MAU34201: Algebraic Topology I Michaelmas Term 2020 Disquisition I: Examples of Orbit Spaces

David R. Wilkins

© Trinity College Dublin 2020

Example The group \mathbb{Z} of integers under addition acts freely and properly discontinuously on the real line \mathbb{R} . Indeed each integer n determines a corresponding homeomorphism $\theta_n \colon \mathbb{R} \to \mathbb{R}$, where $\theta_n(x) = x + n$ for all $x \in \mathbb{R}$. Moreover $\theta_m \circ \theta_n = \theta_{m+n}$ for all $m, n \in \mathbb{Z}$, and θ_0 is the identity map of \mathbb{R} . If $U = (-\frac{1}{2}, \frac{1}{2})$ then $\theta_n(U) \cap U = \emptyset$ for all non-zero integers n.

The real line \mathbb{R} is simply-connected. It therefore follows from Corollary 6.12 that $\pi_1(\mathbb{R}/\mathbb{Z}, b) \cong \mathbb{Z}$ for any point b of \mathbb{R}/\mathbb{Z} .

Let $q: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the quotient map from the real line \mathbb{R} to the orbit space \mathbb{R}/\mathbb{Z} that sends each real number to its orbit under the action of the group of integers, let $p: \mathbb{R} \to S^1$ be defined such that

 $p(t) = (\cos 2\pi t, \sin 2\pi t)$

for all $t \in \mathbb{R}$. Then $p(t_1) = p(t_2)$ for all real numbers t_1 and t_2 satisfying $q(t_1) = q(t_2)$. Thus there is a well-defined function $h: \mathbb{R}/\mathbb{Z} \to S^1$ characterized by the property that h(q(t)) = p(t) for all real numbers t.

The continuous map $h: \mathbb{R}/\mathbb{Z} \to S^1$ is a homeomorphism (see Corollary 6.7). It follows that

$$\pi_1(S^1, h(b)) \cong \pi_1(\mathbb{R}/\mathbb{Z}, b) \cong \mathbb{Z}$$

for all $b \in \mathbb{R}/\mathbb{Z}$.

Example The group \mathbb{Z}^n of ordered *n*-tuples of integers under addition acts freely and properly discontinuously on \mathbb{R}^n , where

$$\theta_{(m_1,m_2,\dots,m_n)}(x_1,x_2,\dots,x_n) = (x_1+m_1,x_2+m_2,\dots,x_n+m_n)$$

for all $(m_1, m_2, \ldots, m_n) \in \mathbb{Z}^n$ and $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. The orbit space $\mathbb{R}^n/\mathbb{Z}^n$ is an *n*-dimensional torus, homeomorphic to the product of *n* circles. It follows from Corollary 6.12 that the fundamental group of this *n*-dimensional torus is isomorphic to the group \mathbb{Z}^n .

Example Let S^n be the unit sphere in \mathbb{R}^{n+1} centred on the origin, and let C_2 denote the cyclic group of order 2. Then $C_2 = \{e, a\}$, where $e^2 = a^2 = e$ and ea = ae = a. The group C_2 acts freely and discontinuously on S^n , where e acts as the identity map of S^n and a acts as the antipodal map sending \mathbf{x} to $-\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. The orbit space S^n/C^2 is homeomorphic to real projective n-dimensional space $\mathbb{R}P^n$. Now the n-dimensional sphere is simply-connected if n > 1. It follows from Corollary 6.12 that the fundamental group of $\mathbb{R}P^n$ is isomorphic to the cyclic group C_2 when n > 1.

Note that S^0 is a pair of points, and $\mathbb{R}P^0$ is a single point. Also S^1 is a circle (which is not simply-connected) and $\mathbb{R}P^1$ is homeomorphic to a circle. Moreover, for any $b \in S^1$, the homomorphism $q_{\#}: \pi_1(S^1, b) \to \pi_1(\mathbb{R}P^1, q(b))$ corresponds to the homomorphism from \mathbb{Z} to \mathbb{Z} that sends each integer n to 2n. This is consistent with the conclusions of Corollary 6.11 in this example.

Example Given a pair (m, n) of integers, let $\theta_{m,n} \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the homeomorphism of the plane \mathbb{R}^2 defined such that

$$\theta_{m,n}(x,y) = (x+m,(-1)^m y + n)$$

for all $(x, y) \in \mathbb{R}^2$. Let (m_1, n_1) and (m_2, n_2) be ordered pairs of integers. Then

$$\theta_{m_1,n_1} \circ \theta_{m_2,n_2} = \theta_{m_1+m_2,n_1+(-1)^{m_1}n_2}$$

Let Γ be the group whose elements are represented as ordered pairs of integers, where the group operation # on Γ is defined such that

$$(m_1, n_1) \# (m_2, n_2) = (m_1 + m_2, n_1 + (-1)^{m_1} n_2)$$

for all $(m_1, n_1), (m_2, n_2) \in \Gamma$. The group Γ is non-Abelian, and its identity element is (0, 0). This group acts on the plane \mathbb{R}^2 : given $(m, n) \in \Gamma$ the corresponding symmetry $\theta_{m,n}$ is a translation if m is even, and is a glide reflection if m is odd.

Given a pair (m, n) of integers, the corresponding homeomorphism $\theta_{m,n}$ maps an open disk about the point (x, y) onto an open disk of the same radius about the point $\theta_{(m,n)}(x, y)$. It follows that if D is the open disk of radius $\frac{1}{2}$ about the point (x, y), and if $D \cap \theta_{m,n}(D)$ is non-empty, then (m, n) = (0, 0). Thus the group Γ maps freely and properly discontinuously on the plane \mathbb{R}^2 .

Now each orbit intersects the closed unit square S, where $S = [0, 1] \times$ [0,1]. If 0 < x < 1 and 0 < y < 1 then the orbit of (x,y) intersects the square S in one point, namely the point (x, y). If 0 < x < 1, then the orbit of (x,0) intersects the square in two points (x,0) and (x,1). If 0 < y < 1 then the orbit of (0, y) intersects the square S in the two points (0, y) and (1, 1 - y). (Note that $(1, 1 - y) = \theta_{1,1}(0, y)$.) And the orbit of any corner of the square S intersects the square in the four corners of the square. The restriction q|S of the quotient map $q: \mathbb{R}^2 \to \mathbb{R}^2/\Gamma$ to the square S is a continuous surjection defined on the square: one can readily verify that it is an identification map. It follows that the orbit space \mathbb{R}^2/Γ is homeomorphic to the identification space obtained from the closed square Sby identifying together the points (x, 0) and (x, 1) where the real number x satisfies 0 < x < 1, identifying together the points (0, y) and (1, 1 - y) where the real number y satisfies 0 < y < 1, and identifying together the four corners of the square. The identification space obtained in this fashion is a closed non-orientable surface, first described by Felix Klein in 1882, and now known as the *Klein bottle*. Apparently the surface was initially referred to as the *Kleinsche Fläche* (Klein's Surface), but this name was incorrectly translated into English, and, as a result the surface is now referred to as the Klein Bottle (Kleinsche Flasche).

The plane \mathbb{R}^2 is simply-connected. It follows from Corollary 6.12 that the fundamental group of the Klein bottle is isomorphic to the group Γ defined above.