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The following result follows from a direct application of a result that
establishes that a continuous real-valued function can be defined along any
path in the plane R2 that does not pass through the origin, where the value
of this function at any point of the path represents the angle through which
the vector (0, 1) needs to be rotated in the anticlockwise direction so as
to point in the direction of the displacement vector from the origin to the
point on the path in question. (The result follows directly on applying (see
Proposition 7.2).

Proposition A. Let S1 be the unit circle in the Euclidean plane, defined so
that

S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

and let κ:R → S1 be the continuous function mapping the real line R into
the circle S1 defined so that

κ(x) = (cos 2πx, sin 2πx)

for all real numbers x. Then, given any path γ: [0, 1] → S1 in the circle S1,
represented as a continuous function mapping the closed unit interval [0, 1]
into the circle, there exists a continuous real-valued function γ̃: [0, 1] → R
defined over the closed unit interval [0, 1] with the property that κ(γ̃(t)) = γ(t)
for all t ∈ [0, 1].

Remark The continuous function κ:R → S1 is a covering map. Conse-
quently the result stated in Proposition A above is an immediate consequence
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of the Path-Lifting Theorem for covering maps (Theorem 4.13), when this
theorem is applied to the covering map κ wrapping the real line around the
unit circle.

If the path γ is a loop in S1 (which is the case if and only if γ(0) = γ(1),
then γ̃(1)− γ̃(0) is an integer. Moreover if η: [0, 1]→ R is a continuous real-
valued function on [0, 1] with the property that κ(η(t)) = γ(t) for all t ∈ [0, 1]
then there exists some integer m, independent of the value of t, determined
so that

η(t) = γ̃(t) +m

for all t ∈ [0, 1]. This follows from the fact that the function sending each
real number t between 0 and 1 to η(t) − γ̃(t) is a continuous integer-valued
function on the closed unit interval [0, 1], and is thus a constant function
on that interval. Consequently each loop γ in S1 (represented as a contin-
uous function mapping [0, 1] into S1) determines an associated integer n(γ)
characterized by the property that

n(γ) = γ̃(1)− γ̃(0)

for any continuous real-valued function γ̃: [0, 1]→ R on [0, 1] for which κ◦γ̃ =
γ. This integer n(γ) is the winding number of the loop γ. (This winding
number is the winding number of the loop γ about the origin, when one
considers the circle S1 as being embedded in R2 as the unit circle consisting
of all points whose Euclidean distance from the origin is equal to one.)

Now let H: [0, 1]×[0, 1]→ S1 be a continuous map that satisfies H(0, τ) =
H(1, τ) for all τ ∈ [0, 1]. Also, for each τ ∈ [0, 1], let n(γτ ) be the wind-
ing number of the loop γτ in S1 defined such that γτ (t) = H(t, τ) for all
t ∈ [0, 1]. Then n(γ0) = n(γ1). (This follows directly as a special case of
Proposition 7.6.)

The following result follows immediately.

Proposition B. Let S1 be the unit circle in the Euclidean plane, defined so
that

S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

and let b be a point of S1. Let α and β be loops in S1 based at b. Suppose
that α ' β rel {0, 1}. Then n(α) = n(β), where n(α) and n(β) denote the
winding numbers of the loops α and β respectively.

Remark The result stated in Proposition B above can be deduced directly,
within the context of the general theory of covering maps, on applying the
Homotopy-Lifting Theorem (see Theorem 4.14 and Proposition 6.1).
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The following theorem identifies the fundamental group of the circle. It
is a special case of the result stated in Corollary 6.12. A proof is given
below, making use of the results concerning winding numbers of loops in the
circle, that does not explicitly assume general results concerning covering
maps or concerning group actions in which groups act freely and properly
discontinuously on topological spaces.

Theorem C. Let S1 be the unit circle in the Euclidean plane, defined so
that

S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

and let b be a point of S1. Then the function sending each loop γ in S1

based at b to its winding number n(γ) induces an isomorphism from the
fundamental group π1(S

1,b) of the circle S1 to the group Z of integers.

Proof Let κ:R→ S1 denote the function from R to S1 defined so that

κ(t) = (cos 2πt, sin 2πt)

for all real numbers t. Also, for each loop γ: [0, 1]→ S1 in S1 based at b let
[γ] denote the element of the fundamental group π1(S

1,b) determined by γ,
and let n(γ) denote the winding number of γ. Every element of π1(S

1,b) is
the based homotopy class [γ] of some loop γ in S1 based at b. If γ̃: [0, 1]→ R
is a real-valued function for which κ ◦ γ̃ = γ then n(γ) = γ̃(1)− γ̃(0).

Let α and β be loops in S1 based at b. Suppose that [α] = [β]. Then
α ' β rel {0, 1}. It then follows from Proposition B above that n(α) = n(β).
It follows from this that there is a well-defined function λ: π1(S

1,b) → Z
characterized by the property that λ([γ]) = n(γ) for all loops γ in S1 based
at b.

Next we show that the function λ: π1(S
1,b) → Z is a homomorphism.

Let α: [0, 1] → S1 and β: [0, 1] → S1 be loops in S1 based at b. Then there
exists a continuous real-valued function η: [0, 1]→ R with the property that

κ(η(t)) =

{
α(2t) if 0 ≤ t ≤ 1

2
,

β(2t− 1) if 1
2
≤ t ≤ 1,

where κ(t) = (cos 2πt, sin 2πt) for all t ∈ R (see Proposition A above). Then
α(t) = κ(η(1

2
t)) for all t ∈ [0, 1]. It follows from the definition of winding

numbers that n(α) = η(1
2
)−η(0). Also β(t) = κ(η(1

2
(t+1))) for all t ∈ [0, 1],

and therefore n(β) = η(1)− η(1
2
). It follows that

n(α) + n(β) = η(1)− η(0) = n(κ ◦ η) = n(α . β),

3



where α . β is the concatenation of the loops α and β. It follows that

λ([α]) + λ([β]) = n(α) + n(β) = n(α . β) = λ([α . β]) = λ([α][β]).

We conclude that λ: π1(S
1,b)→ Z is a homomorphism.

Next we show that λ: π1(S
1,b)→ Z is injective. Let α and β be loops in

S1 for which n(α) = n(β). Then there exist real-valued functions α̃: [0, 1]→
R and β̃: [0, 1] → R for which α = κ ◦ α̃ and β = κ ◦ β̃ (see Proposition A
above). Moreover

α̃(1)− α̃(0) = n(α) = n(β) = β̃(1)− β̃(0).

Also κ(α̃(0)) = b = κ(β̃(0)), and therefore there exists some integer m for
which β̃(0) = α̃(0) +m. Then

β̃(1) = β̃(1)− β̃(0) + α̃(0) +m = α̃(1) +m.

Let
F (t, τ) = (1− τ)α̃(t) + τ(β̃(t)−m).

Then F (t, 0) = α̃(t) and F (t, 1) = β̃(t)−m for all t ∈ [0, 1]. Also F (0, τ) =
α̃(0) and F (1, τ) = α̃(1) for all τ ∈ [0, 1]. Let H: [0, 1]×[0, 1]→ S1 be defined
so that H(t, τ) = κ(F (t, τ)) for all t ∈ [0, 1] and τ ∈ [0, 1]. Then H(t, 0) =
α(t) and H(t, 1) = β(t) for all t ∈ [0, 1]. Also H(0, τ) = H(1, τ) = b for all
τ ∈ [0, 1]. It follows that α ' β rel {0, 1} and therefore [α] = [β] in π1(X,b).
We conclude therefore that λ: π1(S

1,b)→ Z is injective.
Let m be an integer, let t0 be a real number for which κ(t0) = b, and let

γ(t) = κ(t0+mt) for all t ∈ [0, 1]. Then γ: [0, 1]→ S1 is a loop in S1 based at
b, and λ([γ]) = n(γ) = m. We conclude that λ: π1(S

1,b) → Z is surjective.
We have now shown that the function λ is a homomorphism that is both
injective and surjective. It follows that λ: π1(S

1,b)→ Z is an isomorphism.
This completes the proof.

Proposition D. Let X = R2 \ {(0, 0)}. Then π1(X, (1, 0)) ∼= Z.

Proof Let
S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

let i:S1 → X be the inclusion map, and let r:X → S1 be the radial projection
map, defined such that

r(x, y) =

(
x√

x2 + y2
,

y√
x2 + y2

)
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for all (x, y) ∈ X. Now the composition map r ◦ i is the identity map of S1.
Let

u(x, y, τ) =
1− τ√
x2 + y2

+ τ

for all (x, y) ∈ X and τ ∈ [0, 1]. Then the function F :X × [0, 1] → X
that sends ((x, y), τ) ∈ X × [0, 1] to (u(x, y, τ)x, u(x, y, τ)y) is a homotopy
between the composition map i ◦ r and the identity map of the punctured
plane X. Moreover F ((x, y), τ) = (x, y) for all (x, y) ∈ S1 and τ ∈ [0, 1].

Let γ: [0, 1]→ X be a loop in X based at (1, 0) and let H: [0, 1]× [0, 1]→
X be defined so that H(t, τ) = F (γ(t), τ) for all t ∈ [0, 1] and τ ∈ [0, 1].
Then H(t, 0) = r(γ(t)) and H(t, 1) = γ(t) for all t ∈ [0, 1], and H(0, τ) =
H(1, τ) = (1, 0) for all τ ∈ [0, 1], and therefore i ◦ r ◦ γ ' γ rel {0, 1}.

Now the continuous maps i:S1 → X and r:X → S1 induce well-defined
homomorphisms i#: π1(S

1, (1, 0)) → π1(X, (1, 0)) and r#: π1(X, (1, 0)) →
π1(S

1, (1, 0)), where i#[η] = [i ◦ η] for all loops η in S1 based at (1, 0) and
r#[γ] = [r ◦ γ] for all loops γ in X based at (1, 0). Moreover

i#(r#([γ]) = i#([r ◦ γ]) = [i ◦ r ◦ γ] = [γ]

for all loops γ in X based at (1, 0), and

r#(i#([η]) = r#([i ◦ η]) = [r ◦ i ◦ η] = [η]

for all loops η in S1 based at (1, 0). It follows that the homomorphism
i#: π1(S

1, (1, 0)) → π1(X, (1, 0)) is an isomorphism whose inverse is the ho-
momorphism r#: π1(X, (1, 0))→ π1(S

1, (1, 0)), and therefore

π1(X, (1, 0)) ∼= π1(S
1, (1, 0)) ∼= Z,

as required.

Example Let E2 be the closed unit disk in R2 and let S1 be its boundary
circle, where

E2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1},
S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

let ι:S1 → E2 be the inclusion map, and let b = (1, 0). Suppose there were
to exist a continuous map ρ:E2 → S1 with the property that ρ(x) = x for
all x ∈ S1. Then ρ ◦ ι:S1 → S1 would be the identity map of the unit circle
S1. It would then follow that ρ# ◦ ι# would be the identity isomorphism
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of π1(S
1,b), where ι#: π1(S

1,b) → π1(E
2,b) and ρ#: π1(E

2,b) → π1(S
1,b)

denote the homomorphisms of fundamental groups induced by ι:S1 → E2

and ρ:E2 → S1 respectively.
But π1(E

2,b) is the trivial group, because E2 is a convex set in R2, and
π1(S

1,b) ∼= Z (see Theorem C above). It follows that the identity homomor-
phism of π1(S

1,b) cannot be expressed as a composition of two homomor-
phisms θ ◦ ϕ where θ is a homomorphism from π1(S

1,b) to π1(E
2,b) and

ϕ is a homomorphism from π1(E
2,b) to π1(S

1,b). Therefore there cannot
exist any continous map ρ:E2 → S1 with the property that ρ(x) = x for all
x ∈ S1. (This results are discussed, using the theory of winding numbers in
a more direct fashion, in the Disquisition on the Brouwer Fixed Point Theo-
rem in two dimensions. Moreover the result is used to establish the Brouwer
Fixed Point Theorem in the two-dimensional case which ensures that every
continuous map from the two-dimensional closed disk E2 to itself has a fixed
point.
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