MAU34201: Algebraic Topology I Michaelmas Term 2020 Disquisition II: An Example applying the Dog-Walking Lemma

David R. Wilkins

© Trinity College Dublin 2020

In what follows, the winding number of a loop γ in the plane \mathbf{R}^2 about some point \mathbf{p} that does not lie on the loop is denoted by $n(\gamma, \mathbf{p})$.

Example Let $\gamma:[0,1]\to\mathbb{R}^2$ be the closed curve in the complex plane defined such that

$$\gamma(t) = (3\cos 6\pi t + (\sin 16\pi t)(\sin 8\pi t), \ 4\sin 6\pi t - 2e^{\cos 8\pi t - 1}\cos 8\pi t)$$

for all $t \in [0, 1]$, where $i^2 = -1$. Let

$$\gamma_1(t) = (3\cos 6\pi t, 4\sin 6\pi t)$$

for all $t \in [0,1]$. Then $|\gamma_1(t)| \ge 3$ for all $t \in [0,1]$. Also $|\sin 16\pi t| \le 1$ and $0 \le e^{\cos 8\pi t - 1} \le 1$ for all $t \in [0,1]$, and therefore

$$\left| \left((\sin 16\pi t)(\sin 8\pi t), -2e^{\cos 8\pi t - 1}\cos 8\pi t \right) \right|^2 \le \sin^2 8\pi t + 4\cos^2 8\pi t \le 4$$

for all $t \in [0,1]$. It follows that

$$|\gamma(t) - \gamma_1(t)| = \left| \left((\sin 16\pi t)(\sin 8\pi t), -2e^{\cos 8\pi t - 1}\cos 8\pi t \right) \right|$$

$$\leq 2 < |\gamma_1(t)|$$

for all $t \in [0, 1]$. The Dog-Walking Lemma (Lemma 7.3) then ensures that $n(\gamma, (0, 0)) = n(\gamma_1, (0, 0))$. Another application of the Dog-Walking Lemma then ensures that $n(\gamma_1, (0, 0)) = n(\gamma_2, (0, 0))$, where

$$\gamma_2(t) = (3\cos 6\pi t, 3\sin 6\pi t)$$

for all $t \in [0, 1]$. Moreover

$$\gamma_2(t) = |\gamma_2(t)|(\cos \hat{\gamma}_2(t), \sin \hat{\gamma}_2(t))$$

where $\tilde{\gamma}_2:[0,1]\to\mathbb{R}$ is the real-valued function defined so that $\tilde{\gamma}_2(t)=6\pi t$ for all $t\in[0,1]$. The definition of winding number ensures that

$$n(\gamma_2, (0, 0)) = \frac{\hat{\gamma}_2(1) - \hat{\gamma}_2(0)}{2\pi} = 3.$$

Therefore $n(\gamma, (0, 0)) = 3$.