MAU34201: Algebraic Topology I Michaelmas Term 2020 Disquisition VI: On the Helicoid Surface

David R. Wilkins

© Trinity College Dublin 2020

Proposition A. Let M be the surface in three-dimensional space \mathbb{R}^3 consisting of all points (x, y, z) of \mathbb{R}^3 that satisfy all of the following conditions:—

- $(x, y) \neq (0, 0),$
- $x = \sqrt{x^2 + y^2} \cos 2\pi z$,
- $y = \sqrt{x^2 + y^2} \sin 2\pi z$.

and let $\chi: M \to \mathbb{R}^2 \setminus \{(0,0)\}$ be the function defined so that $\chi(x, y, z) = (x, y)$ for all $(x, y, z) \in M$. Then the map χ is a covering map.

Proof For each real number θ , let Ω_{θ} be the open set in \mathbb{R}^2 that is the complement of the ray

$$\{(t\cos\theta, t\sin\theta) : t \in \mathbb{R} \text{ and } t \le 0\}.$$

Then, for each real number θ , there exists a corresponding continuous function $\omega_{\theta}: \Omega_{\theta} \to \mathbb{R}$ characterized by the properties that $\theta - \pi < \omega_{\theta}(x, y) < \theta + \pi$,

$$x = \sqrt{x^2 + y^2} \cos \omega_{\theta}(x, y)$$
 and $y = \sqrt{x^2 + y^2} \sin \omega_{\theta}(x, y)$

for all $(x, y) \in \Omega_{\theta}$ (see Proposition 7.1).

For each real number θ and for each integer m, let $\sigma_{\theta,m}: \Omega_{\theta} \to M$ be the continuous function defined so that

$$\sigma_{\theta,m}(x,y) = (x, y, (2\pi)^{-1}\omega_{\theta}(x,y) + m)$$

for all $(x, y) \in \Omega_{\theta}$. The continuity of the function ω_{θ} ensures the continuity of the function $\sigma_{\theta,m}$. For all real numbers θ , the preimage $\chi^{-1}(\Omega_{\theta})$ of the open set Ω_{θ} is the disjoint union of the sets $\sigma_{\theta,m}(\Omega_{\theta})$ as *m* ranges over the set \mathbb{Z} of integers. Each of these sets $\sigma_{\theta,m}(\Omega_{\theta})$ is an open subset of *M*. Indeed

$$\sigma_{\theta,m}(\Omega_{\theta}) = \{(x, y, z) \in M : (x, y) \in \Omega_{\theta} \text{ and } \frac{\theta}{2\pi} + m - \frac{1}{2} < z < \frac{\theta}{2\pi} + m + \frac{1}{2}\}.$$

Moreover the restriction of the function χ to each of these sets $\sigma_{\theta,m}(\Omega_{\theta})$ maps that set homeomorhically onto Ω_{θ} . Indeed the functions χ and $\sigma_{\theta,m}$ are continuous, and $\chi(\sigma_{\theta,m}(x,y)) = (x,y)$ for all $(x,y) \in \Omega_{\theta}$. Suppose that $(x,y,z) \in \sigma_{\theta,m}(\Omega_{\theta})$. Then $(x,y,z) = \sigma_{\theta,m}(x,y)$, and therefore

$$\sigma_{\theta,m}(\chi(x,y,z)) = \sigma_{\theta,m}(\chi(\sigma_{\theta,m}(x,y))) = \sigma_{\theta,m}(x,y) = (x,y,z).$$

Thus $\sigma_{\theta,m}(\chi(x,y,z)) = (x,y,z)$ for all $(x,y,z) \in \sigma_{\theta,m}(\Omega_{\theta})$. It follows that the function from Ω_{θ} to $\sigma_{\theta,m}(\Omega_{\theta})$ that sends each point (x,y) of Ω_{θ} to $\sigma_{\theta,m}(x,y)$ is a continuous function that is the inverse of the function from $\sigma_{\theta,m}(\Omega_{\theta})$ to Ω_{θ} that sends each point (x,y,z) of $\sigma_{\theta,m}(\Omega_{\theta})$ to $\chi(x,y,z)$, where $\chi(x,y,z) = (x,y)$. Consequently the subset $\sigma_{\theta,m}(\Omega_{\theta})$ of M is mapped by χ homeomorphically onto Ω_{θ} .

We have now shown that, for all real numbers θ , the preimage $\chi^{-1}(\Omega_{\theta})$ of the open subset Ω_{θ} of $\mathbb{R}^2 \setminus \{(0,0)\}$ is a disjoint union of the sets $\sigma_{\theta,m}(\Omega_{\theta})$ as m ranges over the set of all integers. Moreover each of the subsets $\sigma_{\theta,m}(\Omega_{\theta})$ of the surface M is open in M and is mapped by χ homeomorphically onto the open set Ω_{θ} . Thus the open set Ω_{θ} is evenly covered by the map χ . It follows that the surjective continuous function $\chi: M \to \mathbb{R}^2 \setminus \{(0,0)\}$ is a covering map, which is what we were required to prove.

The surface M described in the statement of Proposition A is a *helicoid* in \mathbb{R}^3 .

In what follows, we refer to the set $\mathbb{R}^2 \setminus \{(0,0)\}$ consisting of all points of the plane \mathbb{R}^2 distinct from the origin (0,0) as the *punctured plane*.

Let $\gamma: [0,1] \to \mathbb{R}^2 \setminus \{0\}$ be a loop in the punctured plane. Then γ is a continuous function mapping the closed unit interval [0,1] into the punctured plane, and $\gamma(0) = \gamma(1)$. The Path-Lifting Theorem (Theorem 4.13) ensures the existence of a path $\tilde{\gamma}: [0,1] \to M$ with the property that $\chi \circ \tilde{\gamma} = \gamma$, where $\chi: M \to \mathbb{R}^2 \setminus \{(0,0)\}$ is the covering map that sends a point (x, y, z) of the helicoid surface M to the point (x, y) of the punctured plane. Let $\tilde{\gamma}(t) = (f(t), g(t), h(t))$ for all $t \in [0, 1]$, where f, g and h are real-valued function on the unit interval [0, 1]. Then $\gamma(t) = (f(t), g(t))$ for all $t \in [0, 1]$, and moreover

$$f(t) = \sqrt{f(t)^2 + g(t)^2} \cos(2\pi h(t))$$

and

$$g(t) = \sqrt{f(t)^2 + g(t)^2} \cos(2\pi h(t)).$$

The definition of winding number adopted in Section 7 of the lecture notes therefore ensures that the winding number of the loop γ about the origin is equal to h(1) - h(0).

The covering map $\chi: M \to \mathbb{R}^2 \setminus \{(0,0)\}$ from the helicoid to the punctured plane is closely related to the exponential map of complex variable theory.

Given a complex number u + iv, where u and v are real numbers and $i = \sqrt{-1}$, the exponential $\exp(u + iv)$ of the complex number u + iv takes the form x + iy where $x = e^u \cos v$ and $y = e^u \sin v$. Thus, if we represent points of the complex plane \mathbb{C}^2 by ordered pairs of real numbers, where the components of those ordered pairs are the real and imaginary parts of the complex number, then the exponential map corresponds to a function $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$, where

$$\varphi(u, v) = (e^u \cos v, e^u \sin v).$$

for all $(u, v) \in \mathbb{R}^2$. Let the continuous function $\tilde{\varphi} \colon \mathbb{R}^2 \to M$ from the plane \mathbb{R}^2 to the helicoid surface M be defined so that

$$\tilde{\varphi}(u,v) = \left(e^u \cos v, \ e^u \sin v, \ \frac{v}{2\pi}\right)$$

for all $(u, v) \in \mathbb{R}^2$. Then the continuous function $\tilde{\varphi}: \mathbb{R}^2 \to M$ is a homeomorphism whose inverse maps a point (x, y, z) of the helicoid surface M to the point $(\frac{1}{2}\log(x^2 + y^2), 2\pi v)$ of the plane \mathbb{R}^2 . Now the composition of a homeomorphism and a covering map is obviously a covering map. We conclude therefore that the function $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ that corresponds to the exponential function of complex analysis is a covering map.

We have thus established the following result.

Proposition B. The function from the complex plane \mathbb{C} to the punctured complex plane $\mathbb{C} \setminus \{0\}$ that maps each complex number w to $\exp w$ is a covering map.

Indeed, for any real number θ the open subset $\mathbb{C} \setminus L_{\theta}$ of the punctured complex plane $\mathbb{C} \setminus \{0\}$ is evenly covered by the exponential map, where

$$L_{\theta} = \{ te^{i\theta} \in \mathbb{C} : t \in \mathbb{R} \text{ and } t \leq 0 \}.$$

Let $\gamma: [0,1] \to \mathbb{C}$ be a loop in the complex plane and let w be a complex number that does not lie on the loop γ . There then exists a path $\tilde{\gamma}: [0,1] \to \mathbb{C}$ in the complex plane that is such as to ensure that

$$\exp\tilde{\gamma}(t) = \gamma(t) - w.$$

(This follows from a straightforward application of Proposition 7.2, taking into account the definition of the exponential map. The result also follows directly on applying the Path-Lifting Theorem, Theorem 4.13, to the exponential map, given that that map has been shown to be a covering map.) One can then easily establish from the relevant definitions that the winding number of the loop γ about the complex number w is equal to

$$\frac{\tilde{\gamma}(1) - \tilde{\gamma}(0)}{2\pi\sqrt{-1}}.$$