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2. The Disk Model of the Hyperbolic Plane (continued)

2.1. Inversion of the Riemann Sphere in the Unit Circle

Let D denote the open unit disk in the complex plane C, and in
the Riemann sphere, defined so that

D = {z ∈ C : |z | < 1}

and let S denote the unit circle in the complex plane C, and in the
Riemann sphere, defined so that

S = {z ∈ C : |z | = 1}

We define the inversion Ω of the Riemann sphere in the circle S
bounding the open unit disk D to be the transformation of the
Riemann sphere defined so that Ω(0) = ∞, Ω(∞) = 0 and
Ω(z) = 1/z for all non-zero complex numbers z .
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Then Ω(z) = z for all z ∈ S , and the composition Ω ◦ Ω of the
inversion Ω with itself is the identity transformation of the
Riemann sphere. Moreover Ω maps the open unit disk D into the
region of the Riemann sphere that lies outside the unit circle S .
The transformation Ω: P1 → P1 is characterized by the property
that

Ω
(u
v

)
= v

u

for all complex numbers v and w that are not both zero.
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Lemma 2.1

Let µ be a Möbius transformation of the Riemann sphere, and let
Ω be the inversion of the Riemann sphere in the unit circle, defined
so that Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero
complex numbers z . Also let a, b, c and d be complex coefficients
determined so that

µ(z) = az + b

cz + d

for all complex numbers z for which cz + d ̸= 0. Then Ω ◦ µ ◦ Ω is
also a Möbius transformation, and moreover

Ω(µ(Ω(z))) = dz + c

bz + a

for all complex numbers z ∈ C for which bz + a ̸= 0.
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Proof
The definition of Möbius transformations and of the inversion Ω of
the Riemann sphere in the unit circle ensure that

µ
(u
v

)
= au + bv

cu + dv
and Ω

(u
v

)
= v

u

for all complex numbers u and v that are not both zero.
Consequently

Ω
(
µ
(

Ω
(u
v

)))
= Ω

(
µ

(
v

u

))
= Ω

(
a v + b u

c v + d u

)
= d u + c v

b u + a v

for all complex numbers u and v that are not both zero. The result
follows.
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Proposition 2.2

Let µ be a Möbius transformation of the Riemann sphere, let D be
the open unit disk in the complex plane, where

D = {z ∈ C : |z | < 1}

and let Ω be the inversion of the Riemann sphere in the unit circle
that is defined so that

Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1
z

for all z ∈ C \ {0}.

Then the Möbius transformation µ maps the unit disk D onto itself
if and only if both of the following two conditions are satisfied:
(i) Ω ◦ µ = µ ◦ Ω;
(ii) there exists at least one z ∈ D for which µ(z) ∈ D.
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Proof
First suppose that the Möbius transformation µ maps the unit
disk D onto itself. Let z be a complex number satisfying |z | = 1.
If it were the case that |µ(z)| < 1 then there would exist some
complex number w for which |w | < 1 and µ(w) = µ(z), because µ
maps the open unit disk onto itself. But this is not possible
because all Möbius transformations are invertible. Next we note
that if it were the case that |µ(z)| > 1 then, for real numbers t
that are less than 1 but sufficiently close to 1, it would follow that
|tz | < 1 but |µ(tz)| > 1, contradicting the requirement that the
Möbius transformation µ map the open unit disk onto itself.
Consequently |µ(z)| = 1. We conclude therefore that the Möbius
transformation µ maps the unit circle bounding the open unit disk
into itself. The same is true of the inverse of µ. Consequently the
Möbius transformation µ must map the unit circle onto itself.
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Now let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is a Möbius transformation of the
Riemann sphere (Lemma 2.1). Now Ω(z) = z and |µ(z)| = 1 for
all complex numbers z satisfying |z | = 1. It follows that
µ̂(z) = µ(z) for all complex numbers z satisfying |z | = 1. Now two
distinct Möbius transformations cannot coincide at three or more
points of the Riemann sphere. (see Corollary 1.17). Consequently
µ̂ = µ, and therefore Ω ◦µ = µ ◦Ω. It now follows directly that any
Möbius transformation that maps the unit disk D onto itself must
satisfy conditions (i) and (ii) in the statement of the proposition.
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Conversely, suppose that Möbius transformation µ of the Riemann
sphere satisfies conditions (i) and (ii) in the statement of the
proposition. Then Ω ◦ µ = µ ◦ Ω. Let z be a complex number
satisfying |z | ≠ 1. Then Ω(z) ̸= z . It follows that µ(Ω(z)) ̸= µ(z),
because Möbius transformations are invertible transformations of
the Riemann sphere, and therefore Ω(µ(z)) ̸= µ(z), from which it
follows that |µ(z)| ≠ 1. Consequently no complex number
belonging to the open unit disk D is mapped by the Möbius
transformation D to a point that lies on the unit circle. It follows
that if one endpoint of a straight line segment or circular arc
contained in the open disk D is mapped by µ into D, then the
same must be true of the other endpoint of that straight line
segment or circular arc.
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Now the complex numbers belonging to the unit disk D can be
joined to one another by straight line segments. Moreover
condition (ii) in the statement of the proposition ensures that at
least one complex number belonging to the unit disk D is mapped
by the Möbius transformation µ into the unit disk D. Consequently
the unit disk is mapped into itself by the Möbius transformation µ.
Moreover if the Möbius transformation µ has the property that
Ω ◦ µ = µ ◦ Ω then

Ω ◦ µ−1 = µ−1 ◦ µ ◦ Ω ◦ µ−1 = µ−1 ◦ Ω ◦ µ ◦ µ−1 = µ−1 ◦ Ω,

and consequently the inverse µ−1 of the Möbius transformation µ
also satisfies (i) and (ii) in the statement of the proposition, and
therefore maps the open unit disk D into itself. It follows that if
the Möbius transformation µ satisfies conditions (i) and (ii) then it
must map the open unit disk D onto itself, as required.
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Corollary 2.3

Let µ be a Möbius transformation of the Riemann sphere, and let
S be the unit circle consisting of all complex numbers z for which
|z | = 1. Suppose that µ(S) ⊂ S and that |µ(0)| < 1. Then the
Möbius transformation µ maps the open unit disk onto itself.
Moreover Ω ◦ µ = µ ◦ Ω, where Ω is the inversion of the Riemann
sphere in the unit circle S , defined so that Ω(0) = ∞, Ω(∞) = 0
and Ω(z) = 1/z for all non-zero complex numbers z .



2. The Disk Model of the Hyperbolic Plane (continued)

Proof
Let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is a Möbius transformation of the
Riemann sphere (Lemma 2.1), and moreover µ̂(z) = µ(z) for all
z ∈ S , because µ(S) ⊂ S and Ω(z) = z for all z ∈ S . Now two
distinct Möbius transformations cannot coincide at three or more
points of the Riemann sphere. (see Corollary 1.17). It follows that
µ̂ = µ, and therefore Ω ◦ µ = µ ◦ Ω. The required result now
follows on applying Proposition 2.2.
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Lemma 2.4

Given distinct complex numbers z1 and z2, where |z1| = |z2| = 1,
there exists a Möbius transformation µ of the Riemann sphere
mapping the unit disk D onto itself for which µ(z1) = −1 and
µ(z2) = 1.

Proof
Choose a complex number z3 distinct from z1 and z2 for which
|z3| = 1. Then there exists a unique Möbius transformation µ1
with the properties that µ1(z1) = −1, µ1(z2) = 1 and µ1(z3) = i .
Möbius transformations map circles to circles, and, given any three
distinct complex numbers that are not collinear, there exists
exactly one circle in the complex plane passing through all three of
these complex numbers. Consequently the Möbius transformation
µ1 must map the unit circle onto itself.
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If |µ1(0)| < 0 let the Möbius transformation µ be identical to µ1; if
|µ1(0)| > 1 or µ1(0) = ∞ let the Möbius transformation µ be
defined so that µ(z) = 1/µ1(z) for all complex numbers z for
which µ1(z) ̸= 0. Then µ maps the unit circle onto itself,
µ(z1) = −1, µ(z2) = 1 and |µ(0)| < 1. Then µ(D) must map the
open unit disk onto itself (see Corollary 2.3). The Möbius
transformation µ then has the required properties.
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Proposition 2.5

Let a and b be complex numbers satisfying |b| < |a|, and let µ be
the Möbius transformation of the Riemann sphere defined so that

µ(z) = az + b

b z + a
whenever b z + a ̸= 0,

µ(−a/b) = ∞ and µ(∞) = a/b in cases where b ̸= 0 and
µ(∞) = ∞ in cases where b = 0. Then |µ(z)| < 1 whenever
|z | < 1, |µ(z)| = 1 whenever |z | = 1, and |µ(z)| > 1 whenever
|z | > 1 and bz + a ̸= 0. Moreover the Möbius transformation µ
maps the open unit disk {z ∈ C : |z | < 1} onto itself.
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Proof
Calculating, we find that

|bz + a|2 − |az + b|2 = (bz + a)(bz + a) − (az + b)(a z + b)
= |b|2|z |2 + |a|2 + a bz + ab z

− |a|2|z |2 − |b|2 − a bz − ab z

= (|a|2 − |b|2)(1 − |z |2).

Consequently |µ(z)| < 1 whenever |z | < 1, |µ(z)| = 1 whenever
|z | = 1 and |µ(z)| > 1 whenever |z | > 1 and bz + a ̸= 0.
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Now the inverse µ−1 of the Möbius transformation µ is
characterized by the property that

µ−1(z) = az − b

−bz + a

for all complex numbers z for which −bz + a ̸= 0 (see
Corollary 1.8). Because the coefficients of this Möbius
transformation µ−1 have properties analogous to those of the
Möbius transformation µ, we can conclude that µ−1 maps the
open unit disk into itself, and therefore µ maps the open unit disk
onto itself, as required.
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Corollary 2.6

Let w be a complex number satisfying |w | < 1, and let µw be the
Möbius transformation of the Riemann sphere that is defined so
that µw (−1/w) = ∞, µ(∞) = 1/w and

µw (z) = z + w

1 + w z

for all complex numbers z distinct from −1/w . Then the Möbius
transformation µw maps the open unit disk onto itself. Moreover

µw (tw) = t + 1
1 + |w |2t

w

for all real numbers t distinct from −1/|w |2, and consequently the
diameter of the unit circle passing through 0 and w is mapped
onto itself by the Möbius transformation µw . In particular
µw (0) = w and µw (−w) = 0.
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Proposition 2.7

Let µ be a Möbius transformation of the Riemann sphere that
maps the unit circle {z ∈ C : |z | = 1} into itself and satisfies the
condition |µ(0)| < 1. Then there exist complex numbers a and b,
where |b| < |a|, such that

µ(z) = az + b

bz + a
for all z ∈ C for which az + b ̸= 0.
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Proof
The Möbius transformation µ maps the unit circle into itself, and
moreover |µ(0)| < 1. It follows from Corollary 2.3 that
Ω ◦ µ = µ ◦Ω, where Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all
non-zero complex numbers z . Consequently
µ = Ω ◦ Ω ◦ µ = Ω ◦ µ ◦ Ω because the composition of the
inversion Ω with itself is the identity transformation of the
Riemann sphere. Let a0, b0, c0 and d0 be complex coefficients
determined so that

µ(z) = a0z + b0
c0z + d0

whenever c0z + d0 ̸= 0.

Then the identity µ = Ω ◦ µ ◦ Ω ensures that

a0z + b0
c0z + d0

= d0z + c0

b0z + a0

for all complex numbers z for which a0z + b0 ̸= 0, a0 + b0z ̸= 0,
c0z + d0 ̸= 0, and c0 + d0z ̸= 0 (see Lemma 2.1).
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Consequently there exists some non-zero complex number ω with
the property that a0 = ωd0, b0 = ωc0, c0 = ωb0 and d0 = ωa0
(see Proposition 1.9). It then follows that

a0 d0 = ω2a0d0.

But
|a0 d0| = |a0d0|.

It follows that |ω2| = 1, and therefore |ω| = 1. Accordingly a real
number θ can be found so that

ω = cos 2θ +
√
−1 sin 2θ.

Let
η = cos θ +

√
−1 sin θ.

It then follows from De Moivre’s Theorem that η2 = ω. Now
η2 η2 = |η|4 = 1. It follows that η2ω = 1.
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Let a = ηa0 and b = ηb0, c = ηc0 and d = ηd0. Then

µ(z) = az + b

cz + d
whenever cz + d ̸= 0.

Also a0 = ηa, b0 = ηb, c0 = ηc and d0 = ηd . Consequently

d = η d0 = ηωa0 = η2ωa = a

and
c = η c0 = ηωb0 = η2ωb = b.

Accordingly

µ(z) = az + b

b z + a
whenever b z + a ̸= 0.

Moreover |µ(0)| < 1, and consequently |b| < |a|, as required.
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2.2. The Poincaré Distance Function on the Unit Disk

Definition
Let D be the open unit disk in the complex plane C, defined so
that

D = {z ∈ C : |z | < 1}.

The Poincaré distance function ρ on D is defined so that

ρ(z ,w) = log
(
|1 − w z | + |z − w |
|1 − w z | − |z − w |

)
for all complex numbers z and w satisfying |z | < 1 and |w | < 1.
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Note that
|z − w |
|1 − w z |

< 1

for all complex numbers z and w satisfying |z | < 1 and |w | < 1.
(This follows directly from Corollary 2.6). Consequently the
Poincaré distance ρ(z ,w) between any two points z and w of the
unit disk is a well-defined positive real number.
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Proposition 2.8

Let s and t be real numbers satisfying −1 < s < t < 1. Then the
Poincaré distance, in the unit disk, between s and t is given by the
formula

ρ(s, t) = log
(

1 + t

1 − t

)
− log

(
1 + s

1 − s

)
.
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Proof
Evaluating, and noting that 1 − st > 0 (because |s| < 1 and
|t| < 1) and |t − s| = t − s (since s < t by assumption), we find
that

ρ(s, t) = log
(
|1 − st| + |t − s|
|1 − st| − |t − s|

)
= log

(
1 − st + t − s

1 − st + s − t

)
= log

(
(1 − s)(1 + t)
(1 + s)(1 − t)

)
= log

(
1 + t

1 − t

)
− log

(
1 + s

1 − s

)
,

as required.



2. The Disk Model of the Hyperbolic Plane (continued)

Proposition 2.9

Let ρ be the Poincaré distance function on the open unit disk D,
and let δ be a positive real number. Then

{z ∈ D : ρ(z , 0) = δ} = {z ∈ D : |z | = R},

where
R = eδ − 1

eδ + 1 .
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Proof
It follows from the definition of Poincaré distance function that all
complex numbers z satisfying ρ(z , 0) = δ are equidistant from
zero. They therefore constitute a circle centred on zero. It remains
to determine the radius of that circle. Now it follows, on applying
Proposition 2.8, that

δ = log
(

1 + R

1 − R

)
.

Consequently

eδ − 1 = 2R
1 − R

, eδ + 1 = 2
1 − R

,

and therefore
R = eδ − 1

eδ + 1 ,

as required.
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The Poincaré distance function ρ on the unit disk D has the
property that ρ(z ,w) = ρ(w , z) for all z ,w ∈ D. It therefore
follows immediately from Proposition 2.8 that

ρ(s, t) =
∣∣∣∣log

(
1 + t

1 − t

)
− log

(
1 + s

1 − s

)∣∣∣∣
for all real numbers s and t satisfying −1 < s < 1 and −1 < t < 1.



2. The Disk Model of the Hyperbolic Plane (continued)

Lemma 2.10

Let z and w be complex numbers, and let Ω be the inversion of
the Riemann sphere in the unit circle, defined so that Ω(0) = ∞,
Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex numbers z .
Then

(z ,Ω(z);w ,Ω(w)) =
∣∣∣∣ z − w

1 − wz

∣∣∣∣2
for all complex numbers z and w with the exception of those pairs
z , w for which |z | = 1 and z = w .
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Proof
Let z and w be complex numbers. Suppose that it is not the case
that |z | = 1 and z = w . Examination of possible cases shows that
it is not then possible for three of the complex numbers z , Ω(z), w
and Ω(w) to coincide with one another. Indeed if |z | ≠ 1 and
|w | ≠ 1 then exactly two of the points z ,Ω(z),w ,Ω(w) will lie in
the unit disk consisting of those complex numbers whose modulus
is less than one, and therefore it is not possible for any three of the
four points to coincide with one another. If |z | = 1, it would only
be possible for three of the points z ,Ω(z),w ,Ω(w) to coincide
with one another if it were also the case that w = z . Consequently
the cross-ratio (z ,Ω(z);w ,Ω(w)) is defined in all cases with the
exception of those where |z | = 1 and w = z .
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Now let u1 = z , v1 = 1, u2 = 1, v2 = z , u3 = w , v3 = 1, u4 = 1,
v4 = w . Then u1/v1 = z , u2/v2 = Ω(z), u3/v3 = w and
u4/v4 = Ω(w). The definition of cross-ratio then ensures that

(z ,Ω(z);w ,Ω(w)) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

= (z − w)(w − z)
(1 − wz)(zw − 1)

=
∣∣∣∣ z − w

1 − wz

∣∣∣∣2 ,
as required.
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Proposition 2.11

Let z and w be complex numbers satisfying |z | < 1 and |w | < 1,
and let ρ(z ,w) denote the Poincaré distance between z and w .
Then

ρ(z ,w) = log
(

1 +
√

(z ,Ω(z);w ,Ω(w))
1 −

√
(z ,Ω(z);w ,Ω(w))

)
,

where Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero
complex numbers z .
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Proof
Evaluating, and applying the result of Lemma 2.10, we find that

ρ(z ,w) = log
(
|1 − w z | + |z − w |
|1 − w z | − |z − w |

)

= log

1 + |z − w |
|1 − w z |

1 − |z − w |
|1 − w z |


= log

(
1 +

√
(z ,Ω(z);w ,Ω(w))

1 −
√

(z ,Ω(z);w ,Ω(w))

)
,

as required.
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Corollary 2.12

Let z and w be complex numbers satisfying |z | < 1 and |w | < 1,
and let ρ(z ,w) denote the Poincaré distance between z and w .
Then the cross-ratio (z ,Ω(z);w ,Ω(w)) is expressed in terms of
the Poincaré distance according to the formula

(z ,Ω(z);w ,Ω(w)) =
(
eρ(z,w) − 1
eρ(z,w) + 1

)2

.
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Proof
Let q = (z ,Ω(z);w ,Ω(w)) and s = ρ(z ,w). It follows from
Proposition 2.11 that

s = log
(

1 + √
q

1 −√
q

)
.

Consequently

es − 1 =
2√q

1 −√
q
, es + 1 = 2

1 −√
q
,

and thus
q =

(
es − 1
es + 1

)2
.

The result follows.
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Definition
A transformation φ that maps the open unit disk D in the complex
plane onto itself is said to be an isometry (with respect to Poincaré
distance) if

ρ
(
φ(z), φ(w)

)
= ρ(z ,w)

for all complex numbers z and w in the open unit disk D, where ρ
denotes the Poincaré distance function on D.

Proposition 2.13

Let D be the open unit disk in the complex plane, defined so that
D = {z ∈ C : |z | < 1}. Then every Möbius transformation of the
Riemann sphere that maps the open unit disk D onto itself is an
isometry with respect to the Poincaré distance function on D.
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Proof
The Möbius transformation µ has the property that µ ◦ Ω = Ω ◦ µ,
because it maps the unit disk onto itself (see Proposition 2.2).
Moreover the values of cross-ratios are preserved under the action
of Möbius transformations (Proposition 1.18). Consequently(

µ(z),Ω(µ(z));µ(w),Ω(µ(w))
)

=
(
µ(z), µ(Ω(z));µ(w), µ(Ω(w))

)
=

(
z ,Ω(z);w ,Ω(w)

)
.

The required result therefore follows immediately from an identity
previously established (Proposition 2.11) expressing the Poincaré
distance ρ(z ,w) in terms of the cross-ratio (z ,Ω(z);w ,Ω(w)).
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Proposition 2.14

Let z1, w1, z2 and w2 be elements of the open unit disk D, where

D = {z ∈ C : |z | < 1}.

Suppose that ρ(z1,w1) = ρ(z2,w2), where ρ denotes the Poincaré
distance function on D. Then there exists a Möbius
transformation µ mapping the open unit disk D onto itself with
the property that µ(z1) = z2 and µ(w1) = w2.
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Proof
The values of the cross-ratios

(z1,Ω(z1);w1,Ω(w1)) and (z2,Ω(z2);w2,Ω(w2))

are determined by the values of the Poincaré distances ρ(z1,w1)
and ρ(z2,w2) respectively (see Corollary 2.12). Consequently

(z1,Ω(z1);w1,Ω(w1)) = (z2,Ω(z2);w2,Ω(w2)).

It follows from this that there exists a unique Möbius
transformation µ with the properties that µ(z1) = z2,
µ(Ω(z1)) = Ω(z2), µ(w1) = w2 and µ(Ω(w1)) = Ω(w2), (see
Proposition 1.18).
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Now let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is itself a Möbius transformation
(Lemma 2.1) Then

µ̂(z1) = Ω(µ(Ω(z1))) = Ω(Ω(z2)) = z2,

µ̂(Ω(z1)) = Ω(µ(Ω(Ω(z1)))) = Ω(µ(z1)) = Ω(z2),
µ̂(w1) = Ω(µ(Ω(w1))) = Ω(Ω(w2)) = w2,

µ̂(Ω(w1)) = Ω(µ(Ω(Ω(w1)))) = Ω(µ(w1)) = Ω(w2).

Consequently the Möbius transformations µ and µ̂ both map z1,
Ω(z1), w1 and Ω(w1) to z2, Ω(z2), w2 and Ω(w2) respectively. But
two distinct Möbius transformations cannot coincide at three or
more points of the Riemann sphere. (see Corollary 1.17).
Consequently µ̂ = µ, and thus Ω ◦ µ = µ ◦ Ω. Moreover elements
z1 and z2 of the open unit disk D are mapped into D. Applying
Proposition 2.2, we conclude that the Möbius transformation µ
maps the open unit disk D onto itself. This completes the
proof.
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Proposition 2.15

Let D be the open unit disk in the complex plane, let w0 be a
complex number lying in D, let δ be a positive real number, and let

Γ = {z ∈ D : ρ(z ,w0) = δ}.

Then Γ is a circle contained within the open unit disk D. Moreover
if w0 lies on the real line then the centre of the circle Γ also lies on
the real line.
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Proof
Let

Γ0 = {z ∈ D : ρ(z , 0) = δ}.

Then Γ0 is a circle in the complex plane (see Proposition 2.9).
Now there exists a Möbius transformation µ mapping the open
unit disk D onto itself with the property that µ(0) = w0 (see
Corollary 2.6). Now the image µ(Γ0) of the circle Γ0 must itself be
a circle containined within the unit disk. Indeed Möbius
transformations map circles and straight lines to circles and
straight lines (Proposition 1.10), and obviously µ(Γ0) cannot be a
straight line. Moreover µ(Γ0) = Γ, because Möbius
transformations mapping the open unit disk D onto itself are
isometries with respect to the Poincaré distance function ρ on the
open unit disk (Proposition 2.13). The result follows.
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Proposition 2.16

Let ρ be the Poincaré distance function on the open unit disk D in
the complex plane, let t be a real number satisfying 0 < t < 1, and
let w be a complex number distinct from 0 and t for which
|w | < 1. Then

ρ(0,w) ≤ ρ(0, t) + ρ(t,w).

Moreover ρ(0,w) = ρ(0, t) + ρ(t,w) if and only if the complex
number w is a positive real number for which t < w < 1.

Proof
We first note that

ρ(0, t) = log
(

1 + t

1 − t

)
(see Proposition 2.8).
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Given a complex number w in the unit disk that is distinct from 0
and t, let real numbers s and u between −1 and 1 be determined
so that

log
(

1 + t

1 − t

)
− log

(
1 + s

1 − s

)
= ρ(t,w)

and
log
(

1 + u

1 − u

)
− log

(
1 + t

1 − t

)
= ρ(t,w).

Then −1 < s < t < u < 1 and

ρ(s, t) = ρ(t, u) = ρ(t,w)

and consequently

ρ(s, u) = ρ(s, t) + ρ(t, u) = 2 × ρ(t, u) < 2 × ρ(0, u) = ρ(−u, u)

(again applying Proposition 2.8). It follows that −u < s < t < u.
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Let
Γ1 = {z ∈ D : ρ(z , 0) = ρ(u, 0)}

and
Γ2 = {z ∈ D : ρ(z , t) = ρ(u, t)}.

It follows from Proposition 2.15 that Γ1 and Γ2 are circles in the
complex plane, containined in the open unit disk D, whose centres
lie on the real line. The circle Γ1 passes through −u and u, and
the circle Γ2 passes through s and u. Now −u < s < u. It follows
from elementary geometry that all points of the circle Γ2 with the
exception of the point u lie within the circle Γ1. Now the point w
lies on the circle Γ2. Therefore

ρ(0,w) ≤ ρ(0, u) = ρ(0, t) + ρ(t, u) = ρ(0, t) + ρ(t,w).

Moreover ρ(0,w) = ρ(0, t) + ρ(t,w) if and only if w = u, in which
case w lies on the real line and t < w < 1. The result follows.
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Proposition 2.17 (Triangle Inequality for Poincaré Distance)

The Poincaré distance function ρ on the open unit disk D has the
property that

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3)

for all complex numbers z1, z2 and z3 belonging to the disk D.

Proof
This inequality follows directly in cases where any two of z1, z2 and
z3 coincide with one another. Accordingly it remains to prove that
the inequality holds in cases where these three complex numbers
are distinct.
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Accordingly let z1, z2 and z3 be any three distinct points of the
unit disk D. There exists a real number t satisfying 0 < t < 1
determined so that ρ(0, t) = ρ(z1, z2). There then exists a Möbius
transformation µ that maps the open unit disk onto itself and
satisfies µ(0) = z1 and µ(t) = z2 (see Proposition 2.14). Let w be
the unique point of the open unit disk for which µ(w) = z3. Then

ρ(0,w) ≤ ρ(0, t) + ρ(t,w).

(see Proposition 2.16). But the Möbius transformation µ is an
isometry of the Poincaré distance function (Proposition 2.13).
Consequently

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3).

as required.
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Lemma 2.18

Let u be a real number satisfying 0 < u < 1 and let z be a point of
the open unit disk that does not lie on the real line between 0 and
u. Then

ρ(0, u) < ρ(0, z) + ρ(z , u),

where ρ denotes the Poincaré distance function on the open unit
disk.

Proof
A positive real number θ can be chosen for which t is a positive
real number, where

t = (cos θ +
√
−1 sin θ)z .
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Let
w = (cos θ +

√
−1 sin θ)u.

The condition in the statement of the lemma regarding the location
of z ensures that the complex number w is not a real number lying
between t and 1. It follows from Proposition 2.16 that

ρ(0,w) < ρ(0, t) + ρ(t,w).

Now rotations of the open unit disk about zero are isometries of
the Poincaré distance function defined on the unit disk.
Consequently

ρ(0, u) < ρ(0, z) + ρ(z , u),

as required.
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2.3. Hyperbolic Length

Definition
Let Γ be a straight line segment or circular arc contained in the
open unit disk, and let p and q be points lying on Γ. We define the
hyperbolic length of Γ between the points p and q to be the
smallest non-negative real number L with the property that

ρ(z0, z1) + ρ(z1, z2) + · · · + ρ(zm−1, zm) ≤ L

for all choices of distinct points z0, z1, z2, . . . , zm−1, zm lying in
order along the line or curve Γ with z0 = p and zm = q.
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Remark
Those familiar with the concept of least upper bounds will note
that the hyperbolic length of Γ is, according to this definition, the
least upper bound of the values of the sums of the prescribed form.
Now a basic principle of real analysis asserts that if a non-empty
set of real numbers is bounded above, then that set has a least
upper bound. Accordingly, in order to prove that any straight line
segment or circular arc contained within the open unit disk in the
complex plane has a well-defined hyperbolic length, provided that
the endpoints of that segment or arc lie within the open disk, it
would be necessary to show that there exists some positive real
number M that is large enough to ensure that, whenever points
z0, z1, . . . , zm are taken in order along that segment or arc, then

m∑
j=1

ρ(zj , zj−1) ≤ M.
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Now suppose that the straight line segment or circular arc is
contained within a disk of radius R centred on zero in the complex
plane, where 0 < R < 1. One can then establish the existence of a
real constant K , determined by R, such that ρ(z , z ′) ≤ K |z − z ′|
for all complex numbers z and z ′ satisfying |z | ≤ R and |z ′| ≤ R.
One can then show that

m∑
j=1

ρ(zj , zj−1) ≤ KN,

where N is the Euclidean length of the straight line segment or arc
in question. Consequently the basic principle of real analysis
described above guarantees that the segment or circular arc has a
well-defined hyperbolic length.
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Remark
The definition given is applicable also to certain other curves
besides straight line segments and circular arcs, provided that
those curves are sufficiently well-behaved.

In particular, if the curve is parametrized by a real variable t so
that the the points of the curve are of the form x(t) +

√
−1 y(t),

where x(t) and y(t) are continuously differentiable real-valued
functions of t as t increases from t0 to t1, then the hyperbolic
length of the curve may be defined in the manner described. Its
value can be shown to be equal to the value of the integral

∫ t1

t0

2
1 − x2 − y2

√(
dx

dt

)2
+
(
dy

dt

)2
dt.
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Given points p and q that lie on some straight line segment or
circular arc Γ in the open unit disk, let us denote by

Lhyp(Γ; p, q)

the hyperbolic length of Γ between the points p and q.
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Lemma 2.19

Let p, q be points lying on straight line segment or circular arc Γ
in the open unit disk. Then

Lhyp(Γ; p, q) ≥ ρ(p, q),

where Lhyp(Γ; p, q) denotes respectively the hyperbolic length of Γ
between the points p and q and ρ(p, q) denotes the Poincaré
distance between p and q.
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Proof
This result follows directly from the definition of hyperbolic length.
(The criterion in that definition applies in particular to the case
where the collection of points along Γ between p and q just
consists of the two points p and q, with m = 1, z0 = p and
z1 = q, employing the notation employed in the definition of
hyperbolic length given above.)

Proposition 2.20

Let p, q and r be points lying in order along a straight line
segment or circular arc Γ in the open unit disk. Then

Lhyp(Γ; p, r) = Lhyp(Γ; p, q) + Lhyp(Γ; q, r).
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Proof
Let z0, z1, z2, . . . , zn be points in order along Γ with z0 = p and
zn = r . Then either q = zk for some integer k between 1 and
n − 1 or else q lies between zk−1 and zk for some integer k
between 1 and n. In the case where q = zk for some integer k
between 1 and n − 1, we find that

n∑
j=0

ρ(zj−1, zj) =
k∑

j=0
ρ(zj−1, zj) +

n∑
j=k+1

ρ(zj−1, zj)

≤ Lhyp(Γ; p, q) + Lhyp(Γ; q, r).
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In the case where q lies between zk−1 and zk for some integer k
between 1 and n, the Triangle Inequality satisfied by the Poincaré
distance function (Proposition 2.17) ensures that

n∑
j=0

ρ(zj−1, zj) =
k−1∑
j=0

ρ(zj−1, zj) + ρ(zk−1, zk)

+
n∑

j=k+1
ρ(zj−1, zj)

≤
k−1∑
j=0

ρ(zj−1, zj) + ρ(zk−1, q)

+ ρ(q, zk) +
n∑

j=k+1
ρ(zj−1, zj)

≤ Lhyp(Γ; p, q) + Lhyp(Γ; q, r).
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It follows from these observations that

Lhyp(Γ; p, r) ≤ Lhyp(Γ; p, q) + Lhyp(Γ; q, r).

Now let some positive real number ε be given. Then there exist
points z0, z1, . . . , zm in order along Γ with z0 = p and zm = q such
that

m∑
j=1

ρ(zj−1, zj) > Lhyp(Γ; p, q) − ε.

There also exist points zm, zm+1, . . . , zn in order along Γ with
zm = q and zn = r such that

n∑
j=m+1

ρ(zj−1, zj) > Lhyp(Γ; q, r) − ε.
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Consequently
n∑

j=1
ρ(zj−1, zj) > Lhyp(Γ; p, q) + Lhyp(Γ; q, r) − 2ε.

It follows that

Lhyp(Γ; p, r) > Lhyp(Γ; p, q) + Lhyp(Γ; q, r) − 2ε

for all positive real numbers ε, and therefore

Lhyp(Γ; p, r) ≥ Lhyp(Γ; p, q) + Lhyp(Γ; q, r).

The inequalities established within the proof now enable us to
conclude that

Lhyp(Γ; p, r) = Lhyp(Γ; p, q) + Lhyp(Γ; q, r),

as required.
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Proposition 2.21

Let Γ be the straight line segment in the open unit disk with
endpoints p and q, where p and q are real numbers satisfying
−1 < p < q < 1. Then the hyperbolic length of Γ is equal to the
Poincaré distance ρ(p, q) between p and q.



2. The Disk Model of the Hyperbolic Plane (continued)

Proof
Let t0, t1, . . . , tm be real numbers for which

p = t0 < t1 < t2 < · · · < tm−1 < tm = q.

Applying Proposition 2.8 we find that
m∑
j=1

ρ(tj−1, tj) =
m∑
j=1

(
log
(

1 + tj
1 − tj

)
− log

(
1 + tj−1
1 − tj−1

))

= log
(

1 + q

1 − q

)
− log

(
1 + p

1 − p

)
= ρ(p, q).

The result follows.
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Proposition 2.22

Let µ be a Möbius transformation mapping the open unit disk in
the complex plane onto itself, and let Γ be a straight line segment
or circular arc contained within the open unit disk. Then the
hyperbolic length of the image µ(Γ) of Γ under the Möbius
transformation µ is equal to the hyperbolic length of Γ itself.

Proof
This result follows from the definition of hyperbolic length, in view
of the fact that Möbius transformations that map the open unit
disk onto itself are isometries with respect to the Poincaré distance
function (Proposition 2.13).
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2.4. Geodesics in the Open Unit Disk

Definition
We say that a straight line segment or circular arc contained within
the open unit disk in the complex plane is a geodesic if the
hyperbolic length of the segment or arc between any two points
lying on it is equal to the Poincaré distance between those two
points.

Proposition 2.23

Möbius transformations mapping the open unit disk onto itself
map geodesics onto geodesics.
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Proof
Möbius transformations mapping the open unit disk onto itself are
isometries with respect to the Poincaré distance function
(Proposition 2.13) and they preserve hyperbolic distance
(Proposition 2.22) The result therefore follows immediately from
these observations and the definition of geodesics in the open unit
disk.
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Theorem 2.24

Let Γ be a straight line segment or circular arc contained within
the open unit disk in the complex plane. Then Γ is a geodesic if
and only if the straight line or circle of which it forms part
intersects the unit circle orthogonally.
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Proof
First suppose that the straight line or circle of which Γ forms part
intersects the unit circle orthogonlly at points z1 and z2. It follows
from Lemma 2.4 that there exists a Möbius transformation µ of
the Riemann sphere mapping the unit disk D onto itself for which
µ(z1) = −1 and µ(z2) = 1. Now Möbius transformations map
circles and straight lines to circles and straight lines
(Proposition 1.10). Moreover they preserve the angles between
circles and straight line segments at their points of intersection
(see Proposition 1.27). Therefore the straight line or circle of
which the image µ(Γ) under the the Möbius transformation µ
forms part must intersect the unit circle orthogonally at −1 and 1,
and consequently it must coincide with the real line. We conclude
therefore that µ(Γ) must be contained within the real line.
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It then follows from Proposition 2.21 µ(Γ) must be a geodesic.
Now Möbius transformations that map the open unit disk onto
itself map geodesics to geodesics (Proposition 2.23). Consequently
Γ, being the image of geodesic under the inverse of the Möbius
transformation µ, must itself be a geodesic.

Now suppose that Γ is a geodesic. Let p and q be points lying on
Γ, and let u be the positive real number for which
ρ(0, u) = ρ(p, q), where ρ denotes the Poincaré distance function
on the open unit disk. Then there exists a Möbius
transformation µ, mapping the open unit disk onto itself, which is
such as to ensure that µ(p) = 0 and µ(q) = u. Now Möbius
transformations map circles and straight lines to circles and
straight lines (Proposition 1.10). Consequently µ(Γ) is a straight
line or circular arc on which lie the real numbers 0 and u.
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Suppose that µ(Γ) were to pass through some point z of the unit
disk that did not lie on the real line between 0 and u. Then,
applying Lemma 2.18 and Proposition 2.20 it would follow that

Lhyp(µ(Γ); 0, u) = Lhyp(µ(Γ); 0, z) + Lhyp(µ(Γ); z , u)
≥ ρ(0, z) + ρ(z , u) > ρ(0, u).

Consequently µ(Γ) would not be a geodesic. It follows that Γ
would not be a geodesic, because Möbius transformations that
map the open unit disk onto itself map geodesics to geodesics
(Proposition 2.23).
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We conclude therefore that if Γ is a geodesic, and if µ is a Möbius
transformation mapping the points p and q of Γ to 0 and u
respectively, where 0 < u < 1 and ρ(0, u) = ρ(p, q), then all points
of µ(Γ) must lie on the real line.

Now the real line cuts the unit circle orthogonally at the points of
intersection. Also Möbius transformations preserve the angles
between circles and straight line segments at their points of
intersection (see Proposition 1.27). Therefore the straight line or
circle of which Γ forms part must also intersect the unit circle
orthogonally, as required.
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2.5. Complete Geodesics

Definition
A geodesic contained within the open unit disk is said to be
complete if it is the intersection of the open unit disk with a
straight line or circle in the complex plane.

Proposition 2.25

Given two complete geodesics in the open unit disk D, there exists
a Möbius transformation of the Riemann sphere that maps the
open unit disk D onto itself and maps one complete geodesic onto
the other.
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Proof
Let Γ1 and Γ2 be complete geodesics in the open unit disk D, and
let I be the geodesic joining −1 and 1 that is the intersection of
the disk D with the real axis of the complex plane. Then, given
distinct points p1 and q1 lying on Γ1, there exists a Möbius
transformation µ1 that maps the segment of Γ1 with endpoints p1
and q1 into the real line. Then µ1 maps the complete geodesic Γ1
onto the complete geodesic I . Similarly there exists a Möbius
transformation that maps the complete geodesic Γ2 onto the
complete geodesic I . Then µ−1

2 ◦ µ1 is a Möbius transformation of
the Riemann sphere that maps the open unit disk D onto itself and
also maps the complete geodesic Γ1 onto the complete
geodesic Γ2, as required.
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2.6. Geodesic Rays and Segments

Definition
A geodesic segment is a geodesic that is a straight line segment or
circular arc whose endpoints both lie within the open unit disk.

Definition
A geodesic ray is a geodesic that has an endpoint within the open
unit disk and which includes that endpoint together with all points
of a complete geodesic that lie between the endpoint and some
point at which the straight line or circle of which the geodesic ray
forms part crossses the unit circle that bounds the open unit disk.
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2.7. The Group of Hyperbolic Motions of the Disk

Definition
Let X be a subset of the complex plane. A collection of invertible
transformations of the set X is said to be a transformation group
acting on the set X if the following conditions are satisfied:
(i) the identity transformation belongs to the collection;
(ii) any composition of transformations belonging to the

collection must itself belong to the collection;
(iii) the inverse of any transformation belonging to the collection

must itself belong to the collection.
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The collection of all Möbius transformations of the Riemann
sphere that map the open unit disk {z ∈ C : |z | < 1} onto itself is
a transformation group acting on the open unit disk. Indeed the
identity transformation is a Möbius transformation mapping the
open unit disk onto itself, the composition of any two Möbius
transformations that each map the open unit disk onto itself must
also map the open unit disk onto itself, and the inverse of any
Möbius transformation that maps the open unit disk onto itself
must also map the open unit disk onto itself.
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Definition
Let D be the open unit disk in the complex plane, defined so that
D = {z ∈ C : |z | < 1}, and let κ : D → D be the transformation of
the open unit disk defined so that κ(z) = z for all z ∈ D, where z
denotes the complex conjugate of the complex number z . A
transformation of the open unit disk is said to be a hyperbolic
motion of the unit disk if either it is a Möbius transformation
mapping the unit disk D onto itself or else it expressible as a
composition of transformations of the form µ ◦ κ, where µ is a
Möbius transformation mapping the open unit disk onto itself.
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Möbius transformations give rise to orientation-preserving
transformations of the complex plane (see Proposition 1.28 and
the discussion of orientation-preserving and orientation-reversing
transformations of the complex plane that follows the proof of that
proposition). Also the transformation κ : D → D that maps each
complex number z in D to its complex conjugate z is
orientation-reversing. Consequently a composition of two
transformations in which some Möbius transformation follows the
complex conjugation transformation κ is orientation-reversing.
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Orientation-preserving hyperbolic motions are the analogues, in
hyperbolic geometry, of transformations of the flat Euclidean plane
that can be represented as the composition of a rotation followed
by a translation.

Orientation-reversing hyperbolic motions are the analogues, in
hyperbolic geometry, of reflections and glide reflections of the flat
Euclidean plane.
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Proposition 2.26

Let D be the open unit disk in the complex plane, consisting of
those complex numbers z that satisfy |z | < 1. Then, given any
orientation-preserving hyperbolic motion φ of the open unit disk D,
there exist complex numbers a and b, where |b| < |a|, such that

φ(z) = az + b

b z + a
for all z ∈ D.

Similarly, given any orientation-reversing hyperbolic motion φ of
the open unit disk D, there exist complex numbers a and b, where
|b| < |a| such that

φ(z) = a z + b

b z + a
for all z ∈ D.



2. The Disk Model of the Hyperbolic Plane (continued)

Proof
This result follows directly on applying Proposition 2.7.
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Proposition 2.27
The collection of all hyperbolic motions of the open unit disk is a
transformation group acting on the open unit disk.

Proof
The identity transformation is a Möbius transformation that maps
the open unit disk onto itself and is thus a hyperbolic motion.
Next let µ1 and µ2 be Möbius transformations that map the open
unit disk onto itself, Then κ ◦ µ2 ◦ κ is also a Möbius
transformation that maps the open unit disk onto itself.
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Indeed there exist complex numbers a2 and b2, where |b2| < |a2|,
such that

µ2(z) = a2z + b2

b2 z + a2

for all complex numbers z for which b2 z + a2 ̸= 0 (see
Proposition 2.7). Then

κ(µ2(κ(z))) = a2z + b2
b2 z + a2

,

and therefore κ ◦ µ ◦ κ is also a Möbius transformation that maps
the open unit disk D onto itself. Now

µ1 ◦ (µ2 ◦κ) = (µ1 ◦µ2) ◦κ, (µ1 ◦κ) ◦µ2 = (µ1 ◦ (κ ◦µ2 ◦κ)) ◦κ

and
(µ1 ◦ κ) ◦ (µ2 ◦ κ) = µ1 ◦ (κ ◦ µ2 ◦ κ).
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Moreover µ1 ◦ µ2 and µ1 ◦ (κ ◦ µ2 ◦ κ), being compositions of
Möbius transformations that map the open unit disk onto itself,
are themselves Möbius transformations that map the open unit
disk onto itself. It follows from this observation that any
composition of hyperbolic motions of the open unit disk is itself a
hyperbolic motion of the open unit disk. Also

(µ2 ◦ κ)−1 = κ ◦ µ−1
2 = (κ ◦ µ−1

2 ◦ κ) ◦ κ,

and the inverse of any Möbius transformation that maps the open
unit disk onto itself must itself be a Möbius transformation that
maps the open unit disk onto itself. Consequently the inverse of
any hyperbolic motion is itself a hyperbolic motion. It follows that
the collection of all hyperbolic motions of the open unit disk is
indeed a transformation group acting on the open unit disk.
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Proposition 2.28
Let Γ be a complete geodesic in the open unit disk D. Then there
exists an orientation-reversing hyperbolic motion φ with the
property that φ(z) = z for all complex numbers z that lie on the
geodesic Γ and also those points of the open unit disk D that lie
on one side of the geodesic Γ are mapped by φ to points that lie
on the other side of Γ.

Proof
Let I be the set of real numbers t that satisfy the inequalities
−1 < t < 1. Then I is a complete geodesic in the open unit
disk D. There then exists a Möbius transformation µ that maps
the geodesic I onto the geodesic Γ. (see Proposition 2.25). Let
φ = µ ◦ κ ◦ µ−1, where κ(z) = z for all z ∈ D. Then the
orientation-reversing hyperbolic motion Γ has the required
properties.



2. The Disk Model of the Hyperbolic Plane (continued)

Proposition 2.29

Let z1, w1, z2 and w2 be complex numbers belonging to the open
unit disk D. Suppose that ρ(z1,w1) = ρ(z2,w2), and suppose also
that one of the sides of the geodesic Γ1 in D passing through z1
and w1 has been chosen, and that one of the sides of the
geodesic Γ2 in D passing through z2 and w2 has also been chosen.
Then there exists a hyperbolic motion φ with the following
properties: φ(z1) = z2; φ(w1) = w2; φ maps complex numbers on
the chosen side of the geodesic Γ1 to complex numbers on the
chosen side of the geodesic Γ2.



2. The Disk Model of the Hyperbolic Plane (continued)

Proof
It follows from Proposition 2.14 that there exists a Möbius
transformation that maps the open unit disk onto itself and also
maps z1 and w1 to z2 and w2 respectively. If this Möbius
transformation does not itself map the chosen side of Γ1 to the
chosen side of Γ2, then it may be composed with an
orientation-reversing hyperbolic motion that fixes all complex
numbers of the geodesic Γ2 whilst mapping complex numbers on
one side of Γ2 to complex numbers on the other side. The result
follows.
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Proposition 2.30
Let w be a complex number belonging to the open unit disk D in
the complex plane, and let ρ denote the Poincaré distance function
on D. Let δ be a positive real number. Then

{z ∈ D : ρ(z ,w) < δ} =
{
z ∈ D :

∣∣∣∣ z − w

1 − w z

∣∣∣∣ < R

}
,

where
R = eδ − 1

eδ + 1 .



2. The Disk Model of the Hyperbolic Plane (continued)

Proof
Let

µw (z) = z + w

1 + wz

for all complex numbers z . Then µw is a Möbius transformation
mapping the open unit disk onto itself for which µw (0) = w (see
Corollary 2.6). Now Möbius transformations mapping the open
unit disk onto itself are isometries with regard to the Poincaré
distance function (see Proposition 2.13). Consequently

{z ∈ D : ρ(z ,w) < δ} = {z ∈ D : ρ(µ−1
w (z), 0) < δ}.

The required result now follows on applying Proposition 2.9.



2. The Disk Model of the Hyperbolic Plane (continued)

Definition
Let D be the open unit disk in the complex plane that consists of
those complex numbers z satisfying |z | < 1, and let C be a circle
in the complex plane that is contained within D. A complex
number w is said to be the hyperbolic centre of the circle C if the
Poincaré distance between z and w is the same for all points z
that lie on the circle C .



2. The Disk Model of the Hyperbolic Plane (continued)

Proposition 2.31

Let C be a circle in the complex plane that is contained within the
open unit disk D. Suppose that the circle C intersects the real axis
at real numbers u and v , where −1 < u < v < 1. Suppose also
that the hyperbolic centre of the circle C lies on the real axis, and
is located at t, where u < t < v . Then(

1 + t

1 − t

)2
= (1 + u)(1 + v)

(1 − u)(1 − v) .



2. The Disk Model of the Hyperbolic Plane (continued)

Proof
Applying Proposition 2.8, we find that t, u and v must satisfy the
identity

log
(

1 + v

1 − v

)
− log

(
1 + t

1 − t

)
= log

(
1 + t

1 − t

)
− log

(
1 + u

1 − u

)
.

Consequently

2 log
(

1 + t

1 − t

)
= log

(
1 + u

1 − u

)
+ log

(
1 + v

1 − v

)
.

The required result then follows on taking the exponential of both
sides of this identity.
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