the topological spaces X and Y , with the product
topology, is a compact topological space.

Proof Let C be a collection of open sets in X × Y which covers X × Y .
Then, for each point (p, q) of X × Y , there exist an open set Dp,q in X and
an open set Ep,q in Y whose Cartesian product Dp,q ×Ep,q is contained in at
least one of the members of the collection C of open sets. Indeed, because the
members of this collection cover X × Y , given a point (p, q) of X × Y , some
member W of this collection may be chosen for which (p, q) ∈ W . There
will then exist an open set Dp,q in X and an open set Ep,q in Y for which
Dp,q × Ep,q ⊂ W .

Now, because the topological space Y is compact, we can associate to
each point p of the topological space X a finite set Γ(p) of points of Y so as
to ensure that

Y =
⋃

q∈Γ(p)
Ep,q.

For each point p of X, having first determined Γ(p), let Vp be the intersection
of the open sets Dp,q in X for which q ∈ Γ(p).

Vp =
⋂

q∈Γ(p)
Dp,q.

Then
Vp × Y =

⋃
q∈Γ(p)

Vp × Ep,q ⊂
⋃

q∈Γ(p)
Dp,q × Ep,q.

The compactness of X then ensures the existence of a finite set ∆ of points
of X for which the corresponding open sets Vp with p ∈ ∆ cover X. Then

X × Y =
⋃

p∈∆
Vp × Y

=
⋃

p∈∆

⋃
q∈Γ(p)

Vp × Ep,q

⊂
⋃

p∈∆

⋃
q∈Γ(p)

Dp,q × Ep,q.

It follows that
X × Y =

⋃
(p,q)∈Λ

Dp,q × Ep,q,

where
Λ = {(p, q) : p ∈ ∆ and q ∈ Γ(p)}.

The set Λ is a finite set of points of the Cartesian product X × Y . For
each (p, q) ∈ Λ there exists a member Wp,q of the given collection C of open
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sets covering X × Y for which Dp,q × Ep,q ⊂ Wp,q. Then the sets Wp,q with
(p, q) ∈ Λ constitute a finite collection of open sets taken from the collection C
which covers the product space X × Y . We have thus shown that every
open cover C of this product space has a finite subcover. Consequently the
product of the compact topological spaces X and Y is indeed compact. This
completes the proof.

Corollary 2.8 A Cartesian product of a finite number of compact topological
spaces is itself compact.

Proof The result for Cartesian products of two compact spaces has already
been established (see Proposition 2.7). If the number n of compact spaces
constituting the product is greater than two, then a product of n compact
spaces (with the product topology) is homeomorphic to a product whose
first factor is a product of n− 1 compact spaces and whose second factor is
a compact topological space. (This follows on applying Proposition 2.6.) It
therefore follows by induction on n that, for any positive integer n, a any
product of n compact topological spaces, with the product topology, is itself
a compact topological space, which is what we were required to prove.

Theorem 2.9 Let K be a subset of Rn. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. Then K is closed, since Rn is Hausdorff,
and every compact subset of a Hausdorff space is closed (see Corollary 1.33).

For each positive integer m, let Vm be the open cube consisting of all
ordered n-tuples of real numbers (x1, x2, . . . , xn) with the property that
−m < xi < m for each integer i between 1 and n. Then Vm is open in
Rn for each positive integer m, and the collection consisting of all these open
sets Vm as m ranges over the set of positive integers is an open cover of
Rn. It follows from the compactness of K that there exist natural numbers
m1,m2, . . . ,mk such that K ⊂ Vm1 ∪ Vm2 ∪ · · · ∪ Vmk

. But then K ⊂ VM ,
where M is the maximum of m1,m2, . . . ,mk. Thus the compact set K is
bounded.

Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C given
by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.

Now the closed interval [−L,L] is compact, by the one-dimensional Heine-
Borel Theorem (Theorem 1.27). Moreover the closed cube C is the Cartesian
product of n copies of this compact set, and any finite product of compact
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topological spaces is itself compact (Corollary 2.8). Therefore the closed
cube C is compact. But K is a closed subset of C, and a closed subset of
a compact topological space is itself compact, by Lemma 1.28. Thus K is
compact, as required.

2.5 Homotopies between Continuous Maps

Definition Let f : X → Y and g : X → Y be continuous maps between
topological spaces X and Y . The maps f and g are said to be homotopic if
there exists a continuous map H : X × [0, 1] → Y such that H(p, 0) = f(p)
and H(p, 1) = g(p) for all p ∈ X. If the maps f and g are homotopic then
we denote this fact by writing f ' g. The map H with the properties stated
above is referred to as a homotopy between f and g.

Continuous maps f and g from X to Y are homotopic if and only if it is
possible to ‘continuously deform’ the map f into the map g.

Let X and Y be topological spaces. The relation of being homotopic
to one another is an equivalence relation on the set of continuous functions
from the space X to the space Y . This result will eventually be noted (as
Corollary 2.11), but as a corollary of a more general result subsequently to
be stated and proved.

It is useful to introduce the concept of homotopy relative to a subset of
the domain of the functions in question. Homotopies between continuous
functions relative to a subset of a common domain are employed in defining
many of the basic concepts and invariants that are the subject matter of
algebraic topology.

Definition Let X and Y be topological spaces, and let A be a subset of X.
Let f : X → Y and g : X → Y be continuous maps from X to some topo-
logical space Y , where f |A = g|A (i.e., f(s) = g(s) for all s ∈ A). We say
that f and g are homotopic relative to A (denoted by f ' g rel A) if and
only if there exists a (continuous) homotopy H : X × [0, 1] → Y such that
H(p, 0) = f(p) and H(p, 1) = g(p) for all p ∈ X and H(s, t) = f(s) = g(s)
for all s ∈ A and t ∈ [0, 1].

Proposition 2.10 Let X and Y be topological spaces, and let A be a subset
of X. The relation of being homotopic relative to the subset A is then an
equivalence relation on the set of all continuous maps from X to Y .

Proof Given f : X → Y , let H0 : X×[0, 1]→ Y be defined so that H0(p, t) =
f(p) for all p ∈ X and t ∈ [0, 1]. Then H0(p, 0) = H0(p, 1) = f(p) for all
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p ∈ X and H0(s, t) = f(s) for all s ∈ A and t ∈ [0, 1], and therefore
f ' f rel A. Thus the relation of homotopy relative to A is reflexive.

Let f and g be continuous maps from X to Y that satisfy f(s) = g(s)
for all s ∈ A. Suppose that f ' g rel A. Then there exists a homotopy
H : X×[0, 1]→ Y with the properties that H(p, 0) = f(p) and H(p, 1) = g(p)
for all p ∈ X and H(s, t) = f(s) = g(s) for all s ∈ A and t ∈ [0, 1]. Let
K : X × [0, 1]→ Y be defined so that K(p, t) = H(p, 1− t) for all t ∈ [0, 1].
Then K is a homotopy between g and f , and K(s, t) = g(s) = f(s) for all
s ∈ A and t ∈ [0, 1]. It follows that g ' f rel A. Thus the relation of
homotopy relative to A is symmetric. Finally let f , g and h be continuous
maps from X to Y with the property that f(s) = g(s) = h(s) for all s ∈ A.
Suppose that f ' g rel A and g ' h rel A. Then there exist homotopies
H1 : X×[0, 1]→ Y andH2 : X×[0, 1]→ Y satisfying the following properties:

H1(p, 0) = f(p),

H1(p, 1) = g(p) = H2(p, 0),

H2(p, 1) = h(p)

for all p ∈ X;
H1(s, t) = H2(s, t) = f(s) = g(s) = h(s)

for all s ∈ A and t ∈ [0, 1]. Define H : X × [0, 1]→ Y by

H(p, t) =

{
H1(p, 2t) if 0 ≤ t ≤ 1

2
;

H2(p, 2t− 1) if 1
2
≤ t ≤ 1.

Now H|X × [0, 1
2
] and H|X × [1

2
, 1] are continuous. It follows from the

Pasting Lemma (Lemma 1.25) that H is continuous on X × [0, 1]. Moreover
H(p, 0) = f(p) and H(p, 1) = h(p) for all p ∈ X. Thus f ' h rel A. Thus
the relation of homotopy relative to the subset A of X is transitive. This
relation has now been shown to be reflexive, symmetric and transitive. It is
therefore an equivalence relation.

Remark Let X and Y be topological spaces, and let H : X × [0, 1]→ Y be
a function whose restriction to the sets X × [0, 1

2
] and X × [1

2
, 1] is continu-

ous. Then the function H is continuous on X × [0, 1]. The Pasting Lemma
(Lemma 1.25) was applied in the proof of Proposition 2.10 to justify this
assertion. We consider in more detail how the Pasting Lemma guarantees
the continuity of this function. Let p ∈ X. If t ∈ [0, 1] and t 6= 1

2
then the

point (p, t) is contained in an open subset of X × [0, 1] over which the func-
tion H is continuous, and therefore the function H is continuous at (p, t). In
order to complete the proof that the function H is continuous everywhere on
X × [0, 1] it suffices to verify continuity of H at (p, 1

2
), where p ∈ X.
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Let V be an open set in Y for which H(p, 1
2
) ∈ V . Then the continuity of

the restrictions of H to X× [0, 1
2
] and X× [1

2
, 1] ensures the existence of open

sets W1 and W2 in X×[0, 1] such that (p, 1
2
) ∈ W1∩W2, H(W1∩(X×[0, 1

2
])) ⊂

V and H(W2 ∩ (X × [1
2
, 1])) ⊂ V . Let W = W1 ∩W2. Then H(W ) ⊂ V .

This completes the verification that the function H is continuous at (p, 1
2
).

The Pasting Lemma is a basic tool for establishing the continuity of func-
tions occurring in algebraic topology that are similar in nature to the function
H whose continuity was justified in some detail in the foregoing discussion.
The continuity of such functions can typically be established directly using
arguments analogous to that employed here.

Corollary 2.11 Let X and Y be topological spaces. The homotopy rela-
tion ' is an equivalence relation on the set of all continuous maps from X
to Y .

Proof This result follows on applying Proposition 2.10 in the case where
homotopies are relative to the empty set.

Proposition 2.12 Let X and Y be topological spaces, let H : X× [0, 1]→ Y
be a continuous map defined on the product space X×[0, 1], let p be an element
of the topological space X and let τ be a real number satisfying 0 ≤ τ ≤ 1.
Then, given any open subset W of Y to which the point H(p, τ) belongs, there
exists a neighbourhood N of p in X and a positive real number δ such that
H(p′, τ ′) ∈ W for all p′ ∈ N and for all τ ′ ∈ [0, 1] satisfying τ−δ < τ ′ < τ+δ.

The result just stated is nothing more than a special case of Proposi-
tion 2.4.

2.6 Identification Maps and Quotient Topologies

Definition Let X and Q be topological spaces and let χ : X → Q be a
function from X to Q. The function χ is said to be an identification map if
and only if the following conditions are satisfied:

• the function χ : X → Q is surjective,

• a subset W of Q is open in Q if and only if χ−1(W ) is open in X.

It follows directly from the definition that any identification map is con-
tinuous. Moreover, in order to show that a continuous surjection χ : X → Q
is an identification map, it suffices to prove that if W is a subset of Q with
the property that χ−1(W ) is open in X then W is open in Q.
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Example Let S1 be the unit circle in R2, and let κ : R→ S1 be the continu-
ous map that sends each real number t to (cos 2πt, sin 2πt). Then κ : R→ S1

is an identification map.
Indeed let W be a subset of the circle S1 whose preimage κ−1(W ) under

the map κ is open in the real line, and let p be a point on the circle S1 that
belongs to W . Then there exists some real number s for which p = κ(s).
Then s ∈ κ−1(W ), and κ−1(W ) is open in R, by assumption. Therefore there
exists some positive real number δ for which the open interval (s− δ, s + δ)
is contained in W . Then κ maps that open interval either to an open arc in
the circle S1 that contains the point p or else (in the case when δ > 1

2
) to

the entire circle. It follows in either case that the set W contains some open
neighbourhood of the point p, and is thus itself a neighbourhood of p.

This argument shows that the subset W of the circle S1 is a neighbour-
hood of each of its points. It is therefore open in the circle (see Lemma 1.4).
Thus if W is a subset of the circle S1 and if the preimage κ−1(W ) of W
under the map κ is open in the real line R then W itself is open in the
circle S1. Conversely if W is a subset of the circle S1 which is open in the
circle, then the continuity of the map κ ensures that the preimage κ−1(W )
of W under the map κ is open in the real line. It follows that the surjective
map κ : R→ S1 is indeed an identification map.

Example Let S1 be the unit circle in R2, and let η : [0, 1] → S1 be the
continuous map that sends each real number t in the closed bounded interval
[0, 1] to (cos 2πt, sin 2πt). Then η : [0, 1]→ S1 is an identification map.

Let W be a subset of the circle S1 whose preimage η−1(W ) under the
function η is open in the closed unit interval [0, 1]. Let p be a point of the
circle belonging to W which is distinct from the point (1, 0). Then there
exists some real number s satisfying 0 < s < 1 for which η(s) = p. Now
η−1(W ) is open in [0, 1], by assumption. It follows that there exists some
positive real number δ satisfying the inequalities 0 < s − δ < s + δ < 1 for
which the open interval (s−δ, s+δ) is contained in η−1(W ). Then the image
of this open interval under the map η is an open set contained in W to which
the point p belongs. It follows that W is a neighbourhood of any point of
W that is distinct from the point (1, 0) of the circle to which the endpoints
of the closed unit interval [0, 1] are sent by the map η.

Now suppose that the point p0 belongs to W , where p0 = (1, 0). We
show that W is a neighbourhood, in the circle S1, of the point p0.

Now the points of the closed unit interval [0, 1] that are mapped by η to
the point p0 are the endpoints 0 and 1 of the closed unit interval. Now the
preimage η−1(W ) of W under the map η is assumed to be open in the closed
unit interval [0, 1]. The definition of the subspace topology on [0, 1] then

36



ensures the existence of real numbers δ0 and δ1 with values strictly between
0 and 1

2
for which [0, δ0) ⊂ η−1(W ) and (1−δ1, 1] ⊂ η−1(W ). Then the set W

contains the open arc in the circle with endpoints η(1 − δ1) and η(δ0) that
contains the point p0. It follows that the set W is a neighbourhood of the
point p0 in the circle, as previously claimed.

We have now shown that if W is a subset of the circle S1 whose preimage
η−1(W ) under the continuous map η is open in the closed unit interval [0, 1]
then W itself is a neighbourhood of each of its points. Consequently if
η−1(W ) is open in [0, 1] then W itself is open in the circle S1. Conversely if
W is a subset of the circle that is open in the circle, then the continuity of
the map η : [0, 1]→ S1 ensures that the preimage W under the map η is open
in the closed unit interval. It follows that the surjective map η : [0, 1] → S1

is indeed an identification map.

Lemma 2.13 Let X be a topological space, let Q be a set, and let χ : X → Q
be a surjection. Then there is a unique topology on Q that ensures that the
function χ : X → Q mapping the topological space X onto Q is an identifi-
cation map.

Proof Let τ be the collection consisting of all subsets W of Q for which
χ−1(W ) is open in X. Now χ−1(∅) = ∅, and χ−1(Q) = X. Thus the empty
set ∅ and the whole set Q both belong to the collection τ .

Now, given any collection of subsets of Q, the preimage, under the func-
tion χ, of the union of those sets is the union of the preimages of the sets
(Lemma 1.9). Also the preimages under χ of sets belonging to the collec-
tion τ are open sets in X. It follows that, the preimage of any union of
subsets of Q belonging to the collection τ is a union of open sets in X, and
must therefore itself be an open set in X. Consequently any union of subsets
of Q belonging to the collection τ must itself belong to that collection τ .

Furthermore, given any collection of subsets of Q, the preimage, under
the function χ, of the intersection of those sets is the intersection of the
preimages of the sets (Lemma 1.10). We have moreover already noted that
the preimages under χ of sets belonging to the collection τ are open sets
in X. It follows that, the preimage of any finite intersection of subsets of
Q belonging to the collection τ is a finite intersection of open sets in X,
and must therefore itself be an open set in X. Consequently any finite
intersection of subsets of Q belonging to the collection τ must itself belong
to that collection τ .

We have now shown that the empty set and the whole of the set Q belong
to the collection τ , the union of any collection of subsets of Q belonging
to τ must itself belong to the collection τ , and intersection of any finite

37



collection of subsets of Q belonging to τ must itself belong to the collection τ .
Consequently τ is a topology on Q. Moreover the definition of this topology
ensures that the map χ : X → Q mapping the topological space X onto Q is
an identification map when the topology on the set Q is the topology τ . Now
the very definition of quotient topologies ensures that if the function mapping
the topological space X onto Q is to be an identification map, then the open
sets in Q must be those whose preimages are open in the topological space X.
It follows that τ is the unique topology on Q that ensures that the function χ
mapping the topological space X onto Q is an identification map.

Definition Let X be a topological space, let Q be a set, and let χ : X → Q
be a surjection. The unique topology on Q that ensures that the function χ is
an identification map is referred to as the quotient topology (or identification
topology) on Q.

Lemma 2.14 Let X and Q be topological spaces and let χ : X → Q be an
identification map. Let Z be a topological space, and let ψ : Q → Z be a
function from Q to Z. Then the function ψ is continuous if and only if the
composition function ψ ◦ χ : X → Z is continuous.

Proof Suppose that ψ is continuous. Then the composition function ψ ◦ χ
is a composition of continuous functions and hence is itself continuous.

Conversely suppose that ψ ◦ χ is continuous. Let V be an open set in Z.
Then χ−1(ψ−1(V )) is open in X, because this subset of X is the preimage of
the open set V under the composition function ψ ◦ χ, and that composition
function is assumed to be continuous. It follows that ψ−1(V ) is open in Q,
because the function χ is an identification map. Therefore the function ψ is
continuous, as required.

Example Let Sn be the n-sphere, consisting of all points p in Rn+1 satisfying
|p| = 1. Let RP n be the set of all lines in Rn+1 passing through the origin
(i.e., RP n is the set of all one-dimensional vector subspaces of Rn+1).

Let χ : Sn → RP n be the function which sends a point p of Sn to the
element of RP n represented by the line in Rn+1 that passes through both p
and the origin. Note that each element of the set RP n is the image (under χ)
of exactly two antipodal points p and −p of Sn. The function χ induces a
corresponding quotient topology on RP n which ensures that the surjective
function χ : Sn → RP n is an identification map. The set of lines in (n + 1)-
dimensional Euclidean space that pass through the centre of the unit sphere,
with the quotient topology just described, is the topological space referred
to as n-dimensional real projective space.
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The space RP 2 is then the image of the two-dimensional sphere S2 under
the identification map just described that identifies pairs of antipodal points
on the sphere. This topological space is referred to as the real projective
plane.

Note that a function ψ : RP n → Z mapping RP n into a topological
space Z is continuous if and only if the composition function ψ ◦χ : Sn → Z
is continuous. (This follows on applying Lemma 2.14.)

Proposition 2.15 A continuous surjection ϕ : X → Q from a compact topo-
logical space X to a Hausdorff space Q is an identification map.

Proof Let W be a subset of the Hausdorff space Q. The surjectivity of the
map ϕ ensures that Q \W = ϕ(ϕ−1(Q \W )). It follows that

Q \W = ϕ(ϕ−1(Q \W )) = ϕ(X \ ϕ−1(W )),

because the preimage of the complement in Q of the subset W of Q is the
complement in X of the preimage of W under the map ϕ (see Lemma 1.11).

Now suppose that the preimage ϕ−1(W ) of W under the map ϕ is an open
set in X. Then its complement is closed in X. But the topological space X is
compact, and any closed subset of a compact topological space is itself com-
pact. It follows that X \ϕ−1(W ) is a compact set. Now continuous functions
map compact sets to compact sets. It follows that the complement Q \W in
Q of the subset W of Q is a compact set, being the image of the compact set
X \ϕ−1(W ) under the continuous map ϕ. Now compact subsets of Hausdorff
spaces are closed. It follows therefore that Q\W is closed in Q, and therefore
the set W itself is open in Q. Thus the preimage of a subset of Q under the
map ϕ is open in the topological space X then that subset W of Q is open in
Q. We conclude therefore that a continuous surjection ϕ : X → Q, mapping
a compact space onto a Hausdorff space must necessarily be an identification
map, which is what we were required to prove.

Example Let S1 be the unit circle in R2, defined so that S1 = {(x, y) ∈ R2 :
x2 +y2 = 1}, and let η : [0, 1]→ S1 be defined so that η(t) = (cos 2πt, sin 2πt)
for all t ∈ [0, 1]. It has been shown that the map η is an identification map.
This also follows directly from the fact that η : [0, 1] → S1 is a continuous
surjection from the compact space [0, 1] to the Hausdorff space S1.
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