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Proposition A. Let M be the surface in three-dimensional space R3 consist-
ing of all points (x, y, z) of R3 that satisfy all of the following conditions:—

• (x, y) 6= (0, 0),

• x =
√
x2 + y2 cos 2πz,

• y =
√
x2 + y2 sin 2πz.

and let χ:M → R2 \{(0, 0)} be the function defined so that χ(x, y, z) = (x, y)
for all (x, y, z) ∈M . Then the map χ is a covering map.

Proof For each real number θ, let Ωθ be the open set in R2 that is the
complement of the ray

{(t cos θ, t sin θ) : t ∈ R and t ≤ 0}.

Then, for each real number θ, there exists a corresponding continuous func-
tion ωθ: Ωθ → R characterized by the properties that θ−π < ωθ(x, y) < θ+π,

x =
√
x2 + y2 cosωθ(x, y) and y =

√
x2 + y2 sinωθ(x, y)

for all (x, y) ∈ Ωθ (see Proposition 7.1).
For each real number θ and for each integer m, let σθ,m: Ωθ → M be the

continuous function defined so that

σθ,m(x, y) = (x, y, (2π)−1ωθ(x, y) +m)

for all (x, y) ∈ Ωθ. The continuity of the function ωθ ensures the continuity
of the function σθ,m. For all real numbers θ, the preimage χ−1(Ωθ) of the
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open set Ωθ is the disjoint union of the sets σθ,m(Ωθ) as m ranges over the
set Z of integers. Each of these sets σθ,m(Ωθ) is an open subset of M . Indeed

σθ,m(Ωθ) = {(x, y, z) ∈M : (x, y) ∈ Ωθ and
θ

2π
+m− 1

2
< z <

θ

2π
+m+ 1

2
}.

Moreover the restriction of the function χ to each of these sets σθ,m(Ωθ)
maps that set homeomorhically onto Ωθ. Indeed the functions χ and σθ,m
are continuous, and χ(σθ,m(x, y)) = (x, y) for all (x, y) ∈ Ωθ. Suppose that
(x, y, z) ∈ σθ,m(Ωθ). Then (x, y, z) = σθ,m(x, y), and therefore

σθ,m(χ(x, y, z)) = σθ,m(χ(σθ,m(x, y)) = σθ,m(x, y) = (x, y, z).

Thus σθ,m(χ(x, y, z)) = (x, y, z) for all (x, y, z) ∈ σθ,m(Ωθ). It follows that
the function from Ωθ to σθ,m(Ωθ) that sends each point (x, y) of Ωθ to
σθ,m(x, y) is a continuous function that is the inverse of the function from
σθ,m(Ωθ) to Ωθ that sends each point (x, y, z) of σθ,m(Ωθ) to χ(x, y, z), where
χ(x, y, z) = (x, y). Consequently the subset σθ,m(Ωθ) of M is mapped by χ
homeomorphically onto Ωθ.

We have now shown that, for all real numbers θ, the preimage χ−1(Ωθ) of
the open subset Ωθ of R2 \ {(0, 0)} is a disjoint union of the sets σθ,m(Ωθ) as
m ranges over the set of all integers. Moreover each of the subsets σθ,m(Ωθ) of
the surface M is open in M and is mapped by χ homeomorphically onto the
open set Ωθ. Thus the open set Ωθ is evenly covered by the map χ. It follows
that the surjective continuous function χ:M → R2 \ {(0, 0)} is a covering
map, which is what we were required to prove.

The surface M described in the statement of Proposition A is a helicoid
in R3.

In what follows, we refer to the set R2 \ {(0, 0)} consisting of all points
of the plane R2 distinct from the origin (0, 0) as the punctured plane.

Let γ: [0, 1] → R2 \ {0} be a loop in the punctured plane. Then γ is a
continuous function mapping the closed unit interval [0, 1] into the punctured
plane, and γ(0) = γ(1). The Path-Lifting Theorem (Theorem 4.13) ensures
the existence of a path γ̃: [0, 1] → M with the property that χ ◦ γ̃ = γ,
where χ:M → R2 \ {(0, 0)} is the covering map that sends a point (x, y, z)
of the helicoid surface M to the point (x, y) of the punctured plane. Let
γ̃(t) = (f(t), g(t), h(t)) for all t ∈ [0, 1], where f , g and h are real-valued
function on the unit interval [0, 1]. Then γ(t) = (f(t), g(t)) for all t ∈ [0, 1],
and moreover

f(t) =
√
f(t)2 + g(t)2 cos(2πh(t))
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and
g(t) =

√
f(t)2 + g(t)2 cos(2πh(t)).

The definition of winding number adopted in Section 7 of the lecture notes
therefore ensures that the winding number of the loop γ about the origin is
equal to h(1)− h(0).

The covering map χ:M → R2\{(0, 0)} from the helicoid to the punctured
plane is closely related to the exponential map of complex variable theory.

Given a complex number u + iv, where u and v are real numbers and
i =
√
−1, the exponential exp(u + iv) of the complex number u + iv takes

the form x + iy where x = eu cos v and y = eu sin v. Thus, if we represent
points of the complex plane C2 by ordered pairs of real numbers, where
the components of those ordered pairs are the real and imaginary parts of
the complex number, then the exponential map corresponds to a function
ϕ:R2 → R2, where

ϕ(u, v) = (eu cos v, eu sin v).

for all (u, v) ∈ R2. Let the continuous function ϕ̃:R2 →M from the plane R2

to the helicoid surface M be defined so that

ϕ̃(u, v) =
(
eu cos v, eu sin v,

v

2π

)
for all (u, v) ∈ R2. Then the continuous function ϕ̃:R2 →M is a homeomor-
phism whose inverse maps a point (x, y, z) of the helicoid surface M to the
point (1

2
log(x2 + y2), 2πv) of the plane R2. Now the composition of a home-

omorphism and a covering map is obviously a covering map. We conclude
therefore that the function ϕ:R2 → R2 that corresponds to the exponential
function of complex analysis is a covering map.

We have thus established the following result.

Proposition B. The function from the complex plane C to the punctured
complex plane C\{0} that maps each complex number w to expw is a covering
map.

Indeed, for any real number θ the open subset C \ Lθ of the punctured
complex plane C \ {0} is evenly covered by the exponential map, where

Lθ = {teiθ ∈ C : t ∈ R and t ≤ 0}.

Let γ: [0, 1]→ C be a loop in the complex plane and let w be a complex
number that does not lie on the loop γ. There then exists a path γ̃: [0, 1]→ C
in the complex plane that is such as to ensure that

exp γ̃(t) = γ(t)− w.
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(This follows from a straightforward application of Proposition 7.2, taking
into account the definition of the exponential map. The result also follows
directly on applying the Path-Lifting Theorem, Theorem 4.13, to the expo-
nential map, given that that map has been shown to be a covering map.)
One can then easily establish from the relevant definitions that the winding
number of the loop γ about the complex number w is equal to

γ̃(1)− γ̃(0)

2π
√
−1

.
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