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1 Möbius Transformations and Cross-Ratios

1.1 Stereographic Projection
Let a sphere in three-dimensional space be given, let C be the centre of that
sphere, let AB be a diameter of that sphere with endpoints A and B, and let
P be the plane through the centre of the sphere that is perpendicular to the
diameter AB. Given a point D of the sphere distinct from the point A, the
image of D under stereographic projection from the point A is defined to be
the point E at which the line passing through the points A and D intersects
the plane P .

A

B

C
P

D

E

Proposition 1.1 Let S2 be the unit sphere in R3, consisting of those points
(u, v, w) of R3 that satisfy the equation u2 + v2 + w2 = 1, and let P be the
plane consisting of those points (u, v, w) of R3 for which w = 0. Then, for
each point (u, v, w) of S2 distinct from the point (0, 0,−1), the straight line
passing through the points (u, v, w) and (0, 0,−1) intersects the plane P at
the point (x, y, 0) at which

x = u

w + 1
and y = v

w + 1
.

Proof Let A = (0, 0,−1), D = (u, v, w) and E = (x, y, 0). Then the dis-
placements of the points D and E from the point A are represented by the
vectors (u, v, w + 1) and (x, y, 1) respectively. These vectors are parallel be-
cause the points A, D and E are collinear. Consequently

x

u
= y

v
= 1

w + 1
.
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The result follows.

(0, 0,−1)

(0, 0, 1)

P

(u, v, w)

(x, y, 0)

(0, 0, w)

Definition Let (u, v, w) be a point on the unit sphere distinct from the
point (0, 0,−1), where u2 + v2 + w2 = 1, and let (x, y) be a point of the
plane R2. We say that the point (x, y) is the image of the point (u, v, w)
under stereographic projection from the point (0, 0,−1) if

x = u

w + 1
and y = v

w + 1
.

Proposition 1.2 Each point (x, y) of R2 is the image, under stereographic
projection from the point (0, 0,−1), of the point (u, v, w) of the unit sphere
for which

u = 2x
1 + x2 + y2 , v = 2y

1 + x2 + y2 and w = 1 − x2 − y2

1 + x2 + y2 .

This point (u, v, w) is distinct from the point (0, 0,−1).

Proof Given a point (x, y) of R2, the straight line passing through the points
(0, 0,−1) and (x, y, 0) is not tangent to the unit sphere, and therefore inter-
sects the unit sphere at some point distinct from (0, 0,−1). It follows that
every point of R2 is the image, under stereographic projection from (0, 0,−1),
of some point of the unit sphere distinct from the point (0, 0,−1).
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Let (x, y) be the image, under stereographical projection from the point
(0, 0,−1), of a point (u, v, w), where u2 + v2 + w2 = 1 and w ̸= −1. Then

x = u

w + 1
, y = v

w + 1
.

It follows that

x2 + y2 = u2 + v2

(w + 1)2 = 1 − w2

(w + 1)2 = 1 − w

w + 1
.

It follows that
w(x2 + y2) + x2 + y2 = 1 − w,

and therefore
w = 1 − x2 − y2

1 + x2 + y2 .

But then
1 + w = 1 + 1 − x2 − y2

1 + x2 + y2 = 2
1 + x2 + y2 ,

and therefore

u = (1 + w)x = 2x
1 + x2 + y2 ,

v = (1 + w)y = 2y
1 + x2 + y2 .

Conversely if

u = 2x
1 + x2 + y2 , v = 2y

1 + x2 + y2 and w = 1 − x2 − y2

1 + x2 + y2 .

then
u2 + v2 + w2 = 4(x2 + y2) + (1 − x2 − y2)2

(1 + x2 + y2)2 = 1,

because

4(x2 + y2) + (1 − x2 − y2)2

= 4(x2 + y2) + 1 − 2(x2 + y2) + (x2 + y2)2

= 1 + 2(x2 + y2) + (x2 + y2)2

= (1 + x2 + y2)2.

Also w > −1 and
x = u

w + 1
and y = v

w + 1
.

The result follows.
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1.2 The Riemann Sphere
The Riemann sphere P1 may be defined as the set C ∪ {∞} obtained by
augmenting the system C of complex numbers with an additional element,
denoted by ∞, where ∞ is not itself a complex number, but is an additional
element added to the set, with the additional conventions that

z + ∞ = ∞, ∞×∞ = ∞,
z

∞ = 0 and ∞
z

= ∞

for all complex numbers z, and

z ×∞ = ∞, and z

0
= ∞

for all non-zero complex numbers z. The symbol ∞ cannot be added to, or
subtracted from, itself. Also 0 and ∞ cannot be divided by themselves.

Note that, because the sum of two elements of P1 is not defined for every
single pair of elements of P1, this set cannot be regarded as constituting a
group under the operation of addition. Similarly its non-zero elements cannot
be regarded as constituting a group under multiplication. In particular, the
Riemann sphere cannot be regarded as constituting a field.

Note that any element of the Riemann sphere can be represented in the
form u

v
, where u and v are complex numbers that are not both equal to zero.

Moreover the values of this fraction are determined as follows:

•
u

v
= z for some non-zero complex number z if and only if u ̸= 0, v ̸= 0

and u = zv;

•
u

v
= 0 if and only if u = 0 and v ̸= 0;

•
u

v
= ∞ if and only if u ̸= 0 and v = 0.

Lemma 1.3 Let u, v, u′ and v′ be complex numbers, where u and v are not
both zero and also u′ and v′ are not both zero. Then the following are true:

(i) u

v
= u′

v′
if and only if v′u = u′v;

(ii) u

v
= u′

v′
if and only if there exists some non-zero complex number w for

which u′ = wu and v′ = wv;

(iii) in cases where u

v
= u′

v′
it follows that u = 0 if and only if u′ = 0;
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(iv) in cases where u

v
= u′

v′
it follows that v = 0 if and only if v′ = 0.

Proof First suppose that the complex numbers u, v, u′ and v′ are all non-
zero. Then all four properties follow directly.

Next suppose that u = 0. Then v ̸= 0 and u

v
= 0. It follows in this

case that u

v
= u′

v′
if and only if u′

v′
= 0, in which case u′ = 0. Thus in cases

where u

v
= u′

v′
we find that u = 0 implies that u′ = 0. Similarly u′ = 0 if and

only if u = 0, and thus u = 0 if and only if u′ = 0. Note also that in cases
where u = 0 and u

v
= u′

v′
, the complex numbers v and v′ are both non-zero,

and consequently the identities u′ = wu and v′ = wv hold simultaneously on
taking w = v′

v
.

Next suppose that v = 0. Then u ̸= 0 and u

v
= ∞. It follows in this

case that u

v
= u′

v′
if and only if u′

v′
= ∞, in which case v′ = 0. Thus in cases

where u

v
= u′

v′
we find that v = 0 implies that v′ = 0. Similarly v′ = 0 if and

only if v = 0, and thus v = 0 if and only if v′ = 0. Note also that in cases
where v = 0 and u

v
= u′

v′
, the complex numbers u and u′ are both non-zero,

and consequently the identities u′ = wu and v′ = wv hold simultaneously on
taking w = u′

u
.

Consequently all four properties (i), (ii), (iii) and (iv) have been estab-
lished, as required.

Lemma 1.4 Let p1 and p2 be elements of the Riemann sphere that are not
both equal to ∞, and let u1, u2, v1 and v2 be complex numbers, where u1 and
v1 are not both zero, u2 and v2 are not both zero, and v1 and v2 are not both
zero, such that

p1 = u1

v1
and p2 = u2

v2
.

Then the sum p1 + p2 of the elements p1 and p2 of the Riemann sphere is
defined so as to ensure that

p1 + p2 = v1u2 + v2u1

v1v2
.

Proof If v1 = 0 then v2u1 ̸= 0, and consequently v1u2 + v2u1 ̸= 0. Similarly
if v2 = 0 then v1u2 ̸= 0, and consequently v1u2 + v2u1 ̸= 0. It follows that, in
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all cases, the complex numbers v1u2 + v2u1 and v1v2 are not both zero, and
consequently there is a well-defined element of the Riemann sphere that is
determined by the fraction

v1u2 + v2u1

v1v2
.

If neither of p1 and p2 is the element ∞ of the Riemann sphere, then both p1
and p2 are complex numbers, and the above fraction represents the sum of
those complex numbers, determined in the usual fashion within the algebra
of complex numbers. On the other hand, if exactly one of the elements p1 and
p2 of the Riemann sphere concides with ∞ then exactly one of the complex
numbers v1 and v2 is equal to zero, and the above fraction represents the
element ∞ of the Riemann sphere. The result follows.

The following proposition follows directly from Proposition 1.2.

Proposition 1.5 Let φ:P1 → R3 be the mapping from the Riemann sphere
P1 to R3 defined such that φ(∞) = (0, 0,−1) and

φ(x + y
√
−1) =

(
2x

1 + x2 + y2 ,
2y

1 + x2 + y2 ,
1 − x2 − y2

1 + x2 + y2

)
for all real numbers x and y. Then the map φ sets up a one-to-one corre-
spondence between points of the Riemann sphere P1 and points of the unit
sphere S2 in R3. To each point of the Riemann sphere P1 there corresponds
exactly one point of the unit sphere S2 in three-dimensional Euclidean space,
and vice versa. Moreover if (u, v, w) is a point of the unit sphere S2 distinct
from (0, 0,−1) then (u, v, w) = φ(x + y

√
−1), where

x = u

w + 1
and y = v

w + 1
.

1.3 Möbius Transformations
Lemma 1.6 Let a, b, c and d be complex numbers satisfying ad − bc ̸=
0. Then these complex numbers determine a well-defined function µ:P1 →
P1 mapping the Riemann sphere P1 into itself that is characterized by the
property that

µ
(u
v

)
= au + bv

cu + dv

for all complex numbers u and v that are not both zero.
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Proof Let u and v be complex numbers that are not both zero. Then

d(au + bv) − b(cu + dv) = (ad− bc)u

and
a(cu + dv) − c(au + bv) = (ad− bc)v

Now ad − bc ̸= 0 and also u and v are not both zero. It must therefore be
the case that au+ bv and cu+ dv are not both zero. It therefore follows that
u and v determine a well-defined element of the Riemann sphere represented
by the fraction au + bv

cu + dv
. Moreover if u, v, u′ and v′ are complex numbers,

where u and v are not both zero, and where u′ and v′ are not both zero, and
if u/v = u′/v′, then there exists some non-zero complex number w for which
u′ = wu and v′ = wv. But it then follows that

au + bv

cu + dv
= au′ + bv′

cu′ + dv′
.

It follows from what has been shown that a quadruple of complex numbers
a, b, c and d satisfying the condition ad − bc ̸= 0 does indeed determine
a well-defined function µ mapping the Riemann sphere into itself that is
characterized by the property that

µ
(u
v

)
= au + bv

cu + dv

for all complex numbers u and v that are not both zero, as claimed.

A Möbius transformation of the Riemann sphere is determined by its
coefficients. It is convenient to specify these coefficients in the form of a
non-singular 2 × 2 matrix.

Accordingly let A be a non-singular 2 × 2 matrix. Then there exist com-
plex numbers a, b, c and d for which

A =
(

a b
c d

)
.

Moreover the requirement that A be non-singular (i.e., invertible) ensures
that ad−bc ̸= 0. We denote by µA the Möbius transformation of the Riemann
sphere defined so that

µA

(u
v

)
= au + bv

cu + dv

for all complex numbers u and v that are not both zero.
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It then follows that
µA(z) = az + b

cz + d

for all complex numbers z for which cz + d ̸= 0. If c ̸= 0 then

µA

(
−d

c

)
= ∞ and

µA(∞) = a

c
.

If c = 0 then d ̸= 0 and accordingly µA(∞) = ∞ and µA(z) = (az + b)/d for
all complex numbers z.

Proposition 1.7 The composition of any two Möbius transformations is a
Möbius transformation. Specifically let A and B be non-singular 2×2 matri-
ces with complex coefficients, and let µA and µB be the corresponding Möbius
transformations of the Riemann sphere. Then the composition µA ◦ µB of
these Möbius transformations is the Möbius transformation µAB of the Rie-
mann sphere determined by the product AB of the matrices A and B.

Proof Let
A =

(
a b
c d

)
and B =

(
f g
h k

)
,

and let
AB =

(
m n
p q

)
.

Then
m = af + bh, n = ag + bk,

p = cf + dh and q = cg + dk.

Now let u and v be complex numbers that are not both zero. Then fu+gv
and hu + kv are not both zero, because the matrix B is non-singular. The
definition of the Möbius transformations µA, µB and µAB associated with the
non-singular 2 × 2 matrices A, B and AB respectively ensures that

µA

(
µB

(u
v

))
= µA

(
fu + gv

hu + kv

)
= a(fu + gv) + b(hu + kv)

c(fu + gv) + d(hu + kv)

= mu + nv

pu + qv
= µAB

(u
v

)
.

The result follows.
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Corollary 1.8 Let a, b, c and d be complex numbers satisfying ad− bc ̸= 0,
let

A =
(

a b
c d

)
and C =

(
d −b
−c a

)
,

and let µA and µC be the corresponding Möbius transformations, defined so
that

µA

(u
v

)
= au + bv

cu + dv
and µC(z) = du− bv

−cu + av

for all complex numbers u and v that are not both zero. Then the map-
ping µA:P1 → P1 is invertible, and its inverse is the Möbius transformation
µC :P1 → P1.

Proof Let
M =

(
ad− bc 0

0 ad− bc

)
.

Then AC = CA = M . It follows from Proposition 1.7 that

µA ◦ µC = µC ◦ µA = µM = IdP1 ,

where IdP1 denotes the identity map of the Riemann sphere. The result
follows.

Proposition 1.9 Let a, b, c, d, f , g, h and k be complex numbers satisfying
ad ̸= bc and fk ̸= gh, and let µ1 and µ2 be the Möbius transformations of
the Riemann sphere defined so that

µ1(z) = az + b

cz + d
, µ2(z) = fz + g

hz + k

for all complex numbers with cz + d ̸= 0 and hz2 + k ̸= 0. Then the Möbius
transformations µ1 and µ2 coincide if and only if there exists some non-zero
complex number m such that f = ma, g = mb, h = mc and k = md.

Proof Clearly if there exists a complex number m with the stated properties
then the Möbius transformations µ1 and µ2 coincide.

Conversely suppose that there is some Möbius transformation µ of the
Riemann sphere with the property that

µ(z) = az + b

cz + d
= fz + g

hz + k

whenever cz + d ̸= 0 and hz + k ̸= 0.
First consider the case when c = 0. Then no real number is mapped by µ

to the point ∞ of the Riemann sphere “at infinity” and therefore h = 0. But
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then d ̸= 0, k ̸= 0, b/d = g/k and a/d = f/k. Therefore if we take m = k/d
in this case we find that m ̸= 0, f = ma, g = mb, h = mc and k = md.
The existence of the required non-zero complex number m has therefore been
verified in the case when c = 0.

Suppose then that c ̸= 0. Then h ̸= 0 and µ(−k/h) = ∞ = µ(−d/c), and
therefore k/h = d/c. Let m = h/c. Then k = md. It then follows that

fz + g = (hz + k)µ(z) = m(cz + d)µ(z) = m(az + b)

for all complex numbers z distinct from −d/c, and therefore f = ma and
g = mb. The result follows.

1.4 Straight Lines and Circles in the Complex Plane
We consider the forms of the equations that are commonly used to represent
straight lines and circles in the complex plane.

Straight lines in the plane are represented with respect to standard Carte-
sian coordinates x and y by equations of the form px+ qy+h = 0 where p, q
and h are real numbers for which p and q are not both zero. If we represent
the point (x, y) by the complex number x + iy, where i =

√
−1, then the

equation of the line px + qy + h = 0 can be expressed, in the algebra of
complex numbers, by the equation

2Re[bz] + h = 0,

where b = 1
2(p + iq). Moreover equations of this form, in which b is a non-

zero complex number and h is a real number, determine straight lines in the
complex plane.

Next we consider the form taken by the equation of a circle in the complex
plane. If the centre of the circle is represented by the complex number m,
and if the real number r represents the radius of the circle, where r > 0,
then the circle consists of those complex numbers z that satisfy the equation
|z −m|2 = r2. Expanding out, this equation can be presented in the form

|z|2 − 2Re[mz] + |m|2 − r2 = 0.

It follows from this that, given an equation of the form

g|z|2 + 2Re[bz] + h = 0,

in which g and h are real numbers, and b is a complex number, that equation
represents a circle in the complex plane if and only if g ̸= 0 and |b|2 > gh. (In
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cases where |b|2 = gh the equation is satisfied only at a single point; and if
|b|2 < gh then the equation is not satisfied anywhere in the complex plane.)

We conclude from this discussion that straight lines and circles in the
complex plane are those loci (or subsets) of the complex plane that can be
specified by equations of the form

g|z|2 + 2Re[bz] + h = 0,

in which g and h are real numbers, b is a complex number, and |b|2 > gh.
The equation represents a circle if g ̸= 0, but represents a straight line if
g = 0.

Proposition 1.10 Any Möbius transformation maps straight lines and cir-
cles in the complex plane to straight lines and circles.

Proof The equation of a line or circle in the complex plane can be expressed
in the form

g|z|2 + 2Re[bz] + h = 0,

where g and h are real numbers, b is a complex number, and |b|2 > gh.
Moreover a locus of points in the complex plane satisfying an equation of
this form is a circle if g ̸= 0 and is a line if g = 0.

Let g and h be real constants, let b be a complex constant, and let z =
1/w, where w ̸= 0 and w satisfies the equation

g|w|2 + 2Re[bw] + h = 0,

Then
g|w|2 + bw + bw + h = 0,

and therefore

g + Re[bz] + h|z|2 = g + bz + bz + h|z|2

= 1
|w|2

(
g|w|2 + bw + bw + h

)
= 0.

We deduce from this that the Möbius transformation that sends z to 1/z for
all non-zero complex numbers z maps lines and circles to lines and circles.

Let µ:P1 → P1 be a Möbius transformation of the Riemann sphere. Then
there exist complex numbers a, b, c and d satisfying ad− bc ̸= 0 such that

µ(z) = az + b

cz + d
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for all complex numbers z for which cz + d ̸= 0. The result is immediate
when c = 0. We therefore suppose that c ̸= 0. Then

µ(z) = az + b

cz + d
= a

c
− ad− bc

c
× 1

cz + d

when cz + d ̸= 0. The Möbius transformation µ is thus the composition of
three maps that each send circles and straight lines to circles and straight
lines, namely the maps

z 7→ cz + d, z 7→ 1
z

and z 7→ a

c
− (ad− bc)z

c
.

Thus the Möbius transformation µ must itself map circles and straight lines
to circles and straight lines, as required.

1.5 Cross Ratios
Let p1, p2, p3 and p4 be elements of the Riemann sphere, and, for j = 1, 2, 3, 4,
let uj, vj, u′

j and v′j be complex numbers that are such as to ensure that uj

and vj are not both zero, u′
j and v′j are not both zero and

pj = uj

vj
=

u′
j

v′j

for j = 1, 2, 3, 4. Then there exist non-zero complex numbers w1, w2, w3 and
w4 that are such as to ensure that u′

j = wjuj and v′j = wjvj for j = 1, 2, 3, 4
(see Lemma 1.3). Let complex numbers ρ, ρ′, σ and σ′ be defined so that

ρ = (u1v3 − u3v1)(u2v4 − u4v2),
σ = (u2v3 − u3v2)(u1v4 − u4v1),
ρ′ = (u′

1v
′
3 − u′

3v
′
1)(u′

2v
′
4 − u′

4v
′
2),

σ′ = (u′
2v

′
3 − u′

3v
′
2)(u′

1v
′
4 − u′

4v
′
1).

Then ρ′ = w1w2w3w4ρ and Then σ′ = w1w2w3w4σ. It follows that ρ′ = 0 if
and only if ρ = 0, σ′ = 0 if and only if σ = 0, and ρ

σ
= ρ′

σ′ in all cases where
ρ and σ are not both zero.

Now ρ = 0 if and only if either p1 = p3 or p2 = p4. (This follows on
applying Lemma 1.3.) Moreover p1 = p3 and σ = 0 if and only if either
p1 = p2 = p3 or p1 = p3 = p4. Also p2 = p4 and σ = 0 if and only if either
p2 = p3 = p4 or p1 = p2 = p4. If follows that ρ and σ are both equal to zero
if and only if three of the elements p1, p2, p3, p4 coincide with one another.
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We conclude that, in all cases where no three of the elements p1, p2, p3
and p4 of the Riemann sphere coincide with one another, there exists a well-
defined element (p1, p2; p3, p4) of the Riemann sphere that is determined so as
to ensure that if uj and vj are complex numbers determined for j = 1, 2, 3, 4
so as to ensure that uj and vj are not both zero and pj = uj

vj
, then

(p1, p2; p3, p4) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

.

This element (p1, p2; p3, p4) of the Riemann sphere is referred to as the cross-
ratio of p1, p2, p3 and p4.

Proposition 1.11 Let p1, p2, p3 and p4 be distinct elements of the Riemann
sphere P1, and let q = (p1, p2; p3, p4). Then

• (p1, p2; p3, p4), (p2, p1; p4, p3), (p3, p4; p1, p2), (p4, p3; p2, p1) are all equal
to q;

• (p1, p2; p4, p3), (p2, p1; p3, p4), (p4, p3; p1, p2), (p3, p4; p2, p1) are all equal
to 1

q
.

• (p1, p3; p2, p4), (p3, p1; p4, p2), (p2, p4; p1, p3), (p4, p2; p3, p1) are all equal
to 1 − q;

• (p1, p4; p2, p3), (p4, p1; p3, p2), (p2, p3; p1, p4), (p3, p2; p4, p1) are all equal
to q − 1

q
;

• (p1, p3; p4, p2), (p3, p1; p2, p4), (p4, p2; p1, p3), (p2, p4; p3, p1) are all equal
to 1

1 − q
;

• (p1, p4; p3, p2), (p4, p1; p2, p3), (p3, p2; p1, p4), (p2, p3; p4, p1) are all equal
to q

q − 1
;
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Proof Let u1, v1, u2, v2, u3, v3, u4 and v4 be complex numbers with the
properties that uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4
(where uj/vj = ∞ in cases where uj ̸= 0 and vj = 0). Then

q = (p1, p2; p3, p4) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

.

It follows directly that

(p1, p2; p3, p4), (p2, p1; p4, p3), (p3, p4; p1, p2) and (p4, p3; p2, p1)

are all equal to q. Also

(p1, p2; p4, p3) = (u2v3 − u3v2)(u1v4 − u4v1)
(u1v3 − u3v1)(u2v4 − u4v2)

= 1
q
.

Next we note that

(p4, p2; p3, p1) = (u4v3 − u3v4)(u2v1 − u1v2)
(u2v3 − u3v2)(u4v1 − u1v4)

.

It follows that

1 − (p4, p2; p3, p1)

= (u2v3 − u3v2)(u1v4 − u4v1) + (u4v3 − u3v4)(u2v1 − u1v2)
(u2v3 − u3v2)(u1v4 − u4v1)

= u1u2v3v4 − v1u2v3u4 − u1v2u3v4 + v1v2u3u4

(u2v3 − u3v2)(u1v4 − u4v1)

+ v1u2v3u4 − v1u2u3v4 − u1v2v3u4 + u1v2u3v4

(u2v3 − u3v2)(u1v4 − u4v1)

= u1u2v3v4 + v1v2u3u4 − v1u2u3v4 − u1v2v3u4

(u2v3 − u3v2)(u1v4 − u4v1)

= (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

= q.

Consequently
(p4, p2; p3, p1) = 1 − q.

It then follows that
(p4, p2; p1, p3) = 1

1 − q
.

Furthermore

(p3, p2; p1, p4) = 1 − (p4, p2; p1, p3) = 1 − 1
1 − q

= q

q − 1
,

14



and therefore
(p3, p2; p4, p1) = q − 1

q
.

The remaining identities follow directly.

Lemma 1.12 Let z1, z2 z3 and z4 be distinct complex numbers. Then

(z1, z2; z3, z4) = (z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

Proof This follows directly from the definition of cross ratios of quadruples
of elements of the Riemann sphere on representing the complex number zj
as the fraction uj/vj with uj = zj and vj = 1 for j = 1, 2, 3, 4.

Lemma 1.13 Let z1, z2 and, z3 be distinct complex numbers. Then

(z1, z2; z3,∞) = z1 − z3

z2 − z3

Proof Let u1 = z1, u2 = z2, u3 = z3, u4 = 1, v1 = v2 = v3 = 1 and v4 = 0.
Then zj = uj/vj for j = 1, 2, 3 and ∞ = u4/v4. It follows from the definition
of cross-ratios that

(z1, z2; z3,∞) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

= z1 − z3

z2 − z3
,

as required.

Lemma 1.14 Let p1, p2, p3, p4 be a quadruple of points of the Riemann sphere
satisfying the condition that no three of the points all coincide with one an-
other. Then the following identities hold when two of the points coincide with
one another:

(p1, p2; p3, p4) = ∞ whenever p2 = p3 or p1 = p4;

(p1, p2; p3, p4) = 0 whenever p1 = p3 or p2 = p4;
(p1, p2; p3, p4) = 1 whenever p1 = p2 or p3 = p4.

Proof Let complex numbers uj and vj be chosen for j = 1, 2, 3, 4 such that
uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4. The definition
of cross-ratios ensures that

(p1, p2; p3, p4) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

.

Now, for distinct integers j and k between 1 and 4, pj = pk if and only
if ujvk = ukvj. Also there exists a non-zero complex number w for which
u2 = wu1 and v2 = wv1 if and only if p1 = p2, and there exists a non-zero
complex number w for which u4 = wu3 and v4 = wv3 if and only if p3 = p4.
The required identities therefore follow directly.
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1.6 The Action of Möbius Transformations on the Rie-
mann Sphere

Lemma 1.15 Let p1, p2 and p3 be distinct elements of the Riemann sphere,
and let µ∗

p1,p2,p3 :P1 → P1 be the function mapping the Riemann sphere into
itself defined such that

µ∗
p1,p2,p3(p) = (p1, p2; p3, p)

for all elements p of the Riemann sphere. Then µ∗
p1,p2,p3 is Möbius transfor-

mation, and moreover µ∗
p1,p2,p3(p1) = ∞, µ∗

p1,p2,p3(p2) = 0 and µ∗
p1,p2,p3(p3) =

1.

Proof Let pj = uj/vj for j = 1, 2, 3, where, for each of these values of j,
the elements uj and vj are complex numbers that are not both zero. It then
follows from the definition of cross-ratio that

µ∗
p1,p2,p3

(u
v

)
= (u1v3 − u3v1)(u2v − uv2)

(u2v3 − u3v2)(u1v − uv1)
.

Consequently µ∗
p1,p2,p3 is the Möbius transformation corresponding to the co-

efficient matrix (
−(u1v3 − u3v1)v2 (u1v3 − u3v1)u2
−(u2v3 − u3v2)v1 (u2v3 − u3v2)u1

)
.

It then follows from Lemma 1.14 that µ∗
p1,p2,p3(p1) = ∞, µ∗

p1,p2,p3(p2) = 0 and
µ∗
p1,p2,p3(p3) = 1. as required.

Proposition 1.16 Let p1, p2, p3 be distinct points of the Riemann sphere P1,
and let q1, q2, q3 also be distinct points of P1. Then there exists a unique
Möbius transformation µ:P1 → P1 of the Riemann sphere with the property
that µ(pj) = qj for j = 1, 2, 3.

Proof Let µ∗
p1,p2,p3 :P1 → P1 and µ∗

q1,q2,q3 :P1 → P1 be the Möbius transfor-
mations of the Riemann sphere defined so that

µ∗
p1,p2,p3(p) = (p1, p2; p3, p) and µ∗

q1,q2,q3(p) = (q1, q2; q3, p)

for all elements p of the Riemann sphere. Then

µ∗
p1,p2,p3(p1) = µ∗

q1,q2,q3(q1) = ∞,

µ∗
p1,p2,p3(p2) = µ∗

q1,q2,q3(q2) = 0,
µ∗
p1,p2,p3(p3) = µ∗

q1,q2,q3(q3) = 1.
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It follows that µ(pj) = qj for j = 1, 2, 3, where µ:P1 → P1 is the Möbius
transformation of the Riemann sphere defined such that

µ(p) = µ∗−1
q1,q2,q3(µ∗

p1,p2,p3(p))

for all elements p of the Riemann sphere.
Now let µ̂:P1 → P1 be a Möbius transformation of the Riemann sphere

with the property that µ̂(pj) = qj for j = 1, 2, 3, and let

λ(p) = µ∗
q1,q2,q3(µ̂(µ∗−1

p1,p2,p3(p)))

for all elements p of the Riemann sphere. Then

λ(∞) = µ∗
q1,q2,q3(µ̂(µ∗−1

p1,p2,p3(∞))) = µ∗
q1,q2,q3(µ̂(p1))

= µ∗
q1,q2,q3(q1) = ∞,

and similarly λ(0) = 0 and λ(1) = 1.
Now λ is a Möbius transformation. It follows that there exist complex

coefficients a, b, c and d, where ad− bc ̸= 0, such that

λ
(u
v

)
= au + bv

cu + dv

for all complex numbers u and v that are not both zero. Then the identity
λ(∞) = ∞ implies that c = 0, the identity λ(0) = 0 implies that b = 0,
and consequently the identity λ(1) = 1 implies that a = d. Consequently
λ(p) = p for all elements p of the Riemann sphere. It follows from this that

µ̂(p) = µ∗−1
q1,q2,q3(µ∗

p1,p2,p3(p)) = µ(p),

for all elements p of the Riemann sphere. Thus the Möbius transformation µ
is the unique Möbius transformation of the Riemann sphere that sends pj to
qj for j = 1, 2, 3, as asserted.

The following corollary follows immediately from Proposition 1.16).

Corollary 1.17 Two distinct Möbius transformations cannot coincide at
three or more points of the Riemann sphere

Proposition 1.18 Let p1, p2, p3, p4 be distinct elements of the Riemann
sphere P1, and let q1, q2, q3, q4 also be distinct elements of P1. Then a nec-
essary and sufficient condition for the existence of a Möbius transformation
µ:P1 → P1 of the Riemann sphere with the property that µ(pj) = qj for
j = 1, 2, 3, 4 is that

(p1, p2; p3, p4) = (q1, q2; q3, q4).
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Proof Let µ∗
p1,p2,p3 :P1 → P1 and µ∗

q1,q2,q3 :P1 → P1 be the Möbius transfor-
mations of the Riemann sphere defined so that

µ∗
p1,p2,p3(p) = (p1, p2; p3, p) and µ∗

q1,q2,q3(p) = (q1, q2; q3, p)

for all elements p of the Riemann sphere, and let µ:P1 → P1 be the Möbius
transformation of the Riemann sphere defined such that

µ(p) = µ∗−1
q1,q2,q3(µ∗

p1,p2,p3(p))

for all elements p of the Riemann sphere. Then (as shown in the proof of
Proposition 1.16) the Möbius transformation µ is the unique Möbius trans-
formation that satisfies µ(pj) = qj for j = 1, 2, 3. Now µ(p4) = µ(q4) if and
only if µ∗

p1,p2,p3(p4) = µ∗
q1,q2,q3(q4), and this is the case if and only if

(p1, p2; p3, p4) = (q1, q2; q3, q4).

The result follows.

Proposition 1.19 Four distinct complex numbers z1, z2, z3 and z4 lie on
a single line or circle in the complex plane if and only if their cross-ratio
(z1, z2; z3, z4) is a real number.

Proof Let µ:P1 → P1 be the Möbius transformation of the Riemann sphere
defined such that µ(p) = (z1, z2; z3, p) for all p ∈ P1. Then µ(z1) = ∞,
µ(z2) = 0 and µ(z3) = 1. Möbius transformations map lines and circles
to lines and circles (Propostion 1.10). It follows that a complex number z
distinct from z1, z2 and z3 lies on the circle in the complex plane passing
through the points z1, z2 and z3 if and only if µ(z) lies on the unique line in
the complex plane that passes through 0 and 1, in which case µ(z) is a real
number. The result follows.

1.7 Cross-Ratios and Angles
We recall some basic properties of the algebra of complex numbers. Any
complex number z can be written in the form

z = |z| (cos θ +
√
−1 sin θ)

where |z| is the modulus of z and θ is the angle in radians, measured anticlock-
wise, between the positive real axis and the line segment whose endpoints
are represented by the complex numbers 0 and z. Moreover

1
cosα +

√
−1 sinα

= cosα−
√
−1 sinα

18



and

(cosα +
√
−1 sinα)(cos β +

√
−1 sin β)

= cos(α + β) +
√
−1 sin(α + β)

for all real numbers α and β.

Proposition 1.20 Let z1, z2, z3 and z4 be distinct complex numbers lying
on a circle in the complex plane, listed in anticlockwise around the circle.
Then the angle between the lines joining z2 to z4 and z1 is equal to the angle
between the lines joining z3 to z4 and z1.

αα′

z1

z2
z3

z4

Proof Let α denote the angle between the lines joining z2 to z4 and z1, and
let α′ be the angle between the lines joining z3 to z4 and z1. We must show
that α = α′. Now it follows from the standard properties of complex numbers
that

z1 − z2

z4 − z2
= |z1 − z2|

|z4 − z2|
(cosα +

√
−1 sinα),

z1 − z3

z4 − z3
= |z1 − z3|

|z4 − z3|
(cosα′ +

√
−1 sinα′).

It now follows from the definition of cross-ratio that

(z2, z3; z1, z4) = (z1 − z2)(z4 − z3)
(z1 − z3)(z4 − z2)

= z1 − z2

z4 − z2
÷ z1 − z3

z4 − z3

= |z1 − z2| |z4 − z3|
|z1 − z3| |z4 − z2|

× cosα +
√
−1 sinα

cosα′ +
√
−1 sinα′ .

Now
1

cosα′ +
√
−1 sinα′ = cosα′ −

√
−1 sinα′,
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and therefore

cosα +
√
−1 sinα

cosα′ +
√
−1 sinα′ = (cosα +

√
−1 sinα)(cosα′ −

√
−1 sinα′)

= cos(α− α′) +
√
−1 sin(α− α′).

Consequently

(z2, z3; z1, z4) = |(z2, z3; z1, z4)|(cos(α− α′) +
√
−1 sin(α− α′)).

But the cross ratio (z2, z3; z1, z4) is a real number, because the complex num-
bers z1, z2, z3 and z4 lie on a circle (see Proposition 1.19), and consequently
α − α′ must be an integer multiple of π. Also 0 < α < π and 0 < α′ < π,
and therefore −π < α− α′ < π. It follows that α− α′ = 0, and thus α = α′,
as required.

Proposition 1.21 Let z1, z2, z3 and z4 be distinct complex numbers lying
on a circle in the complex plane, listed in anticlockwise around the circle, let
β be the angle between the lines joining z2 to z3 and z1, and let γ be the angle
between the lines joining z4 to z1 and z3. Then β + γ = π.

β

γ

z1

z2z3

z4

Proof It follows from the standard properties of complex numbers that

z1 − z2

z3 − z2
= |z1 − z2|

|z3 − z2|
(cos β +

√
−1 sin β),

z3 − z4

z1 − z4
= |z3 − z4|

|z1 − z4|
(cos γ +

√
−1 sin γ).

It now follows from the definition of cross-ratio that

(z2, z4; z1, z3)

20



= (z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

= z1 − z2

z3 − z2
× z3 − z4

z1 − z4

= |z1 − z2| |z3 − z4|
|z1 − z4| |z3 − z2|

(cos β +
√
−1 sin β)(cos γ +

√
−1 sin γ)

= |(z2, z4; z1, z3)| (cos(β + γ) +
√
−1 sin(β + γ)).

But the cross ratio (z2, z4; z1, z3) is a real number, because the complex num-
bers z1, z2, z4 and z3 lie on a circle (see Proposition 1.19), and consequently
β + γ must be an integer multiple of π. Also 0 < β < π and 0 < γ < π, and
therefore 0 < β + γ < 2π. It follows that β + γ = π, as required.

Proposition 1.22 Let z1, z2 and z3 distinct complex numbers lying on a
circle in the complex plane, listed in anticlockwise around the circle. Then
the angle between the lines joining z2 to z3 and z1 is equal to the angle between
the line joining z3 to z1 and the ray tangent to the circle at z1 that is directed
so that the point z2 and the tangent ray lie on opposite sides of the line that
passes through the points z1 and z3.

β

β ′ z1

z2
z3
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Proof Let β denote the angle between the lines joining z2 to z3 and z1. Also
let a point z4 be taken on the circle so that z1, z2, z3 and z4 are distinct and
moreover the points z2 and z4 lie on opposite sides of the line that passes
through z1 and z3, and let γ denote the angle between the lines joining z4 to
z1 and z3. It follows from Proposition 1.21 that β + γ = π.

β

γ

β ′
γ′

z1

z2
z3

z4

Now suppose that the point z4 moves along the circle towards the point
z1. As the point z4 approaches z1 the direction of the chord of the circle
from z4 to z1 approaches the direction of the ray tangent to the circle at
z1 that points into the side of the line through z1 and z3 in which z2 lies.
But the angle between the rays joining z4 to z1 and z3 remains constant as
z4 approaches z1. Consequently the angle γ′ between the tangent ray at z1
pointing into the side of the chord joining z1 to z3 and that chord itself is
equal to the angle γ. The angle β′ between the chord joining z1 and z3 and
the tangent ray pointing into the side of that chord opposite to z2 is then the
supplement of the angle γ′, where γ′ = γ, and therefore β′ + γ = π = β + γ.
Consequently β′ = β. The result follows.
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Proposition 1.23 Let a geometrical configuration be as depicted in the ac-
companying figure. Thus let ACB and ADB be circular arcs that cut at the
points A and B. Let the line joining points A and B be produced beyond A
and B to E and F respectively. Let AG and AH be tangent to the circular
arcs BCA and BDA respectively at A, where C and H lie on one side of AB
and D and G lie on the other. Also let the lines AC and AD be produced to
K and L respectively. Then the angle GAH is the sum of the angles KCB
and LDB.

A

B
C

D
E

F

G

H

K

L

Proof Applying results of previous propositions, together with standard ge-
ometrical results, we find that

∠GAB = ∠ACB (Proposition 1.22)
⇒ ∠EAG = ∠KCB (supplementary angles)

∠HAB = ∠ADB (Proposition 1.22)
⇒ ∠EAH = ∠LDB (supplementary angles)
⇒ ∠GAH = ∠EAG + ∠EAH

= ∠KCB + ∠LDB,

as required.
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Proposition 1.24 Let two circles in the complex plane intersect at points
represented by complex numbers z1 and z2, and let points represented by com-
plex numbers z3 and z4 be taken on arcs of the respective circles joining z1
and z2 so that the point representing z3 lies on the left hand side of the di-
rected line from z1 and z2 and the point represented by the point z4 lies on
the right hand side of that line (as depicted in the accompanying figure).

z1

z2
z3

z4

α

βγ

Then

(z1, z2; z3, z4) = |z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ),

where γ is the angle between the tangent lines to the two circles at the inter-
section point represented by the complex number z1.

Proof The configuration of the points z1, z2, z3 and z4 ensures that direction
of the line from z1 to z3 is transformed into the direction of the line from z3
to z2 by rotation clockwise through an angle α less than two right angles.
Similarly the direction of the line from z1 to z4 is transformed into the direc-
tion of the line from z4 to z2 by rotation anticlockwise through an angle β
less than two right angles. Basic properties of complex numbers therefore
ensure that

z2 − z3

z3 − z1
= |z2 − z3|

|z3 − z1|
(cosα−

√
−1 sinα).

z2 − z4

z4 − z1
= |z2 − z4|

|z4 − z1|
(cos β +

√
−1 sin β).

Now

cos β +
√
−1 sin β

cosα−
√
−1 sinα

= (cosα +
√
−1 sinα)(cos β +

√
−1 sin β)

= cos(α + β) +
√
−1 sin(α + β).
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Moreover the geometry of the configuration ensures that α + β = γ (Propo-
sition 1.23). Thus

z2 − z4

z4 − z1
× z3 − z1

z2 − z3

= |z2 − z4| |z3 − z1|
|z4 − z1||z2 − z3|

(cos γ +
√
−1 sin γ).

But
z2 − z4

z4 − z1
× z3 − z1

z2 − z3
= (z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
= (z1, z2; z3, z4).

The result follows.

Example The circles in the complex plane of radius 2 centred on −1 and
1 intersect at the points ±

√
3 i, where i =

√
−1. In this situation, take

z1 = −
√

3 i, z2 =
√

3 i, z3 = −1 and z4 = 1. Then

z3 z4

z2

z1

(z1, z2; z3, z4) = (−1 +
√

3 i)(1 −
√

3 i)
(−1 −

√
3 i)(1 +

√
3 i)

= 2 + 2
√

3 i
2 − 2

√
3i

= (2 + 2
√

3 i)2

(2 − 2
√

3i)(2 + 2
√

3i)

= 1
2

(−1 +
√

3 i)

It follows that (z1, z2; z3, z4) = cos γ +
√
−1 sin γ, where γ = 2

3π. Thus the
angle between the tangent lines to the circles at the intersection point z1
is thus 4

3 of a right angle. This is what one would expect from the basic
geometry of the configuration, given that the triangle with vertices z1, z3
and z4 is equilateral and the tangent lines to the circles are perpendicular to
the lines joining the point of intersection to the centres of those circles.
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Proposition 1.25 Let z1 and z2 be complex numbers representing the end-
points of a circular arc in the complex plane. Also, in the case where the
circular arc lies on the left hand side of the directed line from z1 to z2, let
points z3 and z4 be taken between z1 and z2 on the circular arc and the straight
line segment respectively, and, in the case where the circular arc lies on the
right hand side of the directed line from z1 to z2, let points z3 and z4 be
taken between z1 and z2 on the straight line segment and the the circular arc
respectively. Then

(z1, z2; z3, z4) = |z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ),

where γ is the angle between the tangent line to the circle at the intersection
point represented by the complex number z1 and the line obtained by producing
the chord joining z2 and z1 beyond z1.

Proof We consider the configuration in which the circular arc lies on the left
hand side of the directed line from z1 to z2. In that case the configuration is
as depicted in the accompanying figure. In this configuration the angle made

z1

z2
z3

z4

γ

γ

at z3 by the lines from z1 and z2 is equal to the angle between the chord from
z1 to z2 and the depicted tangent line. The complements of those angles are
then also equal to one another; these equal complements have been labelled
γ in the figure.

Also the direction of the line from z3 to z2 is obtained from the direction
of the line from z1 to z3 by rotation clockwise through an angle γ less than
two right angles. It follows that

z2 − z3

z3 − z1
= |z2 − z3|

|z3 − z1|
(cos γ −

√
−1 sin γ).

Also the direction of z2 − z4 is the same as that of z4 − z1, and therefore

z2 − z4

z4 − z1
= |z2 − z4|

|z4 − z1|
.
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It follows that

(z1, z2; z3, z4) = (z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

= z2 − z4

z4 − z1
× z3 − z1

z2 − z3

= |z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ).

We consider now the case in which the circular arc from z1 to z2 lies on
the right hand side of the directed line from z1 to z2. In this case the complex
numbers z3 and z4 represent points between z1 and z2 on the line and the
circular arc respectively, as depicted in the following figure.

z1

z2z3

z4
γ

γ

In this configuration, the angle sought is the angle γ, which in this case is
equal both to the angle between the depicted tangent line to the circle at z1
and the line that produces the chord joining z2 to z1 beyond z1. Moreover,
in this case

z2 − z4

z4 − z1
= |z2 − z4|

|z4 − z1|
(cos γ +

√
−1 sin γ)

and
z2 − z3

z3 − z1
= |z2 − z3|

|z3 − z1|
.

It follows in this case also that

(z1, z2; z3, z4) = (z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

= z2 − z4

z4 − z1
× z3 − z1

z2 − z3

= |z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ).

This completes the proof.

Proposition 1.26 Let two lines in the complex plane intersect at at point
represented by the complex number z1, and let points represented by z3 and z4
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be taken distinct from z1, one on each of the two lines, where these points are
labelled so that the direction of z3−z1 is obtained from the direction of z4−z1
by rotation anticlockwise through an angle γ less than two right angles. Then

(z1,∞; z3, z4) = |z3 − z1|
|z4 − z1|

(cos γ +
√
−1 sin γ).

Proof The cross-ratio in this situation is defined so that

(z1,∞; z3, z4) = z3 − z1

z4 − z1
.

Furthermore
z3 − z1

z4 − z1
= |z3 − z1|

|z4 − z1|
(cos γ +

√
−1 sin γ).

The result follows directly.

Lines in the complex plane correspond to circles on the Riemann sphere
that pass through the point at infinity. With that in mind, it can seen that
Propositions 1.24, 1.25 and 1.26 conform to a common pattern, and show
that, where two curves intersect at a point, each of those curves being either
a circle or a straight line, the angle between the tangent lines to those curves
at the point of intersection may be expressed in terms of the argument of an
appropriate cross-ratio.

Indeed, to determine the angle the tangent lines to two circles on the
Riemann sphere at a point p1 where they intersect, one can determine the
other point of intersection p2, a point p3 on one circular arc between p1 to
p2, and a point p4 on the other circular arc between p1 and p2. A positive
real number R and a real number γ satisfying −π < γ < π can then be
determined so that

(p1, p2; p3, p4) = R(cos γ +
√
−1 sin γ).

Then the angle between the tangent lines to those circles at the point p1 of
intersection, measured in radians, is then the absolute value |γ| of γ.

Proposition 1.27 Möbius transformations of the Riemann sphere P1 are
angle-preserving. Thus if two circles on the Riemann sphere intersect at a
point p of the Riemann sphere, and if a Möbius transformation µ maps p to a
point q of the Riemann sphere, then the angle between the tangent lines to the
original circles at the point p is equal to the angle between the tangent lines
to the corresponding circles at the point q, the corresponding circles being the
images of the original circles under the Möbius transformation.
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Proof The angle between the tangent lines to the original circles at p is
determined by the value of a cross ratio of the form (p1, p2; p3, p4), where
p1 and p2 are the points of intersection of the original circles, and p3 and
p4 lie on the circular arcs joining p1 to p2, with p4 on the right hand side
as the circle through p3 is traversed in the direction from p1 through p3
to p2. The angle between the tangent lines to the corresponding circles
at q is determined in the analogous fashion by the value of the cross ratio
(q1, q2; q3, q4), where qj is the image of pj under the Möbius transformation
sending the original circles to the corresponding circles. Proposition 1.18
ensures that (p1, p2; p3, p4) = (q1, q2; q3, q4). The result follows.

1.8 The Orientation-Preserving Property of Möbius
Transformations

A subset X of the complex plane C is said to be open if, given any complex
number w belonging to X, there exists an open disk in the complex plane
of sufficiently small radius centred on w that is wholly contained within the
set X.

Definition An invertible function φ:X → Y between open subsets X and
Y of the complex plane is said to be orientation-preserving if, given any
point w of X, paths that traverse circles of sufficiently small radius centred
on w once in the anticlockwise direction are mapped by φ to paths that wind
around φ(w) once in the anticlockwise direction.

Definition An invertible function φ:X → Y between open subsets X and Y
of the complex plane is said to be orientation-reversing if, given any point w
of X, paths that traverse circles of sufficiently small radius centred on w once
in the anticlockwise direction are mapped by φ to paths that wind around
φ(w) once in the clockwise direction.

The transformation of the complex plane that maps each complex number
to its complex conjugate is an example of an orientation-reversing transfor-
mation of the complex plane.

The composition of two orientation-preserving transformations between
open subsets of the complex plane is orientation-preserving, as is the com-
position of two orientation-reversing transformations between such subsets.
A transformation obtained on composing an orientation-preserving transfor-
mation with an orientation-reversing transformation is orientation-reversing,
as is a transformation obtained on composing an orientation-reversing trans-
formation with an orientation-preserving transformation.
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Proposition 1.28 A Möbius transformation of the Riemann sphere is ori-
entation-preserving over the open subset of the complex plane consisting of
those complex numbers that are not mapped to the element ∞ of the Riemann
sphere.
Proof Given complex numbers a and b, where a ̸= 0, let τa,b denote the
Möbius transformation of the Riemann sphere that maps ∞ to ∞ and maps
each complex number z to az + b. Also let κ denote the Möbius trans-
formation of the Riemann sphere that interchanges 0 and ∞ and maps z
to 1/z for all non-zero complex numbers z. Then any Möbius transforma-
tion of the Riemann sphere can be expressed as a composition of Möbius
transformations that are either of the form τa,b for appropriate coefficients
a and b or else coincide with the Möbius transformation κ. (See the proof
of Proposition 1.10.) It is not difficult to see that the transformations τa,b
restrict to orientation-preserving transformations of the complex plane. The
required result therefore follows from the observation that compositions of
orientation-preserving transformations as orientation-preserving, once we es-
tablish that the Möbius transformation κ, when restricted to the non-zero
complex numbers, is also an orientation-preserving transformation.

Consider a circle of radius s in the complex plane centred on 1, where
s < 1. If that circle is traversed in the anticlockwise direction, starting
at 1 + s and passing successively through 1 + s

√
−1, 1 − s and 1 − s

√
−1

before returning to 1 + s, then then that path is mapped by the Möbius
transformation κ to a path traversing a circle surrounding 1 and passing
successively through the points

1
1 + s

,
1 − s

√
−1

1 + s2 ,
1

1 − s
,

1 + s
√
−1

1 + s2 ,
1

1 + s
.

This latter path is traversed in an anticlockwise direction. Thus if a circle cen-
tred on 1 of sufficiently small radius is traversed in an anticlockwise direction,
then its image under the Möbius transformation κ will also be traversed in an
anticlockwise direction. A path traversing a sufficiently small circles centred
on any non-zero complex number w in the anticlockwise direction will then
be mapped to a path traversing a circle centred on w−1 in an anticlockwise
direction, because κ is equal to the composition of the successive orientation-
preserving transformations z 7→ w−1z, z 7→ z−1 and z 7→ w−1z. Consequently
κ restricts to an orientation-preserving transformation defined over the set
of non-zero complex numbers. We can therefore conclude that any Möbius
transformation of the Riemann sphere is indeed orientation-preserving when
restricted to the open subset of the complex plane consisting of those com-
plex numbers that are not mapped to the element ∞ of the Riemann sphere,
as required.
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2 The Disk Model of the Hyperbolic Plane

2.1 Inversion of the Riemann Sphere in the Unit Circle
Let D denote the open unit disk in the complex plane C, and in the Riemann
sphere, defined so that

D = {z ∈ C : |z| < 1}

and let S denote the unit circle in the complex plane C, and in the Riemann
sphere, defined so that

S = {z ∈ C : |z| = 1}
We define the inversion Ω of the Riemann sphere in the circle S bounding the
open unit disk D to be the transformation of the Riemann sphere defined
so that Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z. Then Ω(z) = z for all z ∈ S, and the composition Ω ◦ Ω of the
inversion Ω with itself is the identity transformation of the Riemann sphere.
Moreover Ω maps the open unit disk D into the region of the Riemann sphere
that lies outside the unit circle S.

The transformation Ω:P1 → P1 is characterized by the property that

Ω
(u
v

)
= v

u

for all complex numbers v and w that are not both zero.

Lemma 2.1 Let µ be a Möbius transformation of the Riemann sphere, and
let Ω be the inversion of the Riemann sphere in the unit circle, defined so that
Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex numbers z.
Also let a, b, c and d be complex coefficients determined so that

µ(z) = az + b

cz + d

for all complex numbers z for which cz + d ̸= 0. Then Ω ◦ µ ◦ Ω is also a
Möbius transformation, and moreover

Ω(µ(Ω(z))) = dz + c

bz + a

for all complex numbers z ∈ C for which bz + a ̸= 0.
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Proof The definition of Möbius transformations and of the inversion Ω of
the Riemann sphere in the unit circle ensure that

µ
(u
v

)
= au + bv

cu + dv
and Ω

(u
v

)
= v

u

for all complex numbers u and v that are not both zero. Consequently

Ω
(
µ
(

Ω
(u
v

)))
= Ω

(
µ

(
v

u

))
= Ω

(
a v + b u

c v + d u

)
= d u + c v

b u + a v

for all complex numbers u and v that are not both zero. The result follows.

Proposition 2.2 Let µ be a Möbius transformation of the Riemann sphere,
let D be the open unit disk in the complex plane, where

D = {z ∈ C : |z| < 1}

and let Ω be the inversion of the Riemann sphere in the unit circle that is
defined so that

Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1
z

for all z ∈ C \ {0}.

Then the Möbius transformation µ maps the unit disk D onto itself if and
only if both of the following two conditions are satisfied:

(i) Ω ◦ µ = µ ◦ Ω;

(ii) there exists at least one z ∈ D for which µ(z) ∈ D.

Proof First suppose that the Möbius transformation µ maps the unit disk D
onto itself. Let z be a complex number satisfying |z| = 1. If it were the case
that |µ(z)| < 1 then there would exist some complex number w for which
|w| < 1 and µ(w) = µ(z), because µ maps the open unit disk onto itself. But
this is not possible because all Möbius transformations are invertible. Next
we note that if it were the case that |µ(z)| > 1 then, for real numbers t that
are less than 1 but sufficiently close to 1, it would follow that |tz| < 1 but
|µ(tz)| > 1, contradicting the requirement that the Möbius transformation µ
map the open unit disk onto itself. Consequently |µ(z)| = 1. We conclude
therefore that the Möbius transformation µ maps the unit circle bounding the
open unit disk into itself. The same is true of the inverse of µ. Consequently
the Möbius transformation µ must map the unit circle onto itself.

Now let µ̂ = Ω◦µ◦Ω. Then µ̂ is a Möbius transformation of the Riemann
sphere (Lemma 2.1). Now Ω(z) = z and |µ(z)| = 1 for all complex numbers z
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satisfying |z| = 1. It follows that µ̂(z) = µ(z) for all complex numbers z sat-
isfying |z| = 1. Now two distinct Möbius transformations cannot coincide at
three or more points of the Riemann sphere. (see Corollary 1.17). Conse-
quently µ̂ = µ, and therefore Ω ◦ µ = µ ◦ Ω. It now follows directly that any
Möbius transformation that maps the unit disk D onto itself must satisfy
conditions (i) and (ii) in the statement of the proposition.

Conversely, suppose that Möbius transformation µ of the Riemann sphere
satisfies conditions (i) and (ii) in the statement of the proposition. Then
Ω◦µ = µ◦Ω. Let z be a complex number satisfying |z| ≠ 1. Then Ω(z) ̸= z.
It follows that µ(Ω(z)) ̸= µ(z), because Möbius transformations are invertible
transformations of the Riemann sphere, and therefore Ω(µ(z)) ̸= µ(z), from
which it follows that |µ(z)| ≠ 1. Consequently no complex number belonging
to the open unit disk D is mapped by the Möbius transformation D to a point
that lies on the unit circle. It follows that if one endpoint of a straight line
segment or circular arc contained in the open disk D is mapped by µ into D,
then the same must be true of the other endpoint of that straight line segment
or circular arc.

Now the complex numbers belonging to the unit disk D can be joined to
one another by straight line segments. Moreover condition (ii) in the state-
ment of the proposition ensures that at least one complex number belonging
to the unit disk D is mapped by the Möbius transformation µ into the unit
disk D. Consequently the unit disk is mapped into itself by the Möbius
transformation µ.

Moreover if the Möbius transformation µ has the property that Ω ◦ µ =
µ ◦ Ω then

Ω ◦ µ−1 = µ−1 ◦ µ ◦ Ω ◦ µ−1 = µ−1 ◦ Ω ◦ µ ◦ µ−1 = µ−1 ◦ Ω,

and consequently the inverse µ−1 of the Möbius transformation µ also satisfies
(i) and (ii) in the statement of the proposition, and therefore maps the open
unit disk D into itself. It follows that if the Möbius transformation µ satisfies
conditions (i) and (ii) then it must map the open unit disk D onto itself, as
required.

Corollary 2.3 Let µ be a Möbius transformation of the Riemann sphere,
and let S be the unit circle consisting of all complex numbers z for which
|z| = 1. Suppose that µ(S) ⊂ S and that |µ(0)| < 1. Then the Möbius
transformation µ maps the open unit disk onto itself. Moreover Ω◦µ = µ◦Ω,
where Ω is the inversion of the Riemann sphere in the unit circle S, defined
so that Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z.
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Proof Let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is a Möbius transformation of the Rie-
mann sphere (Lemma 2.1), and moreover µ̂(z) = µ(z) for all z ∈ S, because
µ(S) ⊂ S and Ω(z) = z for all z ∈ S. Now two distinct Möbius transforma-
tions cannot coincide at three or more points of the Riemann sphere. (see
Corollary 1.17). It follows that µ̂ = µ, and therefore Ω ◦ µ = µ ◦ Ω. The
required result now follows on applying Proposition 2.2.

Lemma 2.4 Given distinct complex numbers z1 and z2, where |z1| = |z2| =
1, there exists a Möbius transformation µ of the Riemann sphere mapping
the unit disk D onto itself for which µ(z1) = −1 and µ(z2) = 1.

Proof Choose a complex number z3 distinct from z1 and z2 for which |z3| =
1. Then there exists a unique Möbius transformation µ1 with the proper-
ties that µ1(z1) = −1, µ1(z2) = 1 and µ1(z3) = i. Möbius transformations
map circles to circles, and, given any three distinct complex numbers that
are not collinear, there exists exactly one circle in the complex plane pass-
ing through all three of these complex numbers. Consequently the Möbius
transformation µ1 must map the unit circle onto itself. If |µ1(0)| < 0 let
the Möbius transformation µ be identical to µ1; if |µ1(0)| > 1 or µ1(0) = ∞
let the Möbius transformation µ be defined so that µ(z) = 1/µ1(z) for all
complex numbers z for which µ1(z) ̸= 0. Then µ maps the unit circle onto
itself, µ(z1) = −1, µ(z2) = 1 and |µ(0)| < 1. Then µ(D) must map the open
unit disk onto itself (see Corollary 2.3). The Möbius transformation µ then
has the required properties.

Proposition 2.5 Let a and b be complex numbers satisfying |b| < |a|, and
let µ be the Möbius transformation of the Riemann sphere defined so that

µ(z) = az + b

b z + a
whenever b z + a ̸= 0,

µ(−a/b) = ∞ and µ(∞) = a/b in cases where b ̸= 0 and µ(∞) = ∞ in
cases where b = 0. Then |µ(z)| < 1 whenever |z| < 1, |µ(z)| = 1 whenever
|z| = 1, and |µ(z)| > 1 whenever |z| > 1 and bz + a ̸= 0. Moreover the
Möbius transformation µ maps the open unit disk {z ∈ C : |z| < 1} onto
itself.

Proof Calculating, we find that

|bz + a|2 − |az + b|2 = (bz + a)(bz + a) − (az + b)(a z + b)
= |b|2|z|2 + |a|2 + a bz + ab z

− |a|2|z|2 − |b|2 − a bz − ab z

= (|a|2 − |b|2)(1 − |z|2).
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Consequently |µ(z)| < 1 whenever |z| < 1, |µ(z)| = 1 whenever |z| = 1 and
|µ(z)| > 1 whenever |z| > 1 and bz + a ̸= 0.

Now the inverse µ−1 of the Möbius transformation µ is characterized by
the property that

µ−1(z) = az − b

−bz + a

for all complex numbers z for which −bz+a ̸= 0 (see Corollary 1.8). Because
the coefficients of this Möbius transformation µ−1 have properties analogous
to those of the Möbius transformation µ, we can conclude that µ−1 maps the
open unit disk into itself, and therefore µ maps the open unit disk onto itself,
as required.

Corollary 2.6 Let w be a complex number satisfying |w| < 1, and let µw

be the Möbius transformation of the Riemann sphere that is defined so that
µw(−1/w) = ∞, µ(∞) = 1/w and

µw(z) = z + w

1 + w z

for all complex numbers z distinct from −1/w. Then the Möbius transfor-
mation µw maps the open unit disk onto itself. Moreover

µw(tw) = t + 1
1 + |w|2t w

for all real numbers t distinct from −1/|w|2, and consequently the diameter
of the unit circle passing through 0 and w is mapped onto itself by the Möbius
transformation µw. In particular µw(0) = w and µw(−w) = 0.

Proposition 2.7 Let µ be a Möbius transformation of the Riemann sphere
that maps the unit circle {z ∈ C : |z| = 1} into itself and satisfies the
condition |µ(0)| < 1. Then there exist complex numbers a and b, where
|b| < |a|, such that

µ(z) = az + b

bz + a
for all z ∈ C for which az + b ̸= 0.

Proof The Möbius transformation µ maps the unit circle into itself, and
moreover |µ(0)| < 1. It follows from Corollary 2.3 that Ω ◦ µ = µ ◦ Ω, where
Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex numbers z.
Consequently µ = Ω ◦ Ω ◦ µ = Ω ◦ µ ◦ Ω because the composition of the
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inversion Ω with itself is the identity transformation of the Riemann sphere.
Let a0, b0, c0 and d0 be complex coefficients determined so that

µ(z) = a0z + b0

c0z + d0
whenever c0z + d0 ̸= 0.

Then the identity µ = Ω ◦ µ ◦ Ω ensures that

a0z + b0

c0z + d0
= d0z + c0

b0z + a0

for all complex numbers z for which a0z + b0 ̸= 0, a0 + b0z ̸= 0, c0z + d0 ̸= 0,
and c0 + d0z ̸= 0 (see Lemma 2.1). Consequently there exists some non-zero
complex number ω with the property that a0 = ωd0, b0 = ωc0, c0 = ωb0 and
d0 = ωa0 (see Proposition 1.9). It then follows that

a0 d0 = ω2a0d0.

But
|a0 d0| = |a0d0|.

It follows that |ω2| = 1, and therefore |ω| = 1. Accordingly a real number θ
can be found so that

ω = cos 2θ +
√
−1 sin 2θ.

Let
η = cos θ +

√
−1 sin θ.

It then follows from De Moivre’s Theorem that η2 = ω. Now η2 η2 = |η|4 = 1.
It follows that η2ω = 1. Let a = ηa0 and b = ηb0, c = ηc0 and d = ηd0. Then

µ(z) = az + b

cz + d
whenever cz + d ̸= 0.

Also a0 = ηa, b0 = ηb, c0 = ηc and d0 = ηd. Consequently

d = η d0 = ηωa0 = η2ωa = a

and
c = η c0 = ηωb0 = η2ωb = b.

Accordingly
µ(z) = az + b

b z + a
whenever b z + a ̸= 0.

Moreover |µ(0)| < 1, and consequently |b| < |a|, as required.
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2.2 The Poincaré Distance Function on the Unit Disk
Definition Let D be the open unit disk in the complex plane C, defined so
that

D = {z ∈ C : |z| < 1}.
The Poincaré distance function ρ on D is defined so that

ρ(z, w) = log
( |1 − w z| + |z − w|
|1 − w z| − |z − w|

)
for all complex numbers z and w satisfying |z| < 1 and |w| < 1.

Note that
|z − w|
|1 − w z| < 1

for all complex numbers z and w satisfying |z| < 1 and |w| < 1. (This
follows directly from Corollary 2.6). Consequently the Poincaré distance
ρ(z, w) between any two points z and w of the unit disk is a well-defined
positive real number.

Proposition 2.8 Let s and t be real numbers satisfying −1 < s < t < 1.
Then the Poincaré distance, in the unit disk, between s and t is given by the
formula

ρ(s, t) = log
(

1 + t

1 − t

)
− log

(
1 + s

1 − s

)
.

Proof Evaluating, and noting that 1 − st > 0 (because |s| < 1 and |t| < 1)
and |t− s| = t− s (since s < t by assumption), we find that

ρ(s, t) = log
( |1 − st| + |t− s|
|1 − st| − |t− s|

)
= log

(
1 − st + t− s

1 − st + s− t

)
= log

(
(1 − s)(1 + t)
(1 + s)(1 − t)

)
= log

(
1 + t

1 − t

)
− log

(
1 + s

1 − s

)
,

as required.
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Proposition 2.9 Let ρ be the Poincaré distance function on the open unit
disk D, and let δ be a positive real number. Then

{z ∈ D : ρ(z, 0) = δ} = {z ∈ D : |z| = R},

where
R = eδ − 1

eδ + 1
.

Proof It follows from the definition of Poincaré distance function that all
complex numbers z satisfying ρ(z, 0) = δ are equidistant from zero. They
therefore constitute a circle centred on zero. It remains to determine the
radius of that circle. Now it follows, on applying Proposition 2.8, that

δ = log
(

1 + R

1 −R

)
.

Consequently
eδ − 1 = 2R

1 −R
, eδ + 1 = 2

1 −R
,

and therefore
R = eδ − 1

eδ + 1
,

as required.

The Poincaré distance function ρ on the unit disk D has the property
that ρ(z, w) = ρ(w, z) for all z, w ∈ D. It therefore follows immediately from
Proposition 2.8 that

ρ(s, t) =
∣∣∣∣log

(
1 + t

1 − t

)
− log

(
1 + s

1 − s

)∣∣∣∣
for all real numbers s and t satisfying −1 < s < 1 and −1 < t < 1.

Lemma 2.10 Let z and w be complex numbers, and let Ω be the inversion of
the Riemann sphere in the unit circle, defined so that Ω(0) = ∞, Ω(∞) = 0
and Ω(z) = 1/z for all non-zero complex numbers z. Then

(z,Ω(z);w,Ω(w)) =
∣∣∣∣ z − w

1 − wz

∣∣∣∣2
for all complex numbers z and w with the exception of those pairs z, w for
which |z| = 1 and z = w.
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Proof Let z and w be complex numbers. Suppose that it is not the case that
|z| = 1 and z = w. Examination of possible cases shows that it is not then
possible for three of the complex numbers z, Ω(z), w and Ω(w) to coincide
with one another. Indeed if |z| ̸= 1 and |w| ̸= 1 then exactly two of the
points z,Ω(z), w,Ω(w) will lie in the unit disk consisting of those complex
numbers whose modulus is less than one, and therefore it is not possible for
any three of the four points to coincide with one another. If |z| = 1, it would
only be possible for three of the points z,Ω(z), w,Ω(w) to coincide with one
another if it were also the case that w = z. Consequently the cross-ratio
(z,Ω(z);w,Ω(w)) is defined in all cases with the exception of those where
|z| = 1 and w = z.

Now let u1 = z, v1 = 1, u2 = 1, v2 = z, u3 = w, v3 = 1, u4 = 1, v4 = w.
Then u1/v1 = z, u2/v2 = Ω(z), u3/v3 = w and u4/v4 = Ω(w). The definition
of cross-ratio then ensures that

(z,Ω(z);w,Ω(w)) = (u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

= (z − w)(w − z)
(1 − wz)(zw − 1)

=
∣∣∣∣ z − w

1 − wz

∣∣∣∣2 ,
as required.

Proposition 2.11 Let z and w be complex numbers satisfying |z| < 1 and
|w| < 1, and let ρ(z, w) denote the Poincaré distance between z and w. Then

ρ(z, w) = log

(
1 +

√
(z,Ω(z);w,Ω(w))

1 −
√

(z,Ω(z);w,Ω(w))

)
,

where Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z.

Proof Evaluating, and applying the result of Lemma 2.10, we find that

ρ(z, w) = log
( |1 − w z| + |z − w|
|1 − w z| − |z − w|

)

= log

1 + |z − w|
|1 − w z|

1 − |z − w|
|1 − w z|


= log

(
1 +

√
(z,Ω(z);w,Ω(w))

1 −
√

(z,Ω(z);w,Ω(w))

)
,
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as required.

Corollary 2.12 Let z and w be complex numbers satisfying |z| < 1 and
|w| < 1, and let ρ(z, w) denote the Poincaré distance between z and w.
Then the cross-ratio (z,Ω(z);w,Ω(w)) is expressed in terms of the Poincaré
distance according to the formula

(z,Ω(z);w,Ω(w)) =
(
eρ(z,w) − 1
eρ(z,w) + 1

)2

.

Proof Let q = (z,Ω(z);w,Ω(w)) and s = ρ(z, w). It follows from Proposi-
tion 2.11 that

s = log
(

1 + √
q

1 −√
q

)
.

Consequently

es − 1 =
2√q

1 −√
q
, es + 1 = 2

1 −√
q
,

and thus
q =

(
es − 1
es + 1

)2

.

The result follows.

Definition A transformation φ that maps the open unit disk D in the com-
plex plane onto itself is said to be an isometry (with respect to Poincaré
distance) if

ρ
(
φ(z), φ(w)

)
= ρ(z, w)

for all complex numbers z and w in the open unit disk D, where ρ denotes
the Poincaré distance function on D.

Proposition 2.13 Let D be the open unit disk in the complex plane, defined
so that D = {z ∈ C : |z| < 1}. Then every Möbius transformation of the
Riemann sphere that maps the open unit disk D onto itself is an isometry
with respect to the Poincaré distance function on D.

Proof The Möbius transformation µ has the property that µ ◦ Ω = Ω ◦ µ,
because it maps the unit disk onto itself (see Proposition 2.2). Moreover the
values of cross-ratios are preserved under the action of Möbius transforma-
tions (Proposition 1.18). Consequently(

µ(z),Ω(µ(z));µ(w),Ω(µ(w))
)

=
(
µ(z), µ(Ω(z));µ(w), µ(Ω(w))

)
=

(
z,Ω(z);w,Ω(w)

)
.
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The required result therefore follows immediately from an identity previously
established (Proposition 2.11) expressing the Poincaré distance ρ(z, w) in
terms of the cross-ratio (z,Ω(z);w,Ω(w)).

Proposition 2.14 Let z1, w1, z2 and w2 be elements of the open unit disk
D, where

D = {z ∈ C : |z| < 1}.
Suppose that ρ(z1, w1) = ρ(z2, w2), where ρ denotes the Poincaré distance
function on D. Then there exists a Möbius transformation µ mapping the
open unit disk D onto itself with the property that µ(z1) = z2 and µ(w1) = w2.

Proof The values of the cross-ratios

(z1,Ω(z1);w1,Ω(w1)) and (z2,Ω(z2);w2,Ω(w2))

are determined by the values of the Poincaré distances ρ(z1, w1) and ρ(z2, w2)
respectively (see Corollary 2.12). Consequently

(z1,Ω(z1);w1,Ω(w1)) = (z2,Ω(z2);w2,Ω(w2)).

It follows from this that there exists a unique Möbius transformation µ
with the properties that µ(z1) = z2, µ(Ω(z1)) = Ω(z2), µ(w1) = w2 and
µ(Ω(w1)) = Ω(w2), (see Proposition 1.18).

Now let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is itself a Möbius transformation
(Lemma 2.1) Then

µ̂(z1) = Ω(µ(Ω(z1))) = Ω(Ω(z2)) = z2,

µ̂(Ω(z1)) = Ω(µ(Ω(Ω(z1)))) = Ω(µ(z1)) = Ω(z2),
µ̂(w1) = Ω(µ(Ω(w1))) = Ω(Ω(w2)) = w2,

µ̂(Ω(w1)) = Ω(µ(Ω(Ω(w1)))) = Ω(µ(w1)) = Ω(w2).

Consequently the Möbius transformations µ and µ̂ both map z1, Ω(z1), w1
and Ω(w1) to z2, Ω(z2), w2 and Ω(w2) respectively. But two distinct Möbius
transformations cannot coincide at three or more points of the Riemann
sphere. (see Corollary 1.17). Consequently µ̂ = µ, and thus Ω ◦ µ = µ ◦ Ω.
Moreover elements z1 and z2 of the open unit disk D are mapped into D.
Applying Proposition 2.2, we conclude that the Möbius transformation µ
maps the open unit disk D onto itself. This completes the proof.

Proposition 2.15 Let D be the open unit disk in the complex plane, let w0
be a complex number lying in D, let δ be a positive real number, and let

Γ = {z ∈ D : ρ(z, w0) = δ}.
Then Γ is a circle contained within the open unit disk D. Moreover if w0 lies
on the real line then the centre of the circle Γ also lies on the real line.
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Proof Let
Γ0 = {z ∈ D : ρ(z, 0) = δ}.

Then Γ0 is a circle in the complex plane (see Proposition 2.9). Now there
exists a Möbius transformation µ mapping the open unit disk D onto it-
self with the property that µ(0) = w0 (see Corollary 2.6). Now the image
µ(Γ0) of the circle Γ0 must itself be a circle containined within the unit
disk. Indeed Möbius transformations map circles and straight lines to cir-
cles and straight lines (Proposition 1.10), and obviously µ(Γ0) cannot be a
straight line. Moreover µ(Γ0) = Γ, because Möbius transformations mapping
the open unit disk D onto itself are isometries with respect to the Poincaré
distance function ρ on the open unit disk (Proposition 2.13). The result
follows.

Proposition 2.16 Let ρ be the Poincaré distance function on the open unit
disk D in the complex plane, let t be a real number satisfying 0 < t < 1, and
let w be a complex number distinct from 0 and t for which |w| < 1. Then

ρ(0, w) ≤ ρ(0, t) + ρ(t, w).

Moreover ρ(0, w) = ρ(0, t) + ρ(t, w) if and only if the complex number w is a
positive real number for which t < w < 1.

Proof We first note that

ρ(0, t) = log
(

1 + t

1 − t

)
(see Proposition 2.8).

Given a complex number w in the unit disk that is distinct from 0 and t,
let real numbers s and u between −1 and 1 be determined so that

log
(

1 + t

1 − t

)
− log

(
1 + s

1 − s

)
= ρ(t, w)

and
log
(

1 + u

1 − u

)
− log

(
1 + t

1 − t

)
= ρ(t, w).

Then −1 < s < t < u < 1 and

ρ(s, t) = ρ(t, u) = ρ(t, w)

and consequently

ρ(s, u) = ρ(s, t) + ρ(t, u) = 2 × ρ(t, u) < 2 × ρ(0, u) = ρ(−u, u)
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(again applying Proposition 2.8). It follows that −u < s < t < u.
Let

Γ1 = {z ∈ D : ρ(z, 0) = ρ(u, 0)}
and

Γ2 = {z ∈ D : ρ(z, t) = ρ(u, t)}.
It follows from Proposition 2.15 that Γ1 and Γ2 are circles in the complex
plane, containined in the open unit disk D, whose centres lie on the real line.
The circle Γ1 passes through −u and u, and the circle Γ2 passes through s
and u. Now −u < s < u. It follows from elementary geometry that all points
of the circle Γ2 with the exception of the point u lie within the circle Γ1. Now
the point w lies on the circle Γ2. Therefore

ρ(0, w) ≤ ρ(0, u) = ρ(0, t) + ρ(t, u) = ρ(0, t) + ρ(t, w).

Moreover ρ(0, w) = ρ(0, t) + ρ(t, w) if and only if w = u, in which case w lies
on the real line and t < w < 1. The result follows.

Proposition 2.17 (Triangle Inequality for Poincaré Distance) The
Poincaré distance function ρ on the open unit disk D has the property that

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3)

for all complex numbers z1, z2 and z3 belonging to the disk D.

Proof This inequality follows directly in cases where any two of z1, z2 and
z3 coincide with one another. Accordingly it remains to prove that the in-
equality holds in cases where these three complex numbers are distinct.

Accordingly let z1, z2 and z3 be any three distinct points of the unit
disk D. There exists a real number t satisfying 0 < t < 1 determined so
that ρ(0, t) = ρ(z1, z2). There then exists a Möbius transformation µ that
maps the open unit disk onto itself and satisfies µ(0) = z1 and µ(t) = z2 (see
Proposition 2.14). Let w be the unique point of the open unit disk for which
µ(w) = z3. Then

ρ(0, w) ≤ ρ(0, t) + ρ(t, w).

(see Proposition 2.16). But the Möbius transformation µ is an isometry of
the Poincaré distance function (Proposition 2.13). Consequently

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3).

as required.
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Lemma 2.18 Let u be a real number satisfying 0 < u < 1 and let z be a
point of the open unit disk that does not lie on the real line between 0 and u.
Then

ρ(0, u) < ρ(0, z) + ρ(z, u),

where ρ denotes the Poincaré distance function on the open unit disk.

Proof A positive real number θ can be chosen for which t is a positive real
number, where

t = (cos θ +
√
−1 sin θ)z.

Let
w = (cos θ +

√
−1 sin θ)u.

The condition in the statement of the lemma regarding the location of z
ensures that the complex number w is not a real number lying between t and
1. It follows from Proposition 2.16 that

ρ(0, w) < ρ(0, t) + ρ(t, w).

Now rotations of the open unit disk about zero are isometries of the Poincaré
distance function defined on the unit disk. Consequently

ρ(0, u) < ρ(0, z) + ρ(z, u),

as required.

2.3 Hyperbolic Length
Definition Let Γ be a straight line segment or circular arc contained in the
open unit disk, and let p and q be points lying on Γ. We define the hyperbolic
length of Γ between the points p and q to be the smallest non-negative real
number L with the property that

ρ(z0, z1) + ρ(z1, z2) + · · · + ρ(zm−1, zm) ≤ L

for all choices of distinct points z0, z1, z2, . . . , zm−1, zm lying in order along
the line or curve Γ with z0 = p and zm = q.

Remark Those familiar with the concept of least upper bounds will note
that the hyperbolic length of Γ is, according to this definition, the least
upper bound of the values of the sums of the prescribed form.

Now a basic principle of real analysis asserts that if a non-empty set
of real numbers is bounded above, then that set has a least upper bound.
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Accordingly, in order to prove that any straight line segment or circular arc
contained within the open unit disk in the complex plane has a well-defined
hyperbolic length, provided that the endpoints of that segment or arc lie
within the open disk, it would be necessary to show that there exists some
positive real number M that is large enough to ensure that, whenever points
z0, z1, . . . , zm are taken in order along that segment or arc, then

m∑
j=1

ρ(zj, zj−1) ≤ M.

Now suppose that the straight line segment or circular arc is contained
within a disk of radius R centred on zero in the complex plane, where 0 <
R < 1. One can then establish the existence of a real constant K, determined
by R, such that ρ(z, z′) ≤ K|z−z′| for all complex numbers z and z′ satisfying
|z| ≤ R and |z′| ≤ R. One can then show that

m∑
j=1

ρ(zj, zj−1) ≤ KN,

where N is the Euclidean length of the straight line segment or arc in ques-
tion. Consequently the basic principle of real analysis described above guar-
antees that the segment or circular arc has a well-defined hyperbolic length.

Remark The definition given is applicable also to certain other curves be-
sides straight line segments and circular arcs, provided that those curves are
sufficiently well-behaved.

In particular, if the curve is parametrized by a real variable t so that the
the points of the curve are of the form x(t) +

√
−1 y(t), where x(t) and y(t)

are continuously differentiable real-valued functions of t as t increases from t0
to t1, then the hyperbolic length of the curve may be defined in the manner
described. Its value can be shown to be equal to the value of the integral

∫ t1

t0

2
1 − x2 − y2

√(
dx

dt

)2

+
(
dy

dt

)2

dt.

Given points p and q that lie on some straight line segment or circular
arc Γ in the open unit disk, let us denote by

Lhyp(Γ; p, q)

the hyperbolic length of Γ between the points p and q.
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Lemma 2.19 Let p, q be points lying on straight line segment or circular
arc Γ in the open unit disk. Then

Lhyp(Γ; p, q) ≥ ρ(p, q),

where Lhyp(Γ; p, q) denotes respectively the hyperbolic length of Γ between the
points p and q and ρ(p, q) denotes the Poincaré distance between p and q.

Proof This result follows directly from the definition of hyperbolic length.
(The criterion in that definition applies in particular to the case where the
collection of points along Γ between p and q just consists of the two points p
and q, with m = 1, z0 = p and z1 = q, employing the notation employed in
the definition of hyperbolic length given above.)

Proposition 2.20 Let p, q and r be points lying in order along a straight
line segment or circular arc Γ in the open unit disk. Then

Lhyp(Γ; p, r) = Lhyp(Γ; p, q) + Lhyp(Γ; q, r).

Proof Let z0, z1, z2, . . . , zn be points in order along Γ with z0 = p and zn = r.
Then either q = zk for some integer k between 1 and n−1 or else q lies between
zk−1 and zk for some integer k between 1 and n. In the case where q = zk
for some integer k between 1 and n− 1, we find that

n∑
j=0

ρ(zj−1, zj) =
k∑

j=0

ρ(zj−1, zj) +
n∑

j=k+1

ρ(zj−1, zj)

≤ Lhyp(Γ; p, q) + Lhyp(Γ; q, r).

In the case where q lies between zk−1 and zk for some integer k between 1
and n, the Triangle Inequality satisfied by the Poincaré distance function
(Proposition 2.17) ensures that

n∑
j=0

ρ(zj−1, zj) =
k−1∑
j=0

ρ(zj−1, zj) + ρ(zk−1, zk)

+
n∑

j=k+1

ρ(zj−1, zj)

≤
k−1∑
j=0

ρ(zj−1, zj) + ρ(zk−1, q)

+ ρ(q, zk) +
n∑

j=k+1

ρ(zj−1, zj)

≤ Lhyp(Γ; p, q) + Lhyp(Γ; q, r).
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It follows from these observations that

Lhyp(Γ; p, r) ≤ Lhyp(Γ; p, q) + Lhyp(Γ; q, r).

Now let some positive real number ε be given. Then there exist points
z0, z1, . . . , zm in order along Γ with z0 = p and zm = q such that

m∑
j=1

ρ(zj−1, zj) > Lhyp(Γ; p, q) − ε.

There also exist points zm, zm+1, . . . , zn in order along Γ with zm = q and
zn = r such that

n∑
j=m+1

ρ(zj−1, zj) > Lhyp(Γ; q, r) − ε.

Consequently
n∑

j=1

ρ(zj−1, zj) > Lhyp(Γ; p, q) + Lhyp(Γ; q, r) − 2ε.

It follows that

Lhyp(Γ; p, r) > Lhyp(Γ; p, q) + Lhyp(Γ; q, r) − 2ε

for all positive real numbers ε, and therefore

Lhyp(Γ; p, r) ≥ Lhyp(Γ; p, q) + Lhyp(Γ; q, r).

The inequalities established within the proof now enable us to conclude that

Lhyp(Γ; p, r) = Lhyp(Γ; p, q) + Lhyp(Γ; q, r),

as required.

Proposition 2.21 Let Γ be the straight line segment in the open unit disk
with endpoints p and q, where p and q are real numbers satisfying −1 < p <
q < 1. Then the hyperbolic length of Γ is equal to the Poincaré distance
ρ(p, q) between p and q.

Proof Let t0, t1, . . . , tm be real numbers for which

p = t0 < t1 < t2 < · · · < tm−1 < tm = q.
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Applying Proposition 2.8 we find that
m∑
j=1

ρ(tj−1, tj) =
m∑
j=1

(
log
(

1 + tj
1 − tj

)
− log

(
1 + tj−1

1 − tj−1

))
= log

(
1 + q

1 − q

)
− log

(
1 + p

1 − p

)
= ρ(p, q).

The result follows.

Proposition 2.22 Let µ be a Möbius transformation mapping the open unit
disk in the complex plane onto itself, and let Γ be a straight line segment or
circular arc contained within the open unit disk. Then the hyperbolic length
of the image µ(Γ) of Γ under the Möbius transformation µ is equal to the
hyperbolic length of Γ itself.

Proof This result follows from the definition of hyperbolic length, in view
of the fact that Möbius transformations that map the open unit disk onto
itself are isometries with respect to the Poincaré distance function (Proposi-
tion 2.13).

2.4 Geodesics in the Open Unit Disk
Definition We say that a straight line segment or circular arc contained
within the open unit disk in the complex plane is a geodesic if the hyperbolic
length of the segment or arc between any two points lying on it is equal to
the Poincaré distance between those two points.

Proposition 2.23 Möbius transformations mapping the open unit disk onto
itself map geodesics onto geodesics.

Proof Möbius transformations mapping the open unit disk onto itself are
isometries with respect to the Poincaré distance function (Proposition 2.13)
and they preserve hyperbolic distance (Proposition 2.22) The result therefore
follows immediately from these observations and the definition of geodesics
in the open unit disk.

Theorem 2.24 Let Γ be a straight line segment or circular arc contained
within the open unit disk in the complex plane. Then Γ is a geodesic if and
only if the straight line or circle of which it forms part intersects the unit
circle orthogonally.
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Proof First suppose that the straight line or circle of which Γ forms part
intersects the unit circle orthogonlly at points z1 and z2. It follows from
Lemma 2.4 that there exists a Möbius transformation µ of the Riemann
sphere mapping the unit disk D onto itself for which µ(z1) = −1 and µ(z2) =
1. Now Möbius transformations map circles and straight lines to circles
and straight lines (Proposition 1.10). Moreover they preserve the angles
between circles and straight line segments at their points of intersection (see
Proposition 1.27). Therefore the straight line or circle of which the image
µ(Γ) under the the Möbius transformation µ forms part must intersect the
unit circle orthogonally at −1 and 1, and consequently it must coincide with
the real line. We conclude therefore that µ(Γ) must be contained within the
real line.

It then follows from Proposition 2.21 µ(Γ) must be a geodesic. Now
Möbius transformations that map the open unit disk onto itself map geodesics
to geodesics (Proposition 2.23). Consequently Γ, being the image of geodesic
under the inverse of the Möbius transformation µ, must itself be a geodesic.

Now suppose that Γ is a geodesic. Let p and q be points lying on Γ, and
let u be the positive real number for which ρ(0, u) = ρ(p, q), where ρ denotes
the Poincaré distance function on the open unit disk. Then there exists a
Möbius transformation µ, mapping the open unit disk onto itself, which is
such as to ensure that µ(p) = 0 and µ(q) = u. Now Möbius transformations
map circles and straight lines to circles and straight lines (Proposition 1.10).
Consequently µ(Γ) is a straight line or circular arc on which lie the real
numbers 0 and u.

Suppose that µ(Γ) were to pass through some point z of the unit disk that
did not lie on the real line between 0 and u. Then, applying Lemma 2.18
and Proposition 2.20 it would follow that

Lhyp(µ(Γ); 0, u) = Lhyp(µ(Γ); 0, z) + Lhyp(µ(Γ); z, u)
≥ ρ(0, z) + ρ(z, u) > ρ(0, u).

Consequently µ(Γ) would not be a geodesic. It follows that Γ would not be a
geodesic, because Möbius transformations that map the open unit disk onto
itself map geodesics to geodesics (Proposition 2.23).

We conclude therefore that if Γ is a geodesic, and if µ is a Möbius trans-
formation mapping the points p and q of Γ to 0 and u respectively, where
0 < u < 1 and ρ(0, u) = ρ(p, q), then all points of µ(Γ) must lie on the real
line.

Now the real line cuts the unit circle orthogonally at the points of inter-
section. Also Möbius transformations preserve the angles between circles and
straight line segments at their points of intersection (see Proposition 1.27).
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Therefore the straight line or circle of which Γ forms part must also intersect
the unit circle orthogonally, as required.

2.5 Complete Geodesics
Definition A geodesic contained within the open unit disk is said to be
complete if it is the intersection of the open unit disk with a straight line or
circle in the complex plane.

Proposition 2.25 Given two complete geodesics in the open unit disk D,
there exists a Möbius transformation of the Riemann sphere that maps the
open unit disk D onto itself and maps one complete geodesic onto the other.

Proof Let Γ1 and Γ2 be complete geodesics in the open unit disk D, and
let I be the geodesic joining −1 and 1 that is the intersection of the disk D
with the real axis of the complex plane. Then, given distinct points p1
and q1 lying on Γ1, there exists a Möbius transformation µ1 that maps the
segment of Γ1 with endpoints p1 and q1 into the real line. Then µ1 maps the
complete geodesic Γ1 onto the complete geodesic I. Similarly there exists a
Möbius transformation that maps the complete geodesic Γ2 onto the complete
geodesic I. Then µ−1

2 ◦µ1 is a Möbius transformation of the Riemann sphere
that maps the open unit disk D onto itself and also maps the complete
geodesic Γ1 onto the complete geodesic Γ2, as required.

2.6 Geodesic Rays and Segments
Definition A geodesic segment is a geodesic that is a straight line segment
or circular arc whose endpoints both lie within the open unit disk.

Definition A geodesic ray is a geodesic that has an endpoint within the
open unit disk and which includes that endpoint together with all points of
a complete geodesic that lie between the endpoint and some point at which
the straight line or circle of which the geodesic ray forms part crossses the
unit circle that bounds the open unit disk.

2.7 The Group of Hyperbolic Motions of the Disk
Definition Let X be a subset of the complex plane. A collection of invertible
transformations of the set X is said to be a transformation group acting on
the set X if the following conditions are satisfied:

(i) the identity transformation belongs to the collection;
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(ii) any composition of transformations belonging to the collection must
itself belong to the collection;

(iii) the inverse of any transformation belonging to the collection must itself
belong to the collection.

The collection of all Möbius transformations of the Riemann sphere that
map the open unit disk {z ∈ C : |z| < 1} onto itself is a transformation group
acting on the open unit disk. Indeed the identity transformation is a Möbius
transformation mapping the open unit disk onto itself, the composition of
any two Möbius transformations that each map the open unit disk onto itself
must also map the open unit disk onto itself, and the inverse of any Möbius
transformation that maps the open unit disk onto itself must also map the
open unit disk onto itself.

Definition Let D be the open unit disk in the complex plane, defined so
that D = {z ∈ C : |z| < 1}, and let κ:D → D be the transformation of
the open unit disk defined so that κ(z) = z for all z ∈ D, where z denotes
the complex conjugate of the complex number z. A transformation of the
open unit disk is said to be a hyperbolic motion of the unit disk if either
it is a Möbius transformation mapping the unit disk D onto itself or else it
expressible as a composition of transformations of the form µ ◦ κ, where µ is
a Möbius transformation mapping the open unit disk onto itself.

Möbius transformations give rise to orientation-preserving transforma-
tions of the complex plane (see Proposition 1.28 and the discussion of orien-
tation-preserving and orientation-reversing transformations of the complex
plane that follows the proof of that proposition). Also the transformation
κ:D → D that maps each complex number z in D to its complex conjugate z
is orientation-reversing. Consequently a composition of two transformations
in which some Möbius transformation follows the complex conjugation trans-
formation κ is orientation-reversing.

Orientation-preserving hyperbolic motions are the analogues, in hyper-
bolic geometry, of transformations of the flat Euclidean plane that can be
represented as the composition of a rotation followed by a translation.

Orientation-reversing hyperbolic motions are the analogues, in hyperbolic
geometry, of reflections and glide reflections of the flat Euclidean plane.

Proposition 2.26 Let D be the open unit disk in the complex plane, con-
sisting of those complex numbers z that satisfy |z| < 1. Then, given any
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orientation-preserving hyperbolic motion φ of the open unit disk D, there
exist complex numbers a and b, where |b| < |a|, such that

φ(z) = az + b

b z + a
for all z ∈ D.

Similarly, given any orientation-reversing hyperbolic motion φ of the open
unit disk D, there exist complex numbers a and b, where |b| < |a| such that

φ(z) = a z + b

b z + a
for all z ∈ D.

Proof This result follows directly on applying Proposition 2.7.

Proposition 2.27 The collection of all hyperbolic motions of the open unit
disk is a transformation group acting on the open unit disk.

Proof The identity transformation is a Möbius transformation that maps
the open unit disk onto itself and is thus a hyperbolic motion. Next let µ1
and µ2 be Möbius transformations that map the open unit disk onto itself,
Then κ◦µ2 ◦κ is also a Möbius transformation that maps the open unit disk
onto itself. Indeed there exist complex numbers a2 and b2, where |b2| < |a2|,
such that

µ2(z) = a2z + b2

b2 z + a2

for all complex numbers z for which b2 z+a2 ̸= 0 (see Proposition 2.7). Then

κ(µ2(κ(z))) = a2z + b2

b2 z + a2
,

and therefore κ ◦ µ ◦ κ is also a Möbius transformation that maps the open
unit disk D onto itself. Now

µ1 ◦ (µ2 ◦ κ) = (µ1 ◦ µ2) ◦ κ, (µ1 ◦ κ) ◦ µ2 = (µ1 ◦ (κ ◦ µ2 ◦ κ)) ◦ κ

and
(µ1 ◦ κ) ◦ (µ2 ◦ κ) = µ1 ◦ (κ ◦ µ2 ◦ κ).

Moreover µ1 ◦ µ2 and µ1 ◦ (κ ◦ µ2 ◦ κ), being compositions of Möbius trans-
formations that map the open unit disk onto itself, are themselves Möbius
transformations that map the open unit disk onto itself. It follows from this
observation that any composition of hyperbolic motions of the open unit disk
is itself a hyperbolic motion of the open unit disk. Also

(µ2 ◦ κ)−1 = κ ◦ µ−1
2 = (κ ◦ µ−1

2 ◦ κ) ◦ κ,
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and the inverse of any Möbius transformation that maps the open unit disk
onto itself must itself be a Möbius transformation that maps the open unit
disk onto itself. Consequently the inverse of any hyperbolic motion is itself a
hyperbolic motion. It follows that the collection of all hyperbolic motions of
the open unit disk is indeed a transformation group acting on the open unit
disk.

Proposition 2.28 Let Γ be a complete geodesic in the open unit disk D.
Then there exists an orientation-reversing hyperbolic motion φ with the prop-
erty that φ(z) = z for all complex numbers z that lie on the geodesic Γ and
also those points of the open unit disk D that lie on one side of the geodesic Γ
are mapped by φ to points that lie on the other side of Γ.

Proof Let I be the set of real numbers t that satisfy the inequalities −1 <
t < 1. Then I is a complete geodesic in the open unit disk D. There
then exists a Möbius transformation µ that maps the geodesic I onto the
geodesic Γ. (see Proposition 2.25). Let φ = µ ◦ κ ◦ µ−1, where κ(z) = z
for all z ∈ D. Then the orientation-reversing hyperbolic motion Γ has the
required properties.

Proposition 2.29 Let z1, w1, z2 and w2 be complex numbers belonging to
the open unit disk D. Suppose that ρ(z1, w1) = ρ(z2, w2), and suppose also
that one of the sides of the geodesic Γ1 in D passing through z1 and w1 has
been chosen, and that one of the sides of the geodesic Γ2 in D passing through
z2 and w2 has also been chosen. Then there exists a hyperbolic motion φ with
the following properties: φ(z1) = z2; φ(w1) = w2; φ maps complex numbers
on the chosen side of the geodesic Γ1 to complex numbers on the chosen side
of the geodesic Γ2.

Proof It follows from Proposition 2.14 that there exists a Möbius transfor-
mation that maps the open unit disk onto itself and also maps z1 and w1 to
z2 and w2 respectively. If this Möbius transformation does not itself map the
chosen side of Γ1 to the chosen side of Γ2, then it may be composed with an
orientation-reversing hyperbolic motion that fixes all complex numbers of the
geodesic Γ2 whilst mapping complex numbers on one side of Γ2 to complex
numbers on the other side. The result follows.

2.8 The Hyperbolic Centre of a Circle in the Disk
Proposition 2.30 Let w be a complex number belonging to the open unit
disk D in the complex plane, and let ρ denote the Poincaré distance function
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on D. Let δ be a positive real number. Then

{z ∈ D : ρ(z, w) < δ} =
{
z ∈ D :

∣∣∣∣ z − w

1 − w z

∣∣∣∣ < R

}
,

where
R = eδ − 1

eδ + 1
.

Proof Let
µw(z) = z + w

1 + wz
for all complex numbers z. Then µw is a Möbius transformation mapping
the open unit disk onto itself for which µw(0) = w (see Corollary 2.6). Now
Möbius transformations mapping the open unit disk onto itself are isome-
tries with regard to the Poincaré distance function (see Proposition 2.13).
Consequently

{z ∈ D : ρ(z, w) < δ} = {z ∈ D : ρ(µ−1
w (z), 0) < δ}.

The required result now follows on applying Proposition 2.9.
Definition Let D be the open unit disk in the complex plane that consists
of those complex numbers z satisfying |z| < 1, and let C be a circle in the
complex plane that is contained within D. A complex number w is said to
be the hyperbolic centre of the circle C if the Poincaré distance between z
and w is the same for all points z that lie on the circle C.
Proposition 2.31 Let C be a circle in the complex plane that is contained
within the open unit disk D. Suppose that the circle C intersects the real
axis at real numbers u and v, where −1 < u < v < 1. Suppose also that
the hyperbolic centre of the circle C lies on the real axis, and is located at t,
where u < t < v. Then (

1 + t

1 − t

)2

= (1 + u)(1 + v)
(1 − u)(1 − v)

.

Proof Applying Proposition 2.8, we find that t, u and v must satisfy the
identity

log
(

1 + v

1 − v

)
− log

(
1 + t

1 − t

)
= log

(
1 + t

1 − t

)
− log

(
1 + u

1 − u

)
.

Consequently

2 log
(

1 + t

1 − t

)
= log

(
1 + u

1 − u

)
+ log

(
1 + v

1 − v

)
.

The required result then follows on taking the exponential of both sides of
this identity.
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