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Example The group Z of integers under addition acts freely and properly
discontinuously on the real line R. Indeed each integer n determines a cor-
responding homeomorphism θn:R → R, where θn(x) = x + n for all x ∈ R.
Moreover θm ◦ θn = θm+n for all m,n ∈ Z, and θ0 is the identity map of R.
If U = (−1

2
, 1
2
) then θn(U) ∩ U = ∅ for all non-zero integers n.

The real line R is simply-connected. It therefore follows from Corol-
lary 6.12 that π1(R/Z, b) ∼= Z for any point b of R/Z.

Let q:R → R/Z be the quotient map from the real line R to the orbit
space R/Z that sends each real number to its orbit under the action of the
group of integers, let p:R→ S1 be defined such that

p(t) = (cos 2πt, sin 2πt)

for all t ∈ R. Then p(t1) = p(t2) for all real numbers t1 and t2 satisfying
q(t1) = q(t2). Thus there is a well-defined function h:R/Z → S1 character-
ized by the property that h(q(t)) = p(t) for all real numbers t.

The continuous map h:R/Z → S1 is a homeomorphism (see Corol-
lary 6.7). It follows that

π1(S
1, h(b)) ∼= π1(R/Z, b) ∼= Z

for all b ∈ R/Z.

Example The group Zn of ordered n-tuples of integers under addition acts
freely and properly discontinuously on Rn, where

θ(m1,m2,...,mn)(x1, x2, . . . , xn) = (x1 +m1, x2 +m2, . . . , xn +mn)
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for all (m1,m2, . . . ,mn) ∈ Zn and (x1, x2, . . . , xn) ∈ Rn. The orbit space
Rn/Zn is an n-dimensional torus, homeomorphic to the product of n cir-
cles. It follows from Corollary 6.12 that the fundamental group of this n-
dimensional torus is isomorphic to the group Zn.

Example Let Sn be the unit sphere in Rn+1 centred on the origin, and let
C2 denote the cyclic group of order 2. Then C2 = {e, a}, where e2 = a2 = e
and ea = ae = a. The group C2 acts freely and discontinuously on Sn, where
e acts as the identity map of Sn and a acts as the antipodal map sending x to
−x for all x ∈ Rn. The orbit space Sn/C2 is homeomorphic to real projective
n-dimensional space RP n. Now the n-dimensional sphere is simply-connected
if n > 1. It follows from Corollary 6.12 that the fundamental group of RP n

is isomorphic to the cyclic group C2 when n > 1.
Note that S0 is a pair of points, and RP 0 is a single point. Also S1 is a

circle (which is not simply-connected) and RP 1 is homeomorphic to a circle.
Moreover, for any b ∈ S1, the homomorphism q#: π1(S

1, b) → π1(RP 1, q(b))
corresponds to the homomorphism from Z to Z that sends each integer n to
2n. This is consistent with the conclusions of Corollary 6.11 in this example.

Example Given a pair (m,n) of integers, let θm,n:R2 → R2 be the homeo-
morphism of the plane R2 defined such that

θm,n(x, y) = (x+m, (−1)my + n)

for all (x, y) ∈ R2. Let (m1, n1) and (m2, n2) be ordered pairs of integers.
Then

θm1,n1 ◦ θm2,n2 = θm1+m2,n1+(−1)m1n2 .

Let Γ be the group whose elements are represented as ordered pairs of inte-
gers, where the group operation # on Γ is defined such that

(m1, n1)#(m2, n2) = (m1 +m2, n1 + (−1)m1n2)

for all (m1, n1), (m2, n2) ∈ Γ. The group Γ is non-Abelian, and its identity
element is (0, 0). This group acts on the plane R2: given (m,n) ∈ Γ the
corresponding symmetry θm,n is a translation if m is even, and is a glide
reflection if m is odd.

Given a pair (m,n) of integers, the corresponding homeomorphism θm,n

maps an open disk about the point (x, y) onto an open disk of the same radius
about the point θ(m,n)(x, y). It follows that if D is the open disk of radius 1

2

about the point (x, y), and if D∩ θm,n(D) is non-empty, then (m,n) = (0, 0).
Thus the group Γ maps freely and properly discontinuously on the plane R2.
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Now each orbit intersects the closed unit square S, where S = [0, 1] ×
[0, 1]. If 0 < x < 1 and 0 < y < 1 then the orbit of (x, y) intersects
the square S in one point, namely the point (x, y). If 0 < x < 1, then
the orbit of (x, 0) intersects the square in two points (x, 0) and (x, 1). If
0 < y < 1 then the orbit of (0, y) intersects the square S in the two points
(0, y) and (1, 1 − y). (Note that (1, 1 − y) = θ1,1(0, y).) And the orbit
of any corner of the square S intersects the square in the four corners of
the square. The restriction q|S of the quotient map q:R2 → R2/Γ to the
square S is a continuous surjection defined on the square: one can readily
verify that it is an identification map. It follows that the orbit space R2/Γ is
homeomorphic to the identification space obtained from the closed square S
by identifying together the points (x, 0) and (x, 1) where the real number x
satisfies 0 < x < 1, identifying together the points (0, y) and (1, 1− y) where
the real number y satisfies 0 < y < 1, and identifying together the four
corners of the square. The identification space obtained in this fashion is
a closed non-orientable surface, first described by Felix Klein in 1882, and
now known as the Klein bottle. Apparently the surface was initially referred
to as the Kleinsche Fläche (Klein’s Surface), but this name was incorrectly
translated into English, and, as a result the surface is now referred to as the
Klein Bottle (Kleinsche Flasche).

The plane R2 is simply-connected. It follows from Corollary 6.12 that the
fundamental group of the Klein bottle is isomorphic to the group Γ defined
above.
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