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Lemma A Let X be a topological space, let A and B be subsets of X, where
A ⊂ B, and let i:A ↪→ B be the inclusion function mapping A into B, defined
so that i(x) = x for all x ∈ A. Then the function i:A ↪→ B is continuous
with respect to the subspace topologies on A and B.

Proof Let W be a subset of B that is open with respect to the subspace
topology on B. It follows immediately from the definition of the subspace
topology on B that there exists some open set V in X for which W = V ∩B.
Then i−1(W ) = (V ∩B)∩A = V ∩A. It follows that the preimage i−1(W ) of
the set W under the function i is open with respect to the subspace topology
on A. This shows that the function i:A ↪→ B is continuous, as required.

Lemma B Let X and Y be topological spaces, let A and B be subsets of X,
where A ⊂ B, and let ϕ:B → Y be a continuous function mapping the set B
into Y . Then the restriction ϕ|A:A → Y of the function ϕ to the set A is
continuous on A.

Proof The restriction function ϕ|A is determined so that ϕ|A = ϕ◦ i, where
i:A ↪→ B is the inclusion function mapping A into B. This inclusion function
is continuous (Lemma A). Consequently the restriction function ϕ|A:A →
Y , being the composition of two continuous functions, is itself a continuous
function.

Proposition C Let X be a topological space, let Y be a Hausdorff space,
let A be a subset of X, and let A denote the closure of the set A in X. Let
ϕ:A→ Y and ψ:A→ Y be continuous functions mapping the closure of the
set A into the Hausdorff space Y . Suppose that ϕ(x) = ψ(x) for all x ∈ A.
Then ϕ(x) = ψ(x) for all x ∈ A.
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Proof Suppose that there were to exist some point p of A with the property
that ϕ(p) 6= ψ(p). Now the codomain Y of the functions f and g is a
Hausdorff space. Consequently there would exist open sets V and W in Y
such that ϕ(p) ∈ V , ψ(p) ∈ W and V ∩W = ∅. Let M = ϕ−1(V )∩ψ−1(W ).
Now the continuity of the functions ϕ and ψ would ensure that the sets
ϕ−1(V ) and ψ−1(W ) would be open with respect to the subpace topology on
A. Consequently the set M , being the intersection of two open sets, would
itself be open with respect to the subspace topology on A, and therefore there
would exist some open set N in X with the property that M = N ∩ A.

Now it would then follow that p ∈ N ∩A, and therefore N ∩A would be
non-empty. Then N ∩A would also be non-empty (see Lemma 1.6). Suppose
that q were a point of N ∩ A. Then ϕ(q) ∈ V and ψ(q) ∈ W , and therefore
ϕ(q) 6= ψ(q), contradicting the condition that ϕ(x) = ψ(x) for all x ∈ A. We
conclude therefore that ϕ(x) = ψ(x) for all x ∈ A, as required.

Corollary D Let X be a topological space, let Y be a Hausdorff space, let
A be a subset of X, and let A denote the closure of the set A in X. Let
ϕ:A→ Y be a continuous function mapping the closure of the set A into the
Hausdorff space Y . Suppose that the function ϕ is constant throughout A.
Then it is constant throughout the closure A of A.

Proof This result follows from an immediate application of Proposition C.
Indeed if the given function ϕ takes some value y throughout the set A then
the function ϕ is equal to the constant function with value y throughout the
closure of the set A.

Definition A topological space X is said to be connected if the empty set ∅
and the whole space X are the only subsets of X that are both open and
closed.

Definition A topological space D is discrete if every subset of D is open in
D.

Example The set Z of integers with the usual topology is an example of a
discrete topological space. Indeed, given any integer n, the set {n} is open
in Z, because it is the intersection of Z with the open ball in R of radius
1
2

about n. Any non-empty subset S of Z is the union of the sets {n} as n
ranges over the elements of S. Therefore every subset of Z is open in Z, and
thus Z, with the usual topology, is a discrete topological space.

Lemma E Every discrete topological space is Hausdorff

2



Proof Let D be a discrete topological space, and let v and w be distinct
elements of D. Also let V = {v} and W = {w}. Then the sets V and W are
open in D, v ∈ V , w ∈ W and V ∩W = ∅. We conclude therefore that the
discrete topological space D is indeed Hausdorff.

Proposition F Let X be a non-empty topological space. Then the following
conditions are equivalent:—

(i) X is connected;

(ii) every continuous integer-valued function on X is constant;

(iii) every continuous function from X to the discrete topological space {0, 1}
is constant.

Proof Suppose that X is connected. Let f :X → Z be a continuous integer-
valued function on X, and let the integer m belong to the range f(X) of
the function f . Now the set Z of integers, with the usual topology, is a
discrete topological space. It follows that the preimage, under the continuous
function f , of any subset of the set Z of integers is an open subset of X. Let
A = f−1({m}). Then X \ A = f−1(Z \ {m}). Consequently the sets A and
X \ A are open subsets of X. The set A must therefore be both open and
closed in X. Moreover this set is non-empty, because the integer m belongs
to the range of the function f . It therefore follows from the connectedness
of X that A = X. Thus the function f is constant on X. We have now
established that (i) implies (ii).

Clearly (ii) implies (iii). It therefore only remains to show that (iii) implies
(i).

Now suppose that condition (iii) is satisfied. Let A be a non-empty subset
of X that is both open and closed, and let f :X → {0, 1} be the function on
X defined such that f(x) = 1 for all x ∈ A and f(x) = 0 for all x ∈ X \ A.
Now the preimages of the subsets ∅, {0}, {1} and {0, 1} of {0, 1} are the
sets ∅, X \ A, A and X respectively. These subsets of X are open in X.
It follows that the function f is continuous. Condition (iii) then ensures
that the function f is constant, and therefore f(x) = 1 for all x ∈ X. We
conclude therefore that A = X. Thus the sets ∅ and X are the only subsets of
X that are both open and closed, and consequently the topological space X
is connected. Thus (iii) implies (i).

We can now conclude that conditions (i), (ii) and (iii) are equivalent, as
required.

Corollary G All intervals in the real line R are connected.
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Proof It follows directly from the Intermediate Value Theorem of real anal-
ysis that any continuous function mapping an interval in the real line to the
set {0, 1} must be constant over that interval. Consequently the interval is
connected.

Example Let X = {(x, y) ∈ R2 : x 6= 0}. The topological space X is not
connected. Indeed let f :X → Z be defined such that

f(x, y) =

{
1 if x > 0,
−1 if x < 0,

Then the function f is continuous on X but is not constant.

Lemma H Let X be a topological space and let A be a connected subset
of X. Then the closure A of A is connected.

Proof Let f :A→ {0, 1} be a continuous function mapping the closure of A
into the discrete topological space {0, 1}. The connnectedness of the set A
ensures that the function f is constant over the set A (see Proposition F). It
then follows that the function f must be continuous throughout the closure
of A (see Corollary D). We conclude therefore that every continuous function
mapping the closure of A of the connected set A into the discrete topological
space {0, 1} must be a constant function, and consequently the closure A of
A is connected, as required.

Lemma I Let ϕ:X → Y be a continuous function between topological spaces
X and Y , and let A be a connected subset of X. Then the image ϕ(A) of the
connected set A is connected.

Proof Let g:ϕ(A) → {0, 1} be a continuous function mapping the image
ϕ(A) of A into the discrete topological space {0, 1}. Then the composition
function g ◦ ϕ:A → {0, 1} is a continuous function on the connected set A.
This continuous function must be constant over the set A (see Proposition F),
and consequently the continuous function g:ϕ(A)→ {0, 1} must be constant
over the set ϕ(A). We conclude therefore (applying Proposition F) that the
set ϕ(A) must be connected, as required.

Lemma J Let X be a topological space, and let A and B be connected subsets
of X. Suppose that the intersection of the sets A and B is non-empty. Then
the union A ∪B of the sets A and B is connected.
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Proof Let f :A ∪ B → {0, 1} be a continuous function mapping A ∪ B into
the discrete topological space {0, 1}. The restriction of the function f to
the set A is continuous on A (see Lemma B), and consequently (applying
Proposition F) the function f must be continuous over the set A. It must
also be continuous over the set B. Moreover the value taken by the function f
on A must be the same as that taken by the function f on B, because A∩B
is non-empty. Consequently the function f must be continuous throughout
the whole of A ∪ B. We conclude therefore that every continuous function
from A ∪ B to {0, 1} must be a constant function, and consequently the set
A ∪B is connected.

Connected Components of Topological Spaces

Proposition K Let X be a topological space. For each p ∈ X, let Sp be the
union of all connected subsets of X that contain p. Then

(i) Sp is connected,

(ii) Sp is closed,

(iii) if p, q ∈ X, then either Sp = Sq, or else Sp ∩ Sq = ∅.

Proof Let p be a point of the topological space X, and let f :Sp → {0, 1}
be a continuous function mapping the set Sp into the discrete topological
space {0, 1}. Let A be a connected subset of X to which the point p belongs.
Then f(x) = f(p) for all x ∈ A. Now the set Sp is a union of such connected
subsets. It follows that f(x) = f(p) for all x ∈ Sp. We conclude therefore
that every continuous function mapping the set Sp into {0, 1} must be con-
stant, and therefore the set Sp must be connected (see Proposition F). This
establishes (i).

Now the closure Sp of Sp is connected (see Lemma H). It follows from the
definition of the set Sp that Sp ⊂ Sp, and therefore Sp = Sp. Consequently
the set Sp is closed. This establishes (ii).

Finally, suppose that p and q are points of X for which Sp ∩ Sq 6= ∅. The
sets Sp and Sq are connected, and their intersection is non-empty. It follows
that Sp ∪ Sq is connected (see Lemma J). It then follows from the definition
of the sets Sp and Sq that Sp ∪ Sq ⊂ Sp and Sp ∪ Sq ⊂ Sq, and consequently
Sp = Sq. This establishes (iii), completing the proof.

Given any topological space X, the connected subsets Sp of X defined as
in the statement of Proposition K are referred to as the connected compo-
nents of X. Now a point p of X belongs to at least one connected component
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because it belongs to the connected component Sp that it determines. Also
we see from Proposition K, part (iii) that the point p cannot belong to more
than one distinct connected component, because two distinct connected com-
ponents cannot have non-empty intersection. It follows that the topological
space X is the disjoint union of its connected components.

Example Let X be the subset of R2 defined so that X = {(x, y) ∈ R2 : x 6=
0} Then the connected components of X are the sets

{(x, y) ∈ R2 : x > 0} and {(x, y) ∈ R2 : x < 0}.

Example Let Y be the open subset of the real line defined so that

Y = {x ∈ R : |x− n| < 1
2

for some integer n}.

Then the connected components of the set Y are the sets Jn for all integers n,
where, for each integer n, Jn is the open interval with endpoints n − 1

2
and

n+ 1
2
.

Products of Connected Topological Spaces

Lemma L A Cartesian product X × Y of two connected topological spaces
X and Y is itself connected.

Proof Let f :X × Y → {0, 1} be a continuous function mapping the Carte-
sian product X × Y into the discrete topological space {0, 1}, and let (p, q)
and (r, s) be points of X × Y . Then the function mapping points x of X to
f(x, q) is a continuous function mapping the connected topological space X
into the discrete topological space {0, 1}. This continuous function must
be constant (see Proposition F). Consequently f(p, q) = f(r, q). Similarly
f(r, q) = f(r, s). It follows that f(p, q) = f(r, s). We conclude therefore that
every continuous function mapping the Cartesian product space X × Y into
the discrete topological space {0, 1} must be a constant function. It follows
(applying Proposition F) that X×Y must be a connected topological space,
as required.
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