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4 Local Homeomorphisms and Covering

Maps

4.1 Local Homeomorphisms

Lemma 4.1 Let X and Y be topological spaces, and let ϕ : X → Y be a
function from X to Y . Then the function ϕ maps an open subset M of X
homeomorphically onto an open subset N of Y if and only if the following
conditions are satisfied:—

• each point of M is mapped by ϕ to a point of N ;

• for each point q of N , there exists exactly one point p of M for which
ϕ(p) = q.

• a subset V of M is an open set in X if and only if it is mapped by Y
onto an open set in Y .

Proof The first two conditions ensure that the function ϕ restricts to a
bijection between the sets M and N . Now, because the subset M of X is
itself open in X, a subset V of M is open in M , relative to the subspace
topology on M , if and only if V is open in X (see Lemma 1.14). Similarly
a subset of N is open in N if and only if it is open in Y . It follows that
the final listed condition is equivalent to requiring that the function induced
between the sets M and N by the map ϕ is a homeomorphism with respect
to the subspace topologies on those two open sets. The result follows.

Definition A function ϕ : X → Y between topological spaces X and Y is
said to be a local homeomorphism if, given any point p of X, there exists
some open set M in X to which the point p belongs which is mapped by the
function ϕ homeomorphically onto an open set in Y .

Lemma 4.2 Let X and Y be topological spaces and let ϕ : X → Y be a local
homeomorphism from X to Y . Then the function ϕ is a continuous map.

Proof Let W be an open set in Y . We must show that the preimage ϕ−1(W )
of W under the function ϕ is an open set in X. Let p be a point of ϕ−1(W ).
The definition of local homeomorphisms ensures the existence of an open
neighbourhood M in X of the point p which is mapped homeomorphically
by ϕ onto an open set N in Y . Now W ∩ N is open in Y . The subset
of M that corresponds to this set with respect to the map ϕ is the subset
M ∩ ϕ−1(W ) of M . It follows that M ∩ ϕ−1(W ) must be an open set in X.
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Moreover the point p belongs to this open set. It follows that ϕ−1(W ) is a
neighbourhood of the point p.

Now the point p of the preimage ϕ−1(W ) was arbitrarily chosen. We have
therefore established that the preimage ϕ−1(W ) of the open set W under the
map ϕ is a neighbourhood of each of its points. It follows that the preimage
of the open subset W of Y under the function ϕ is an open set in X (see
Lemma 1.4). Consequently ϕ : X → Y is continuous.

Lemma 4.3 Let ϕ : X → Y be a local homeomorphism between topological
spaces X and Y , and let V be an open set in X. Then ϕ(V ) is an open set
in Y .

Proof Let p be a point belonging to the open set V . Then there exists an
open neighbourhood M of the point p that is mapped by the local homeo-
morphism ϕ homeomorphically onto an open set N in Y . Let E = ϕ(V ∩M).
Now the set V ∩M is an open set in X. It is therefore mapped by ϕ onto an
open set in Y . Thus the set E is an open subset of Y . Moreover ϕ(p) ∈ E.
We have thus shown that the subset ϕ(V ) contains an open neighbourhood
E of the point ϕ(p). It follows that ϕ(V ) is itself a neighbourhood of the
point ϕ(p).

Now the point p was an arbitrary point chosen from the set V . We
conclude therefore that the subset ϕ(V ) of Y is a neighbourhood of each of
its points and is therefore an open set in Y (see Lemma 1.4). The result
follows.

Proposition 4.4 Let ϕ be a local homeomorphism from a topological space
X to a topological space Y , and let V and W be open sets in X and Y
respectively. Suppose that ϕ maps V bijectively onto W . Then ϕ maps V
homeomorphically onto W .

Proof The function ϕ maps V bijectively onto W , and V and W are open
sets in X and Y respectively. Therefore in order to show that V is mapped
homeomorphically onto W it suffices to verify that a subset of V is open in
X if and only if ϕ(V ) is open in Y (see Lemma 4.1). Let D be a subset
of V . Then D = V ∩ ϕ−1(ϕ(D)). It follows from the continuity of the
local homeomorphism that if ϕ(D) is open in Y then D is itself open in
X. Conversely if D is open in X then ϕ(D) is open in Y because local
homeomorphisms map open sets to open sets (see Lemma 4.3). Thus the
subset D of V is open in X if and only if ϕ(D) is open in Y . The result
follows.

Lemma 4.5 Any surjective local homeomorphism between topological spaces
is an identification map.
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Proof Let X and Y be topological spaces and let ϕ : X → Y be a surjective
local homeomorphism from X to Y . Let W be a subset of Y whose preimage
ϕ−1(W ) with respect to the function ϕ is open in X. Then W = ϕ(ϕ−1(W )),
because the map ϕ is surjective. Also any local homeomorphism maps open
sets to open sets (Lemma 4.3). It follows that the set W is open in Y . The
result follows.

4.2 Evenly-Covered Open Sets and Covering Maps

Definition Let π : X̃ → X be a continuous map between topological spaces
X̃ and X. An open subset V of X is said to be evenly covered by the map π
if and only if the preimage π−1(V ) of the open set V under the map π is a
disjoint union of open sets of X̃ each of which is mapped homeomorphically
onto V by π.

Example Let κ : R → S1 be the continuous function from the real line R
to the unit circle S1 in the plane R2 that sends each real number t to the
point (cos(2πt), sin(2πt)) of the unit circle. Also let u and v be real numbers
for which u < v < u + 1, and let V be the open arc in the unit circle S1

consisting of all points of the unit circle S1 that can be expressed in the form
(cos(2πt), sin(2πt)) for some real number t satisfying u < t < v. Then the
open arc V is evenly covered by the map κ. Indeed κ−1(V ) is the disjoint
union of the open intervals Jn as n ranges over the set of integers, where each
Jn is the open interval in the real line with endpoints u+n and v+n. Moreover
the function κ maps each of these open intervals Jn homeomorphically onto
the open arc V in the unit circle.

Definition A continuous map π : X̃ → X from a topological space X̃ to a
topological space X is said to be a covering map if π : X̃ → X is surjective
and in addition every point of X belongs to some open set in X that is evenly
covered by the map π.

If a continuous map π : X̃ → X from a topological space X̃ to a topo-
logical space X is a covering map, then we say that the domain X̃ of this
covering map is a covering space of X. The codomain X of the covering map
is often referred to as the base space of the covering map.

Example Let κ : R → S1 be the continuous function from the real line R
to the unit circle S1 in the plane R2 that sends each real number t to the
point (cos(2πt), sin(2πt)) of the unit circle. Indeed this function is surjective.
Moreover any point in the unit circle is the image κ(s) of some real number s.
One can then choose real numbers u and v satisfying u < v < u+1 for which
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u < s < v. Then the open interval in the real line with endpoints u and v
is mapped by κ onto an open arc in the unit circle. That open arc is evenly
covered by the map κ, and moreover the point κ(s) of the unit circle lies
within this open arc. We conclude therefore that the continuous function κ
from the real line to the unit circle is a covering map.

Proposition 4.6 Any covering map is a local homeomorphism.

Proof Let π : X̃ → X be a covering map, and let q be a point of X̃. Then
π(q) belongs to some evenly covered open set V in the base space X of the
covering map. The preimage π−1(V ) of V in the covering space X̃ is then a
disjoint union of open subsets of X̃, each of which is mapped homeomorphi-
cally onto V by the covering map π. The point q then belongs to exactly one
of these open sets constituting the disjoint union: let that open set be Ṽ .
Then Ṽ is an open set in the covering space X̃ to which the point q belongs,
and this open set is mapped by π homeomorphically onto the open set V in
the base space. This argument shows that every point of the covering space
X̃ belongs to some open set in the covering space that is mapped homeomor-
phically onto an open set in the base space X. It follows that the covering
map π : X̃ → X is a local homeomorphism, as required.

Corollary 4.7 Let π : X̃ → X be a covering map. Then π(V ) is open in X
for every open set V in X̃.

Proof Any covering map is a local homeomorphism (see Proposition 4.6).
Moreover a local homeomorphism maps open subsets of its domain onto open
sets (see Lemma 4.3). The result follows.

Corollary 4.8 A bijective covering map is a homeomorphism.

Proof Any covering map is a local homeomorphism (see Proposition 4.6).
Moreover if a local homeomorphism maps an open subset of its domain bi-
jectively onto an open set in its codomain, then it maps the open set in the
domain homeomorphically onto the open set in the codomain (see Proposi-
tion 4.4). The required result follows on applying this general property of
local homeomorphisms in the case where the open set in the domain of the
local homeomorphism is the covering space of the covering map.

Proposition 4.9 Let π : X̃ → X be a local homeomorphism between topo-
logical spaces X̃ and X. An open set V in the codomain X of the function π
is then evenly covered by the local homeomorphism π if and only if its preim-
age π−1(V ) under the map π is a disjoint union of open sets in X̃ each of
which is mapped bijectively onto V by the local homeomorphism π.
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Proof This result follows from the definition of evenly covered open sets
in the codomain of a continuous map, on applying the result that a local
homeomorphism maps an open subset of its domain homeomorphically onto
an open set in its codomain if and only if it maps the open set in the domain
bijectively onto the open set in the codomain (see Proposition 4.4).

Proposition 4.10 Let X̃ and X be topological spaces, and let π : X̃ → X
be a covering map. Let Y be a subset of X and let Ỹ be the preimage π−1(Y )
of the set Y under the covering map π. Then the restriction of the map π to
the subset Ỹ of X̃ constitutes a covering map from Ỹ to Y .

Proof The restriction of the map π to Ỹ is a surjective map from Ỹ to Y .
Let p be a point of Y . Then there exists an open set V in X which is evenly
covered by the covering map π. Then the intersection of the open set V
with the set Y is open in the subspace topology on Y , and this intersection
is evenly covered by the restriction to Ỹ of the covering map π. The result
follows.

4.3 Uniqueness of Lifts into Covering Spaces

Definition Let X̃ and X be topological spaces, let π : X̃ → X be a covering
map from X̃ to X, let Z be a topological space, and let ϕ : Z → X be
a continuous map from Z to the base space X of the covering map. A
continuous map ϕ̃ : Z → X̃ from Z to the covering space X̃ is then said to
be a lift of ϕ : Z → X to the covering space X̃ if π ◦ ϕ̃ = ϕ.

Much of the general theory of covering maps is concerned with the devel-
opment of necessary and sufficient conditions to determine whether or not
maps into the base space of a covering map can be lifted to the covering
space.

We prove that any lift of a given map from a connected topological space
into the base space of a covering map is determined by its value at a single
point of its domain.

Proposition 4.11 Let X̃ and X be topological spaces, and let π : X̃ → X be
a covering map from X̃ to X. Let Z be a connected topological space, and let
θ : Z → X̃ and ψ : Z → X̃ be continuous maps. Suppose that π ◦ θ = π ◦ ψ
and that θ(z) = ψ(z) for at least one point z of Z. Then θ = ψ.

Proof Let Z0 = {z ∈ Z : θ(z) = ψ(z)}. Note that Z0 is non-empty, by
hypothesis. We show that Z0 is both open and closed in Z.
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Let z be a point of the topological space Z. There exists an open set V
in X containing the point π(θ(z)) which is evenly covered by the covering
map π. Then π−1(V ) is a disjoint union of open sets, each of which is mapped
homeomorphically onto V by the covering map π. One of these open sets
contains θ(z); let this set be denoted by Ṽ . Also one of these open sets
contains ψ(z); let this open set be denoted by W̃ . Let Nz = θ−1(Ṽ )∩ψ−1(W̃ ).
Then Nz is an open set in the topological space Z to which the point z
belongs.

Consider the case when z ∈ Z0. Then θ(z) = ψ(z), and therefore Ṽ = W̃ .
It follows from this that both θ and ψ map the open set Nz into Ṽ . But
π◦θ = π◦ψ, and π|Ṽ : Ṽ → V is a homeomorphism. Therefore θ|Nz = ψ|Nz,
and thus Nz ⊂ Z0. We have thus shown that, for each z ∈ Z0, there exists
an open set Nz such that z ∈ Nz and Nz ⊂ Z0. We conclude that Z0 is open.

Next consider the case when z ∈ Z \Z0. In this case Ṽ ∩ W̃ = ∅, because
θ(z) 6= ψ(z). But θ(Nz) ⊂ Ṽ and ψ(Nz) ⊂ W̃ . Therefore θ(w) 6= ψ(w)
for all w ∈ Nz, and thus Nz ⊂ Z \ Z0. We have thus shown that, for each
z ∈ Z \ Z0, there exists an open set Nz such that z ∈ Nz and Nz ⊂ Z \ Z0.
We conclude that Z \ Z0 is open.

The subset Z0 of the topological space Z is therefore both open and
closed. Also Z0 is non-empty by hypothesis. It therefore follows from the
connectedness of Z that Z0 = Z, and thus θ = ψ, as required.

Corollary 4.12 Let X̃ and X be topological spaces, and let π : X̃ → X be a
covering map from X̃ to X. Let Z be a connected topological space, and let
ψ : Z → X̃ be a continuous map from the topological space Z to the covering
space X̃. Suppose that π(ψ(z)) = p for all z ∈ Z, where p is some point
of X. Then the whole of the topological space Z is mapped by ψ to a single
point of the covering space X̃.

Proof Let q be the value of the function ψ at some chosen point of the
topological space Z, and let θ : Z → X̃ be the constant map that maps all
points of the topological space Z to the point q. Then the maps θ and ψ
coincide at the chosen point of Z. Moreover the compositions of these maps
with the covering map π each send the whole of the topological space Z to the
point p. It follows from Proposition 4.11 that ψ = θ. The result follows.

4.4 The Path-Lifting Theorem

Theorem 4.13 (Path-Lifting Theorem) Let X̃ and X be topological
spaces, and let π : X̃ → X be a covering map. Let γ : [a, b] → X be a
continuous function mapping the closed interval [a, b] into the base space X
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of the covering map, and let q be a point of X̃ for which π(q) = γ(a). Then
there exists a unique continuous function γ̃ : [a, b] → X̃ mapping the closed
interval [a, b] into the covering space X̃ for which γ̃(a) = q and π ◦ γ̃ = γ.

Proof Let S be the subset of [a, b] defined as follows: an element c of [a, b]
belongs to S if and only if there exists a continuous map ηc : [a, c]→ X̃ such
that ηc(a) = q and π(ηc(t)) = γ(t) for all t ∈ [a, c]. Note that S is non-empty,
because a belongs to S. Let s = supS.

There exists an open neighbourhood V of γ(s) which is evenly covered by
the map π, because π : X̃ → X is a covering map. It then follows from the
continuity of the path γ that there exists some positive real number δ such
that γ(J(s, δ)) ⊂ V , where

J(s, δ) = {t ∈ [a, b] : |t− s| < δ}.

Now S ∩ J(s, δ) is non-empty, because s is the supremum of the set S.
Choose some element c of S ∩ J(s, δ). Then there exists a continuous map
ηc : [a, c]→ X̃ such that ηc(a) = q and π(ηc(t)) = γ(t) for all t ∈ [a, c]. Now
the open set V is evenly covered by the map π. Therefore π−1(V ) is a disjoint
union of open sets in X̃, each of which is mapped homeomorphically onto V
by the covering map π. One of these open sets contains the point ηc(c); let
this open set be denoted by Ṽ . There then exists a unique continuous map
σ : V → X̃ defined such that, for all x ∈ V , σ(x) is the unique element of Ṽ
for which π(σ(x)) = x. Then σ(γ(c)) = ηc(c).

Then, given any d ∈ J(s, δ), let ηd : [a, d]→ X̃ be the function from [a, d]
to X̃ defined so that

ηd(t) =

{
ηc(t) if a ≤ t ≤ c;
σ(γ(t)) if c ≤ t ≤ d.

Then ηd(a) = q and π(ηd(t)) = γ(t) for all t ∈ [a, d]. The restrictions of
the function ηd : [a, d] → X̃ to the subintervals [a, c] and [c, d] of [a, d] are
continuous. It follows from the Pasting Lemma (Lemma 1.25) that ηd is
continuous on [a, d]. Thus d ∈ S. We conclude from this that J(s, δ) ⊂ S.
However s is defined to be the supremum of the set S. Therefore s = b, and b
belongs to S. It follows that that there exists a continuous map γ̃ : [a, b]→ X̃
for which γ̃(a) = q and π ◦ γ̃ = γ, as required.

4.5 The Homotopy-Lifting Theorem

Theorem 4.14 (Homotopy-Lifting Theorem) Let X̃ and X be topolog-
ical spaces, and let π : X̃ → X be a covering map. Let Z be a topological
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space, and let F : Z × [0, 1] → X and ψ : Z → X̃ be continuous functions
with the property that π(ψ(z)) = F (z, 0) for all z ∈ Z. Then there exists a
unique continuous function G : Z × [0, 1] → X̃ such that G(z, 0) = ψ(z) for
all z ∈ Z and π ◦G = F .

Proof For each z ∈ Z, consider the path γz : [0, 1] → Z defined by γz(t) =
F (z, t) for all t ∈ [0, 1]. Note that π(ψ(z)) = γz(0). It follows from the
Path-Lifting Theorem (Theorem 4.13) that there exists a unique continuous
path γ̃z : [0, 1]→ X̃ such that γ̃z(0) = ψ(z) for all z ∈ Z and π ◦ γ̃z = γz. Let
the function G : Z × [0, 1] → X̃ be defined by G(z, t) = γ̃z(t) for all z ∈ Z
and t ∈ [0, 1]. Then G(z, 0) = ψ(z) for all z ∈ Z and

π(G(z, t)) = π(γ̃z(t)) = γz(t) = F (z, t)

for all z ∈ Z and t ∈ [0, 1]. It remains to show that the function G : Z ×
[0, 1]→ X̃ is continuous and that it is unique.

Given any z ∈ Z, let Sz denote the set of all real numbers c belonging to
the closed interval [0, 1] which have the following property:

there exists an open set N in Z such that z ∈ N and the func-
tion G is continuous on N × [0, c].

Let sz be the supremum supSz (i.e., the least upper bound) of the set Sz.
We prove that sz belongs to the set Sz and that sz = 1.

Choose some z ∈ Z, and let q ∈ X̃ be given by q = G(z, sz). There
exists an open neighbourhood V of π(q) in X which is evenly covered by the
map π. Thus π−1(V ) is a disjoint union of open sets, each of which is mapped
homeomorphically onto V by the covering map π. One of these open sets
contains the point q; let this open set be denoted by Ṽ . Then there exists a
unique continuous map σ : V → X̃ defined such that, for all x ∈ V , σ(x) is
the unique element of Ṽ for which π(σ(x)) = x. Then σ(F (z, sz)) = q. Now
F (z, sz) = π(q). It follows from the continuity of the map F that there exists
some positive real number δ and some open set M1 in Z such that z ∈ M1

and F (M1 × J(sz, δ)) ⊂ V , where

J(sz, δ) = {t ∈ [0, 1] : sz − δ < t < sz + δ}.

Now we can choose some real number c belonging to Sz which satisfies sz−δ <
c ≤ sz, because sz is the least upper bound of the set Sz. It then follows
from the definition of the set Sz that there exists an open set M2 in Z such
that z ∈M2 and the function G is continuous on M2 × [0, c]. Let

N = {w ∈M1 ∩M2 : G(w, c) ∈ Ṽ }.
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Then z ∈ N , and the continuity of the function G on M2× [0, c] ensures that
N is open in Z. Moreover the function G is continuous on N × [0, c]. Also
F (N × J(sz, δ)) ⊂ V .

Let w ∈ N . Then G(w, c) ∈ Ṽ and π(G(w, c)) = F (w, c). It follows from
the definition of the map σ : V → X̃ that G(w, c) = σ(F (w, c)). Also the
interval J(sz, δ) is connected, and

π(G(w, t)) = F (w, t) = π(σ(F (w, t)))

for all t ∈ J(sz, δ). It follows from Proposition 4.11 that G(w, t) = σ(F (w, t))
for all t ∈ J(sz, δ). We have thus shown that the function G is equal to
the continuous function σ ◦ F on N × J(sz, δ). The function G is therefore
continuous on both N× [0, c] and N× [c, t] for all t ∈ J(sz, δ) satisfying t ≥ c.
It then follows from the Pasting Lemma (Lemma 1.25) that the function G
is continuous on N × [0, t] for all t ∈ J(sz, δ), and thus J(sz, δ) ⊂ Sz. This
however contradicts the definition of Sz unless sz ∈ Sz and sz = 1. We
conclude therefore that 1 ∈ Sz, and thus there exists an open set N in Z
such that z ∈ N and G|N × [0, 1] is continuous.

We conclude from this that every point of Z × [0, 1] is contained in some
open subset of Z × [0, 1] on which that function G is continuous. It follows
that G : Z × [0, 1]→ X̃ is continuous (see Proposition 1.24).

The uniqueness of the map G : Z × [0, 1] → X̃ follows directly from the
fact that for any z ∈ Z there is a unique continuous path γ̃z : [0, 1]→ X̃ such
that γ̃z(0) = ψ(z) and π(γ̃z(t)) = F (z, t) for all t ∈ [0, 1].
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