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1 Mobius Transformations and Cross-Ratios

1.1 Stereographic Projection

Let a sphere in three-dimensional spaces be given, let C' be the centre of that
sphere, let AB be a diameter of that sphere with endpoints A and B, and let
P be the plane through the centre of the sphere that is perpendicular to the
diameter AB. Given a point D of the sphere distinct from the point A, the
image of D under stereographic projection from the point A is defined to be
the point E at which the line passing through the points A and D intersects
the plane P.

B

A

Proposition 1.1 Let S? be the unit sphere in R3, consisting of those points
(u,v,w) of R? that satisfy the equation u* + v* + w? = 1, and let P be the
plane consisting of those points (u,v,w) of R® for which w = 0. Then, for
each point (u,v,w) of S% distinct from the point (0,0, —1), the straight line
passing through the points (u,v,w) and (0,0, —1) intersects the plane P at
the point (z,y,0) at which

u v

* w+1 ane -y w+1

Proof Let A = (0,0,—1), D = (u,v,w) and E = (x,y,0). Then the dis-
placements of the points D and F from the point A are represented by the
vectors (u,v,w + 1) and (x,y, 1) respectively. These vectors are parallel be-
cause the points A, D and E are collinear. Consequently




The result follows. |

(0,0,1)

(0,0,—-1)

Definition Let (u,v,w) be a point on the unit sphere distinct from the
point (0,0, —1), where u? + v? + w? = 1, and let (z,y) be a point of the
plane R%. We say that the point (z,y) is the image of the point (u,v,w)
under stereographic projection from the point (0,0, —1) if

u v

and y= :
w+1 w+1

Tr =

Proposition 1.2 FEach point (z,y) of R? is the image, under stereographic
projection from the point (0,0, —1), of the point (u,v,w) of the unit sphere
for which

2z 2y l—2—y
V=" UV=—""— = —.
1422 +y? 1422 +y? 1422 +y?

This point (u,v,w) is distinct from the point (0,0, —1).

Proof Given a point (z,y) of R?, the straight line passing through the points
(0,0,—1) and (x,y,0) is not tangent to the unit sphere, and therefore inter-
sects the unit sphere at some point distinct from (0,0, —1). It follows that
every point of R? is the image, under stereographic projection from (0,0, —1),
of some point of the unit sphere distinct from the point (0,0, —1).



Let (x,y) be the image, under stereographical projection from the point
(0,0,—1), of a point (u,v,w), where u*> +v?> + w? =1 and w # —1. Then

U v
Tr = s y:
w+1 w+ 1
It follows that
s o ur40? l—w? 1-w

(w+1)?2 (w+1? w+l

It follows that
w(@? +y*) +2* +y° =1-w,

and therefore

1_1.2_3/2
T Ty
But then ) )
1+w:1—i—1_m Y- 2

1+a2+y?  1+a2+y?
and therefore

2z
pu— 1 = —-———
u (14+w)x e
2y
= (1 = .
v (1+w)y 1+22+9y?
Conversely if
2z 2y q 1— a2 —q?
U=——-— v=——"—— and w=-—--—"—.
L+ a2+ 92 1L+ 22+ 92 1+ 22 492
then A2 4 12 2, 2)2
1— 22—
w4+ w? = (=° +y°) + ( z* —y°) —1,
(1 + 22 + y?)?
because

4@+ + (1 —2” —y?)°
= 4"+ ) +1 -2 +y°) + (2 + )
= 1+42(2* + %) + (2% + ¢*)?
= (et )
Also w > —1 and

u v
d y= .
and vy o1

Tr =
w—+1

The result follows. |}



1.2 The Riemann Sphere

The Riemann sphere P! may be defined as the set C U {oo} obtained by
augmenting the system C of complex numbers with an additional element,
denoted by oo, where oo is not itself a complex number, but is an additional
element added to the set, with the additional conventions that

z 00
z+00=00, owWX00=00, —=0 and — =00
00 z

for all complex numbers z, and
Z X 00 = 00, and — =00

for all non-zero complex numbers z. The symbol oo cannot be added to, or
subtracted from, itself. Also 0 and oo cannot be divided by themselves.

Note that, because the sum of two elements of P! is not defined for every
single pair of elements of P!, this set cannot be regarded as constituting a
group under the operation of addition. Similarly its non-zero elements cannot
be regarded as constituting a group under multiplication. In particular, the
Riemann sphere cannot be regarded as constituting a field.

The following proposition follows directly from Proposition 1.2.

Proposition 1.3 Let p: P! — R? be the mapping from the Riemann sphere
P! to R? defined such that p(oo) = (0,0, —1) and

go(x+y\/—_1):( 2 2y 1—x2—y2>

L+ a2 492 1+a2+y? 1422 +y?

for all real numbers x and y. Then the map ¢ sets up a one-to-one corre-
spondence between points of the Riemann sphere P! and points of the unit
sphere S% in R3. To each point of the Riemann sphere P! there corresponds
exactly one point of the unit sphere S? in three-dimensional Euclidean space,
and vice versa. Moreover if (u,v,w) is a point of the unit sphere S* distinct
from (0,0, —1) then (u,v,w) = p(x + y+/—1), where

u v
and y = .
w+1 w+1

r =

1.3 Mobius Transformations

Definition Let a, b, ¢ and d be complex numbers satisfying ad — bc # 0.
The Mdbius transformation pp.q: P' — P! with coefficients a, b, ¢ and d is



defined to be the function from the Riemann sphere P! to itself determined
by the following properties:

az+b
cz+d

N/a,b,c,d(z) -

for all complex numbers z for which cz + d # 0; papca(—d/c) = oo and
“a,b,c,d(oo) = CL/C if ¢ 7é 0; N(ab,qd(oo) = o0 if ¢ = 0.

Note that the requirement in the above definition of a Mobius transfor-
mation that its coefficients a, b, ¢ and d satisfy the condition ad — bc # 0
ensures that there is no complex number for which az +b and ¢z +d are both
zZero.

Let A be a non-singular 2 x 2 matrix whose coefficients are complex

numbers, and let
a b
e

We denote by 14 the Mobius transformation giq .4 with coefficients a, b, c,
d, defined so that

az+0b
if d # 0;
pa(z) = cz+d ifez+d7#0;
00 if c#0and z = —d/¢;

{g if ¢ # 0;
c

oo ife=0.

pa(oo) =

Lemma 1.4 Let A be a non-singular 2 X 2 matrix with complex coefficients,

and let ,
a
A_<C d).

The corresponding Mdbius transformation pa can then be characterized as the
unique function mapping the Riemann sphere P! to itself with the property

that
(u) B au + bv
Ha v)  cu+dv

for all complex numbers w and v that are not both zero (where u/v = oo in
all cases, and in only those cases, where u # 0 and v =0).

Proof Every point of the Riemann sphere may be expressed as a quotient
of the form u/v, where u and v are complex numbers that are not both zero,
and where u/v = oo in all cases, and in only those cases, where u # 0 and



v = 0. Let u, v, ' and v are complex numbers, where u and v are not
both zero, where u' and v" are not both zero, and where u/v = u’/v’. Then
either v and v" are both non-zero or else u/v = oo, in which case v = v' = 0.
If v and v" are both non-zero then there exists a unique non-zero complex
number w for which v" = wv, and then v’ = v'u/v = wu. If v = v = 0 then
u # 0 and ' # 0, and then v = wu and v' = wv, where w = v’ /u.

We conclude that, in all cases with u and v not both zero, v’ and v’ not
both zero and u/v = u'/v’, there exists some non-zero complex number w
such that ' = wu and v = wv. But then au + bv and cu + dv are not both
zero, because the matrix A is non-singular, au’ + bv’ and cu’ + dv’ are not
both zero, for the same reason, and

au' +bv'  w(au+bv)  au+bv
ca +dv w(cu+dv)  cutdv

Consequently there exists a well-defined function p: P! — P!, mapping the
Riemann sphere to itself, characterized by the property that

o(D)-ara

for all complex numbers v and v with the property that v and v are both
ZETO.
Now if v # 0 and z = u/v then

u> _au+bv azv+bv  az+b

Mz)z”(; _cu+dv:czv~|—dv:cz+d:'u‘4(z)'

On the other hand, if v = 0 then u # 0 and u/v = oo, and therefore
u auw a
p(oo) = i (2) = 2 = 2 = pa(o0).
We conclude therefore that 1 = 4. The result follows. |}

Proposition 1.5 The composition of any two Médbius transformations is a
Mdébius transformation. Specifically let A and B be non-singular 2 X 2 matri-
ces with complex coefficients, and let pa and ppg be the corresponding Mdbius
transformations of the Riemann sphere. Then the composition pa o pug of
these Mobius transformations is the Mdobius transformation pap of the Rie-
mann sphere determined by the product AB of the matrices A and B.

AZ(Z Z) and B:({l Z»)’

6

Proof Let



and let
AB:(m ”)
b q

m=af +bh, n=ag+ bk,

Then

p=cf+dh and q=cg-+dk.

Now let © and v be complex numbers that are not both zero. Then
fu+gv and hu+ kv are not both zero, because the matrix B is non-singular.
Applying Lemma 1.4, we see that

(o0 (7)) = ma(faiie)
a(fu+ gv) + b(hu + kv)

c(fu+ gv) + d(hu + kv)

mu + nv U
pu + qu v

The result follows. |

Corollary 1.6 Let a, b, ¢ and d be complex numbers satisfying ad — bc # 0,

let
A:(a b) and C’z( d _b>,
c d —Cc a
and let pa and pe be the corresponding Mobius transformations, defined so

that
<E>_au—|—bv and (2) = du — bv
Ha v)  cu+dv fe  —cu+av

for all complex numbers u and v that are not both zero. Then the map-
ping pa: Pt — P! is invertible, and its inverse is the Mobius transformation
He: P! — P!

Proof Let
ad — be 0
M = < 0 ad — be ) ’

Then AC' = CA = M. It follows from Proposition 1.5 that

pa © pie = fic © pia = piyr = Idpr,

where Idp1 denotes the identity map of the Riemann sphere. The result
follows. |}



1.4 Inversion of the Riemann Sphere in its Equatorial
Circle

Let S? denote the unit sphere in R3, defined so that
S? = {(u,v,w) € R* : v + v + w? = 1},

and let us refer to the points (0,0,1) and (0,0, —1) as the North Pole and
South Pole respectively. Let E denote the Equatorial Plane in R3, consisting
of those points whose Cartesian coordinates are of the form (z,y,0), where
x and y are real numbers.

Stereographic projection from the South Pole maps each point (u, v, w)
of the unit sphere S? distinct from the South Pole to the point (z,v,0) of
the equatorial plane E for which

v
w1

r=— and Yy =
w1
Moreover a point (z,y,0) of the Equatorial Plane E is the image under
stereographic projection from the South Pole of the point (u,v,w) of the
unit sphere S? for which

2x 2y 1 — a2 —q?
U=—-, V=7T"—"-—"--, W=_—">"-.
1L+ a2 492 1+ a2 492 L+ a2 492

We can also stereographically project from the North Pole. Note that,
given a point in the Equatorial Plane, reflection in that Equatorial Plane will
interchange the points of the sphere corresponding to it under stereographic
projection from the North and South Poles. Thus a point (u,v,w) of the
unit sphere S? distinct from the North Pole corresponds under stereographic
projection to the point (z,y,0) of the Equatorial Plane E for which

v

U
r=—— and y=

1—w 1—w’

In the other direction, a point (z,y, 0) of the Equatorial Plane E corresponds
under stereographic projection from the North Pole to the point (u, v, w) of
the unit sphere S? for which

2 2y 49?1

Uu=-———, v=———- wWw=-——.

1+ 22 +y? 1+ 22 +y? 1+ 22 + 2
Proposition 1.7 Let O denote the origin (0,0,0) of the Equatorial Plane E,

where
E={(z,y,2) € R®: 2z =0},

8



and let A be a point (x,y,0) of E distinct from the origin O. Let C be the
point on the unit sphere S? that corresponds to A under stereographic pro-
jection from the North Pole (0,0,1), and let B be the point of the Equatorial
Plane E that corresponds to C' under stereographic projection from the South
Pole. Then B = (p,q,0), where

x p Y
= — an = ——0.
p T2 + yQ q xr2 + y2
Thus the points O, A and B are collinear, and the points A and B lie on the
same side of the origin O. Also the distances |OA| and |OB| of the points A
and B from the origin satisfy |OA| x |OB| = 1.

Proof Let (z,y,0) be a point of the Equatorial plane E distinct from the
origin. This point is the image, under stereographic projection from the
North Pole (0,0,1) of the point (u,v,w) of the unit sphere S? for which

2 2y 4 y?—1
V=, V= W= _—.
1+ 22 4 ¢? 1+ 22 4 ¢? 1+ 22 4 y?

This point then gets mapped under stereographic projection from the South
Pole to the point (p, ¢,0) of the Equatorial Plane E for which

U d v
= — an g
P=% +1 = +1
Now o4 )
wilo 2ty
1+ a2 +2
It follows that
T q Y
— an = 0.
.CEQ + y2 q ,TQ + y2

Finally we note that O, A and B are collinear, where 0 = (0,0,0), A =
(x,y,0) and B = (p, ¢,0), and the points A and B lie on the same side of the
origin O. Also

1
|OA| = /22 4+ y?, and |OB|=-——,

$2+y2

and therefore |OA| x |OB| = 1, as required. ||



1.5 The Action of Mobius Transformations on the Rie-
mann Sphere

Proposition 1.8 Let pi, po, ps be distinct points of the Riemann sphere P!,
and let qi,q,qs also be distinct points of P1. Then there exists a unique
Mobius transformation u: Pt — P! of the Riemann sphere with the property

that p(p;) = gq; for j =1,2,3.

Proof First we show that, given distinct points p;, p and p3 of the Rie-
mann sphere, there exists a Mobius transformation ,u;;hpws:l?l — P! with
the property that py . (p1) = o0, w5 .o (p2) = 0 and py o (p3) = 1.
Now there exist complex numbers u; and v; for j = 1,2, 3 such that u; and
v; are not both zero and wu;/v; = p; for j = 1,2,3. Then u;v3 — ugv; and
UoU3 — U3V are non-zero, because the points py, p» and p3 of the Riemann
sphere are specified to be distinct.

Also let u and v be complex numbers that are not both zero. Were it the
case that

ULV — UV = UV — ULy = 0

then the point u/v of the Riemann sphere would coincide with both p; and
P2, which is impossible, given that p; and p, are specified to be distinct.

We conclude therefore that, for distinct points py, p2, p3 of the Riemann
sphere, and for any complex numbers v and v that are not both zero, the
complex numbers

(u1v3 — uzvy)(ugv — uvy) and  (ugus — ugve)(ugv — uwy)

are not both zero, and consequently there is a well-defined element 1% . (u/v)
of the Riemann sphere characterized by the property that

u) _ (u1v3 — uzvy ) (ugv — uvy)

*
Fp1p2ps (v (ugv3 — uzvz)(u1v — uvy)

for all complex numbers u and v that are not both zero. Then the function
sending u/v to i . (u/v) for all complex numbers u and v that are not
both zero is a Mobius transformation of the Riemann sphere. Moreover

Hp1 pa.s (p1) = oo, 'u;,pz,pa(pQ) =0 and gy 00, (p3) = 1.

Now let pi, p2 and p3 be distinct points of the Riemann sphere and also
let g1, g2 and g3 be distinct points of the Riemann sphere. Then there exist
Mobius transformations i o :P* — Pt and g . . :P' — P! characterized
by the properties that

'u;l,m,p:s(pl) = 00, 'u;hpmpzs(pz) =0, N;Lpzm:s(p?’) =1,

10



uZl’qQ"B <QI) =0 M;,qw}s (QQ) =0 and :U’Zl,tp,% (Q3) =L

Let p: P! — P! be the Mobius transformation of the Riemann sphere defined
such that

*—1 *
H = Hgy.,q2,q5 © Hp1,po,ps-
Then
wp1) =q, pp2) =q and  p(ps) = gs.

Now suppose let ji: P! — P! be any Mobius transformation of the Rie-
mann sphere with the properties that

filp1) = q, f(p2) = ¢ and  f(ps) = gs,
and let o: P! — P! be the Mobius transformation of the Riemann sphere
defined such that
* ~ *—1
g = MQ17(I27q3 © ’u © Mplﬁpzvps'
Then o(00) = 00, 0(0) = 0 and o(1) = 1. There then exist complex coeffi-
cients a, b, ¢ and d, where ad — bc # 0, such that

<u> au + bv
g — =
) cu + dv

for all complex numbers v and v that are not both zero. Evaluating the
Mobius transformation o at the points co, 0 and 1 of the Riemann sphere,
we find that

a b a+b
- = -=0 d =1
c 0 o c+d
Consequently ¢ =0, a # 0, b =0, d # 0 and a = d. It follows that o is the

identity map of the Riemann sphere, and therefore

Ao k1 * _
= Hqy1,q2,03 © Pprpaps = H-

We conclude therefore that p is the unique Mo6bius transformation of the
Riemann sphere with the properties that p(p;) = ¢; for j = 1,2,3, as re-
quired. |}

Proposition 1.9 Let pi, ps and ps be three distinct points of the Riemann
sphere, and let py and pe be Mobius transformations of the Riemann sphere.
Suppose that p(p;) = p2(p;) for j = 1,2,3. Then the Mébius transforma-
tions py and py coincide.

Proof Let ¢; = p(p;) for j = 1,2,3. Then both p; and py must be identical
to the unique Mobius transformation of the Riemann sphere that maps py, po
and ps to q1, g2 and g3 respectively, and therefore p; and ps must be identical
to one another, as required. [

11



Proposition 1.10 Leta, b, ¢, d, f, g, h and k be complex numbers satisfying
ad # bc and fk # gh, and let 1 and ps be the Mobius transformations of
the Riemann sphere defined so that

az+b (Z)_fz+g
z+d "V Tk

for all complex numbers with cz +d # 0 and hzy + k # 0. Then the Mobius
transformations py and pe coincide if and only if there exists some non-zero
complex number m such that f = ma, g = mb, h = mc and k = md.

p(z) =

Proof Clearly if there exists a complex number m with the stated properties
then the Mobius transformations p; and s coincide.

Conversely suppose that there is some Mobius transformation p of the
Riemann sphere with the property that

az+b fz+g

Mz):cz—I—d_hz—I—k

whenever cz + d # 0 and hz + k # 0.

First consider the case when ¢ = 0. Then no real number is mapped by p
to the point oo of the Riemann sphere “at infinity” and therefore h = 0. But
then d # 0, k # 0, b/d = g/k and a/d = f/k. Therefore if we take m = k/d
in this case we find that m # 0, f = ma, g = mb, h = mc and k = md.
The existence of the required non-zero complex number m has therefore been
verified in the case when ¢ = 0.

Suppose then that ¢ # 0. Then h # 0 and u(—k/h) = 0o = u(—d/c), and
therefore k/h = d/c. Let m = h/c. Then k/d = m. It then follows that

fz+g=(hz+k)u(z) =m(cz+ d)u(z) = m(az + b)

for all complex numbers z distinct from —d/c, and therefore f = ma and
g = mb. The result follows. |}

Proposition 1.11 Any Mdbius transformation of the Riemann sphere maps
straight lines and circles to straight lines and circles.

Proof The equation of a line or circle in the complex plane can be expressed
in the form ~
glz)* + 2Re[bz] + h = 0,

where g and h are real numbers, and b is a complex number. Moreover a
locus of points in the complex plane satisfying an equation of this form is a
circle if g # 0 and is a line if g = 0.

12



Let g and h be real constants, let b be a complex constant, and let z =
1/w, where w # 0 and w satisfies the equation

glw|? + 2Re[bw] + h = 0,
Then ~

glw|? +bw + bw + h = 0,
Then

g+ Re[bz] + hlz|* = g+ bz +bz+h|2]

1 5 T
= — (glw|"+bw+bw+h)=0.
wp (] )
We deduce from this that the Mdbius transformation that sends z to 1/z for
all non-zero complex numbers z maps lines and circles to lines and circles.
Let p: P* — P! be a Mobius transformation of the Riemann sphere. Then
there exist complex numbers a, b, ¢ and d satisfying ad — bc # 0 such that

(Z>_az—|—b
a ez +d

for all complex numbers z for which ¢z 4+ d # 0. The result is immediate
when ¢ = 0. We therefore suppose that ¢ # 0. Then

az+b_a ad — be 1

= X
cz+d ¢ c cz+d

pn(z) =

when cz + d # 0. The Mobius transformation g is thus the composition of
three maps that each send circles and straight lines to circles and straight
lines and preserve angles between lines and circles, namely the maps

1 d—2b
z+—cz+d, z+— — and zHg—u.
z c c

Thus the Mobius transformation p must itself map circles and straight lines
to circles and straight lines, as required. |}

1.6 Cross-Ratios of Points of the Riemann Sphere

Definition The cross-ratio (z1, zo; 23, z4) of four distinct complex numbers
21, 29, 23 and z4 is defined so that

(21 — 23)(22 — 24)
(22 — 23)(21 — 21)

(21722;23724) =

13



We now extend the definition of cross-ratio so that, given any quadruple
P1, D2, D3, P4 of points of the Riemann sphere satisfying the condition that
no three of the points all coincide with one another, a corresponding point
(p1,p2;p3,pa) of the Riemann sphere is determined to represent the cross-
ratio of the points pi1, po, p3 and py.

Proposition 1.12 There is a well-defined function, defined on quadruples
D1, D2, D3, P4 of points of the Riemann sphere that satisfy the condition that
no three of the members of the quadruple all coincide with one another, and
sending such a quadruple py,ps, p3, pa to the point (p1, p2;ps,ps) of the Rie-
mann sphere characterized by the property that

(u1v3 — uzvy ) (Uugvy — Ugvs)
(ugv3 — uzvy)(ugvy — Ugvy)

(plapQ;p37p4) =

for all complex numbers uy, vy, ug, v, Uz, V3, Uy, V4 that are such as to
ensure that w; and v; are not both zero and p; = u;/v; for j = 1,2,3,4.
The function defined in this fashion generalizes the definition of cross-ratio
previously given for quadruples of distinct complex numbers.

Proof Let p1,p2,p3,ps be a quadruple of points of the Riemann sphere.
Then, for each integer j between 1 and 4, complex numbers u; and v; can be
chosen, not both zero, such that p; = u;/v;, where u;/v; = 0o in cases where
uj # 0 and v; = 0. Moreover, p; = pi, where j and k are integers between 1
and 4, if and only if u;v, — ugv; = 0.

Now if the points pi1, ps, ps3, p4 and oo are all distinct (so that py, po, p3
and py4 are distinct complex numbers), then vy, v, v3,v4 are all non-zero, and
also

(ugv3 — uzvy)(uvy — ugvy) # 0,

and, in this case, the definition of cross-ratios of distinct complex numbers
requires that

(p17p2;p37p4) =
U9 us U1 Uy
(i) (G -3)

_ (uavs — ugvr) (usvs — uqvy)
)

(UZU3 — U3V2

U1Vg — U4U1)

where
u = (u1v3 — uzvy ) (UgVy — UgV)

14



and
v = (ugus — ugvs)(ugvy — ugvy),

and where u/v = 0o in cases where u # 0 and v = 0.

Now suppose that pi, ps, p3, ps are any points of the Riemann sphere that
satisfy the requirement that no three of the listed points all coincide with
one another. Suppose also that, for each integer j between 1 and 4, u;, vj,
u; and v} are complex numbers, u; and v; and not both zero, v} and v} are

j j
not both zero, and

pj = u;/v; = uj/v;.

Then there exist non-zero complex numbers w;, ws, w3 and w, such that
I __

w; = wjuy and v; = wyv; for 7 =1,2,3,4. Let
u = (uv3 — uzvy ) (Ugvy — Ugv3),
v = (ugusy — ugve)(u1v4 — ugvy),
u' = (uyvy — uzvy) (upvy — ujvs)
and

v = (g — uzvh) (ujvy — ugnh).

Then v = wjwywswsu and v/ = wjwswzwyv, and therefore u'/v" = u/v.
Moreover the requirement that no three of the points p1, po, p3, p4 all coincide
with one another ensures that the complex numbers v and v are not both
zero. Indeed if it were the case that u = v = 0, then at least one of the
following four conditions would need to hold:

o u v3 — uzvy = 0 and usvz — ugvy = 0;
o uv3 —uzvy = 0 and uyvy — ugvy = 0;
® Uy — Uy = 0 and usv3 — uszvy = 0;
® Uy — UgVy = 0 and uyvy — ugv; = 0.

in the first case we would have p; = py = p3; in the second p; = p3 = p4; in
the third py = p3 = p4; and in the fourth p; = py = p4.

Accordingly, given points pi, p2, ps and ps of the Riemann sphere P!,
where no three of these points all coincide with one another, the quadruple
of points py, pa, p3, p4 determines a point (py1, p2; p3, p4) of the Riemann sphere
characterized by the property that, given any complex numbers u; and v;
with the properties that u; and v; are not both zero and p; = w;/v; for
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j =1,2,3,4, the point (p1, p2; ps, p4) of the Riemann sphere is determined so
that

(P1,D2; 3, Pa) = u/v,
where
u = (uvsg — uzvy ) (Ugvy — Ugvs)

and
v = <UQ’U3 — U3U2>(U1U4 — U4’U1),

and where u/v = oo in cases where v # 0 and v = 0. This completes the
proof. |

Accordingly we can define the cross-ratio of appropriate quadruples of
points of the Riemann sphere in the following manner.

Definition The cross-ratio of points of the Riemann sphere assigns points
(p1, p2; p3, p4) of the Riemann sphere to those those quadruples py, p2, ps, p4 of
points of the Riemann sphere for which no three points all coincide with one
another, so as to ensure that, given complex numbers uy, vy, us, Vs, Usz, Vs,
uy and vy, where u; and v; are not both zero and p; = u;/v; for j =1,2,3,4,
and where no three of the points py, ps, p3, ps4 all coincide with one another,
the cross-ratio of those points is determined so that

(p1,D2; P3,P4) = (u1v3 — uzvy)(Ugvy — Usvy)
) ] 9 (

U2V3 — U3U2)(U1U4 - U4U1)'

We now show that, given four elements p;, ps, ps, ps of the Riemann
sphere satisfying the condition that no three of the points all coincide with
one another, the value of the cross-ratio (pi, p2; ps, ps) taken with respect to
any one particular ordering of those four elements determines the value of
the cross-ratio taken with respect to any other ordering of those elements.

Proposition 1.13 Let py, po, p3 and py be distinct elements of the Riemann
sphere P, and let ¢ = (p1,p2; 3, 1) Then

o (p1,p2:P3,D1), (D2, 15 D1, D3), (P3,Pa;P1,P2), (Da, D33 D2, p1) are all equal
to q;

. (pl,lpz;m,ps), (P2, 01503, Da)s (P4, P35 D1, P2), (P3,Pa;p2,p1) are all equal

to —.
q
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(]917273;]92,]94); (pg,pl;p4,p2), (pQ,p4;p1,p3), (p4,p2;p3,p1) are all equal
tol—gq;

(p17p4§]1727p3)7 (P4, D15 03, D2)5 (P2, P35 D1, P4), (P3,P2;Pa,p1) are all equal
to 4- s
q

(pl,pi;m,pz), (p3, P13 D2, Da)s (Pas P25 1, P3), (P2, P43 03, 01) are all equal

to

)

I—gq

(pl,pé;ps,pz), (P4, D15 D2, D3)s (D3, P25 1, Pa), (P2, P33 Pa, p1) are all equal

to ;
qg—1

Proof Let wuy, vy, us, v, us, vs, uy and vy be complex numbers with the
properties that u; and v; are not both zero and p; = u;/v; for j =1,2,3,4
(where u;/v; = 0o in cases where u; # 0 and v; = 0). Then

(U1U3 — U3U1>(U2U4 — U4U2)
(ugv3 — ugv2) (urvy — ugvy)’

q = (P1,P2: 3, pa) =
It follows directly that

(P1, D253, P4), (P2, P15 P4, P3), (P3,Pa:P1,p2) and (pa, ps; P2, p1)
are all equal to ¢. Also

(p1, P2; p1,P3) = gty — tsty) (v — tstn) = !
e (ugv3 — ugvy)(uguy — ugva) ¢

Next we note that

(U4Ug — U3’U4)<U,2?}1 — Uﬂ)g)
(UQU3 — Uzv2) (Ugvy — U1U4)'

(pa, p2; p3, 1) =
It follows that

1 — (p4, p2; 3. p1)
(U2U3 — U3U2)(U1U4 — U4U1) =+ (U4U3 — U3U4)(U2U1 — U1U2)
(U,2U3 — U31)2)(U1U4 — U4U1)

17



U U2V3Vy — V1U2V3U4 — ULV2UZVy + V1 VU3 UL
(UQ’U3 — UgUg)(UIU4 — U4U1)
V1U2V3U4 — V1 U2U3V4 — U VV3U4 + UTV2U3Vy
(U2U3 — U31)2>(U1U4 — U4U1)
U1U2V3Vy + V102U3U4 — V1U2U3V4 — UTV2V3U4
(UQ’U3 - UgUg)(U11}4 — U4U1)
(Ulvg — U3’U1)(U21)4 — U4112)

(Ugvg — U3U2)<U1U4 — U4Ul)

Consequently
(pa,p2;p3,p1) =1 —¢.

It then follows that ]
(P4, D25 p1,p3) = .
Furthermore

1 q
(p37p27p17p4) (p47p27p17p3) 1_q q— 17
and therefore
qg—1
(P3, P2;Pas 1) = —

The remaining identities follow directly. |

Lemma 1.14 Let z1, zo and, z3 be distinct complex numbers. Then

21 — 23

(Zlu 225 23, OO) -
22 — Z3
Proof Let u; = z1, us = 29, uz3 = 23, uy = 1, v1 = v = v3 = 1 and vy = 0.
Then z; = u;j/v; for j =1,2,3 and 0o = uy/v4. It follows from the definition
of cross-ratios that

. . (Ulvg — U3U1)<U2U4 — U4112) o Z1 — 23

(21722723700) - - )

(UQUg — U3U2)<U1U4 — U4Ul) Z9 — 23

as required. Jj

Lemma 1.15 Let py, pa, p3, pa be a quadruple of points of the Riemann sphere
satisfying the condition that no three of the points all coincide with one an-
other. Then the following identities hold when two of the points coincide with
one another:

(p1,P23P37p4) = o0 whenever py = p3 or p1 = P4;

(p1,p2; p3, 1) = O whenever p; = p3 or ps = pa;
(p1,p2; p3,pa) = 1 whenever p; = py or p3 = py.
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Proof Let complex numbers u; and v; be chosen for j = 1,2, 3,4 such that
u; and v; are not both zero and p; = u;/v; for j = 1,2,3,4. The definition
of cross-ratios ensures that

(u1v3 — uzvy) (Uugvy — Ugvs)

(ugv3 — u3vy)(ugvy — Ugvy)

(plapz;P3,P4) =

Now, for distinct integers j and k between 1 and 4, p; = p; if and only
if ujur, = ugv;. Also there exists a non-zero complex number w for which
uy = wuy and vy = woy if and only if p; = po, and there exists a non-zero
complex number w for which uy = wusz and vy = wuvs if and only if p3 = p4.
The required identities therefore follow directly. |}

Lemma 1.16 Let py, po and p3 be distinct elements of the Riemann sphere,
and let piy o oo P! — P! be the unique Mobius transformation of the Riemann

sphere for which “;1,p2,p3(p1) = 00, M;l’p%ps(pg) =0 and u;‘,hpws(pg) = 1.
Then

Hp, o (P) = (D1, D23 D3, D)
for all points p of the Riemann sphere.

Proof The Mobius transformation py . ... is characterized by the property
that

. (g) _ (u1v3 — uzvy)(ugv — uws)
Fovwews ) = (ugv3 — uzvy)(uv — uwvy)
for all complex numbers u and v that are not both zero (as noted in the proof
of Proposition 1.8). The result therefore follows on comparing this expression
characterizing the Mobius transformation p . . with the definition of cross-
ratios of quadruples of points on the Riemann sphere. |}

Proposition 1.17 Let pi, po and p3 be distinct elements of the Riemann
sphere, and let q be a point of the Riemann sphere. Then there exists a
unique element py of the Riemann sphere for which (py, pa; p3, p4) = q.

Proof Mobius transformations of the Riemann sphere are invertible func-
tions from the Riemann sphere to itself (see Corollary 1.6). Let p, =
/VL;;}DQ’pS(q), where py . denotes the unique Mobius transformation of the
Riemann sphere for which

M;1,p27p3(p1) = 9 'u;hpzms(pQ) =0 and /”L;17P27p3(p3) = 1.
It then follows (applying the identity established in Lemma 1.16) that

4=ty pops(P2) = (D1, D23 D3, Pa),

as required. |
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Proposition 1.18  Let py,pe, p3, ps be distinct elements of the Riemann
sphere PY, and let q1,qo, g3, qs also be distinct elements of P'. Then a nec-
essary and sufficient condition for the existence of a Mdbius transformation
w: Pt — P! of the Riemann sphere with the property that u(p;) = q; for
1 =1,2,3,4 is that

(p1,p2;p3,p4) = (Q1,QQ;C]3,C]4)-

Proof Let /UL;hp%pg:IP’l — P! and ,uthz’quﬂbl — P! be the unique Mobius
transformations of the Riemann sphere for which

M;17p27p3(p1) = 00, M;1,P2,P3(p2) =0, M;l,P2,P3(p3) =1,

'u;m,%((h) = 00, /'1/21742:‘13 (Q2) =0 and u;l,‘]2qu(q3) =L
Then
Fopaps(P) = (D1, P23 D3, D)
and
Hay gaas(P) = (1,625 03, )

for all points p of the Riemann sphere. Let pu: P! — P! be the Mobius trans-
formation of the Riemann sphere defined that is the composition function
L a4 © Hp1paps Obtained on following the Mobius transformation g .
with the inverse of the Mobius transformation py . ... Then the Mobius
transformation p is the unique Mdbius transformation that satisfies p(p;) =
q; for j = 1,2,3 (see Proposition 1.8). Now pu(ps) = p(qs) if and only if
sy pops(P4) = ) 00 0-(qa), and this is the case if and only if

(P1, D203 P4) = (q1, G235 q3, Qa)-
The result follows. |}

Proposition 1.19 Four distinct complex numbers z1, zs, z3 and z4 lie on
a single line or circle in the complex plane if and only if their cross-ratio
(21, 29 23, 24) s a Teal number.

Proof Let pu: P! — P! be the Mobius transformation of the Riemann sphere
defined such that pu(p) = (21,29;23,p) for all p € P. Then pu(z;) = oo,
p(ze) = 0 and u(z3) = 1. Mobius transformations map lines and circles
to lines and circles (Propostion 1.11). It follows that a complex number z
distinct from 2y, zo and z3 lies on the circle in the complex plane passing
through the points 21, 23 and z3 if and only if p(2) lies on the unique line in
the complex plane that passes through 0 and 1, in which case u(z) is a real
number. The result follows. |
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1.7 Cross-Ratios and Angles

We recall some basic properties of the algebra of complex numbers. Any
complex number z can be written in the form

z = |z| (cos @ + v/ —1sin )

where |z| is the modulus of z and 6 is the angle in radians, measured anticlock-
wise, between the positive real axis and the line segment whose endpoints
are represented by the complex numbers 0 and z. Moreover

1
=cosa—+v—1sinw
cosa ++/—1 sin«

and

(cosa +v/—1 sina)(cos B + v/—1 sin )
= cos(a + B) + V1 sin(a + B)

for all real numbers o and (.

Proposition 1.20 Let z1, 2o, 23 and z4 be distinct complex numbers lying
on a circle in the complex plane, listed in anticlockwise around the circle.
Then the angle between the lines joining zo to z4 and z, is equal to the angle
between the lines joining z3 to z4 and 2.

Proof Let a denote the angle between the lines joining 2z, to z4 and z;, and
let o’ be the angle between the lines joining z3 to z4 and z;. We must show

that a = . Now it follows from the standard properties of complex numbers
that

24 — 29 ’Z4_Z2‘
AT |1 _Z3|(coso/—0—\/—1sm0/)-
24 — 23 ’Z4_Z3|
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It now follows from the definition of cross-ratio that

(21 — 29)(24 — 23) _ AT AT
(Zl — 23)(24 — Zg) Z4 — 29 ’ Z4 — 23
|21 — 29| |24 — 23]  cosa++/—1 sina
X —.
|21 — 23] |24 — 22| cosa’ ++/—1 sina/

(22,23;21724) -

Now
1

cosa/ 4+ +/—1sina/

=cosa’ — v/ —1sind/,
and therefore

cosa + +v/—1 sin«

= (cosa++v—1sina)(cosa’ —+v/—1 sina’
cosa/ ++/—1 sino/ ( A )

= cos(a — o) +v/~1sin(a — o).

Consequently
(20,23;21,24) = |(22,23; 21, 24)|(cos(a — ') + v/ —1 sin(a — a)).

But the cross ratio (29, z3; 21, 24) is a real number, because the complex num-
bers z1, 23, z3 and z4 lie on a circle (see Proposition 1.19), and consequently
a — o/ must be an integer multiple of 7. Also 0 < a < 7 and 0 < o < 7,
and therefore —m < a — o’ < 7. It follows that o« — o/ = 0, and thus a = o/,
as required. |

Proposition 1.21 Let zy, 23, 23 and z4 be distinct complexr numbers lying
on a circle in the complex plane, listed in anticlockwise around the circle, let
[ be the angle between the lines joining zo to z3 and z1, and let v be the angle
between the lines joining z4 to z1 and z3. Then B+ v = .

zZ2
z3

21

Z4
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Proof It follows from the standard properties of complex numbers that

21— 22 _ |Zl_z2’(cosﬂ—|—\/—1sinﬂ),
23 — 29 |23 — 2]
23 — 24 _ |Z3_Z4’(COS,Y+,/_1sinf}/)_
Z1 — 24 |Z1 _Z4’

It now follows from the definition of cross-ratio that

(22, 245 %1, 23)

But the cross ratio (29, 24; 21, 23) is a real number, because the complex num-
bers z1, 29, z4 and z3 lie on a circle (see Proposition 1.19), and consequently
B+~ must be an integer multiple of 7. Also 0 < f <7 and 0 < v < m, and

(21 —2)(23 —21) 21— 2 L B

(21 — Z4)(2’3 — 22) 23 — 29 21 — 24
|21 — 22| |23 — 24|

(cos B+ +/—1 sin B)(cosy + v/—1 sin)

|21 — 24| |23 — 22

(22, 24; 21, 23)| (cos(B +7) + V=1 sin(8 + 7)).

therefore 0 < 4+ v < 27. It follows that 8 + v = m, as required. |}

Proposition 1.22 Let 2y, zo and z3 distinct complex numbers lying on a
circle in the complex plane, listed in anticlockwise around the circle. Then
the angle between the lines joining zo to z3 and z, is equal to the angle between
the line joining z3 to z1 and the ray tangent to the circle at z, that is directed
so that the point zo and the tangent ray lie on opposite sides of the line that

passes through the points z1 and z3.

z3

1
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Proof Let 8 denote the angle between the lines joining 25 to z3 and z;. Also
let a point z4 be taken on the circle so that zq, 29, z3 and z, are distinct and
moreover the points z; and z4 lie on opposite sides of the line that passes
through z; and z3, and let v denote the angle between the lines joining 24 to
z1 and z3. It follows from Proposition 1.21 that g+ v = .

Now suppose that the point z4 moves along the circle towards the point
z1. As the point z4 approaches z; the direction of the chord of the circle
from 2z, to z; approaches the direction of the ray tangent to the circle at
z1 that points into the side of the line through z; and z3 in which 2, lies.
But the angle between the rays joining z4 to z; and z3 remains constant as
z4 approaches z;. Consequently the angle 7' between the tangent ray at z;
pointing into the side of the chord joining z; to z3 and that chord itself is
equal to the angle v. The angle 5’ between the chord joining z; and z3 and
the tangent ray pointing into the side of that chord opposite to z, is then the
supplement of the angle 7/, where v/ = v, and therefore 5’ +~v =7 = g+ .
Consequently 5/ = 8. The result follows. |}
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Proposition 1.23 Let a geometrical configuration be as depicted in the ac-
companying figure. Thus let AC'B and ADB be circular arcs that cut at the
points A and B. Let the line joining points A and B be produced beyond A
and B to E and F respectively. Let AG and AH be tangent to the circular
arcs BCA and BDA respectively at A, where C and H lie on one side of AB
and D and G lie on the other. Also let the lines AC and AD be produced to
K and L respectively. Then the angle GAH is the sum of the angles KCB
and LDB.

Proof Applying results of previous propositions, together with standard ge-
ometrical results, we find that

LGAB = ZACB (Proposition 1.22)
= /FAG = /KCB (supplementary angles)
LADB (Proposition 1.22)
(

/HAB =
= /FAH = /LDB supplementary angles)
= /GAH = /FAG+ /EAH
— /KCB+ /LDB,

as required. |
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Proposition 1.24 Let two circles in the complex plane intersect at points
represented by complex numbers z1 and z, and let points represented by com-
plex numbers z3 and z4 be taken on arcs of the respective circles joining z;
and zy so that the point representing z3 lies on the left hand side of the di-
rected line from z; and zo and the point represented by the point z4 lies on
the right hand side of that line (as depicted in the accompanying figure).

Zgg_\)

Z4

22

Then

_ |Z3 - 21| |Z4 - Z2|

(cosy+ v —1sinvy),

21,R25 23, %4) =
( ) <39 ) |23—22||Z4—21|
where v 1s the angle between the tangent lines to the two circles at the inter-
section point represented by the complex number z;.

Proof The configuration of the points 21, 2o, 23 and z4 ensures that direction
of the line from z; to z3 is transformed into the direction of the line from z3
to zo by rotation clockwise through an angle « less than two right angles.
Similarly the direction of the line from z; to z4 is transformed into the direc-
tion of the line from z; to zo by rotation anticlockwise through an angle 3
less than two right angles. Basic properties of complex numbers therefore
ensure that

2T ’22_Z3|(cosa—\/—1 sin ).
z3 — %1 |23 — 21
29 — 24 _ ’Z2_Z4|(C08ﬁ+\/—_151n/8)-
24— 21 |24 — 21
Now
cos S+ +/—1sinp

cosa —/—1 sina
(cosa +v/—1 sina)(cos B + v/—1 sin )
= cos(a+ B) + vV—1sin(a + ).
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Moreover the geometry of the configuration ensures that o + 5 = v (Propo-
sition 1.23). Thus

29 — 24 % 23 — 21
24 — 21 Z9 — 23
|22 — 2l |23 — 2|

(cosy + v —1sin~).

|24 — 21|22 — 23]

But
2o — Z4 y Z3 — 21 _ (2'3—21>(Z4_Z2) _ (21,22;23,24).
24 — 21 Z9 — 23 (Zg — ZQ)(Z4 — Zl)

The result follows. |

Example The circles in the complex plane of radius 2 centred on —1 and
1 intersect at the points ++v/3¢, where i = /—1. In this situation, take
21 = —V/3i, 7 =/34, z3=—1 and z = 1. Then

2

21

(—1+V39)(1—V3i)  2+2V3i

(=1 —=V3i)(1+V3i) 2—2V3i
(24 2v/31)?

(2 — 2v/30)(2 + 2V/30)

= %(—1 +V/31)

(21722;23724) —

It follows that (z1, 22; 23, 24) = cosy + /—1 sin~y, where 7 = §7r. Thus the
angle between the tangent lines to the circles at the intersection point z;

is thus 2 of a right angle. This is what one would expect from the basic

3
geometry of the configuration, given that the triangle with vertices zy, z3
and z4 is equilateral and the tangent lines to the circles are perpendicular to

the lines joining the point of intersection to the centres of those circles.
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Proposition 1.25 Let z; and zo be compler numbers representing the end-
points of a circular arc in the complex plane. Also, in the case where the
circular arc lies on the left hand side of the directed line from zy to zo, let
points zz and z4 be taken between z1 and zy on the circular arc and the straight
line segment respectively, and, in the case where the circular arc lies on the
right hand side of the directed line from zy to zo, let points z3 and z4 be
taken between zy and zo on the straight line segment and the the circular arc
respectively. Then

R

(cosy++v—1sinvy),

21, %2, %3, %4) =

( ) |23 — 22| |24 — 1]
where v 1s the angle between the tangent line to the circle at the intersection
point represented by the complex number z, and the line obtained by producing
the chord joining zo and z; beyond z;.

Proof We consider the configuration in which the circular arc lies on the left
hand side of the directed line from z; to z5. In that case the configuration is
as depicted in the accompanying figure. In this configuration the angle made

at z3 by the lines from z; and 2z, is equal to the angle between the chord from
21 to 25 and the depicted tangent line. The complements of those angles are
then also equal to one another; these equal complements have been labelled
~ in the figure.

Also the direction of the line from z3 to 2z is obtained from the direction
of the line from z; to z3 by rotation clockwise through an angle 7 less than
two right angles. It follows that

%2 —R3 |z — 23]

(cosy — V=1 sin7y).

23— 2 B |Z3 —21’
Also the direction of z; — z4 is the same as that of z; — 21, and therefore

22 T 24 |2’2—Z4|

Z4 — 21 B |Z4—21|'

28



It follows that

(23 — 21) (21 — 22)

(23 — 22) (24 — 21)
29 — 24 % 23 — %1

(21, 22, 23724) =

Z4 — 21 Z9 — 23
|23 — 21| |24 — 29

= (cosy++v—1sinvy).

|Z3 - 22’ |Z4 - Zl|

We consider now the case in which the circular arc from z; to z5 lies on
the right hand side of the directed line from z; to z5. In this case the complex
numbers z3 and z4 represent points between z; and 25 on the line and the
circular arc respectively, as depicted in the following figure.

Z
z3 2

21
24

In this configuration, the angle sought is the angle ~, which in this case is
equal both to the angle between the depicted tangent line to the circle at z;
and the line that produces the chord joining z, to z; beyond z;. Moreover,
in this case

2T |22 — 2| (cosy + v —1sinv)
24— 21 |z — 2
and
22 — 23 _ \22—23’
zZ3 — 21 ‘23—21"

It follows in this case also that

(23 — 21)(24 — 20)

(23 — 22)(21 — 21)
29 — Z4 % Z3 — 21

<217Z2;Z37'Z4) —

Z4 — 21 Z9 — 23
|23 — 21| |24 — 2

= (cosy + v —1 sin~).

|23 — 2o |24 — 21|

This completes the proof. |}

Proposition 1.26 Let two lines in the complex plane intersect at at point
represented by the complex number z1, and let points represented by z3 and z4
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be taken distinct from z1, one on each of the two lines, where these points are
labelled so that the direction of z3— zy is obtained from the direction of z4— 2z,
by rotation anticlockwise through an angle v less than two right angles. Then

_ A

(cosy + v —1 sin~).

(21700;23724) - |Z4 . le

Proof The cross-ratio in this situation is defined so that

23— 21

(21700;23724) = .
Z4 — 21

Furthermore
23 — X1 |23 — 21

(cosy + v —1 sin~).

za—z | — 2

The result follows directly. |}

Lines in the complex plane correspond to circles on the Riemann sphere
that pass through the point at infinity. With that in mind, it can seen that
Propositions 1.24, 1.25 and 1.26 conform to a common pattern, and show
that, where two curves intersect at a point, each of those curves being either
a circle or a straight line, the angle between the tangent lines to those curves
at the point of intersection may be expressed in terms of the argument of an
appropriate cross-ratio.

Indeed, to determine the angle the tangent lines to two circles on the
Riemann sphere at a point p; where they intersect, one can determine the
other point of intersection p,, a point p3 on one circular arc between p; to
p2, and a point ps on the other circular arc between p; and p,. A positive
real number R and a real number v satisfying —m < 7 < 7 can then be
determined so that

(P1,D2;P3,pa) = R(cosy+ v —1sinvy).

Then the angle between the tangent lines to those circles at the point p; of
intersection, measured in radians, is then the absolute value || of 7.

Proposition 1.27 Mobius transformations of the Riemann sphere P! are
angle-preserving. Thus if two circles on the Riemann sphere intersect at a
point p of the Riemann sphere, and if a Mdbius transformation . maps p to a
point q of the Riemann sphere, then the angle between the tangent lines to the
original circles at the point p is equal to the angle between the tangent lines
to the corresponding circles at the point q, the corresponding circles being the
images of the original circles under the Mdbius transformation.
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Proof The angle between the tangent lines to the original circles at p is
determined by the value of a cross ratio of the form (pq,p2;ps, ps), where
p1 and po are the points of intersection of the original circles, and p3 and
p4 lie on the circular arcs joining p; to ps, with ps on the right hand side
as the circle through ps is traversed in the direction from p; through ps
to po. The angle between the tangent lines to the corresponding circles
at ¢ is determined in the analogous fashion by the value of the cross ratio
(q1,92;q3,qa), where g; is the image of p; under the Mobius transformation
sending the original circles to the corresponding circles. Proposition 1.18
ensures that (p1, pe; ps, pa) = (¢1, 425 g3, q4). The result follows. |

1.8 The Orientation-Preserving Property of Mobius
Transformations

Proposition 1.28 Let u be a Mobius transformation of the Riemann sphere,
let w be a complex number for which p(w) is also a complex number, let s be

a positive real number, and let o: [0, 1] — R be the path in the complex plane
defined such that

a(t) = w + s(cos 2mt + v/ —1 sin 27t)

for all real numbers t satisfying 0 <t < 1, so that the point a(t) moves round
a circle of radius s about w in the anticlockwise direction as t increases from
0 to 1. Then, provided that s is sufficiently close to zero, the point u(a(t))
will move in an anticlockwise direction around p(w) as t increases from 0 to
1.

Proof There exist complex coefficients a, b, ¢ and d satisfying ad — bc # 0
that are such as to ensure that

(Z>_az+b
H ez +d

for all complex numbers z that are distinct from —d/c. Then

az+b aw+Db
cz+d  cw+d
(az 4+ b)(cw + d) — (aw + b)(cz + d)
(cz+d)(cw + d)
(ad — be)(z — w)
(cz +d)(cw + d)
ad — bc cw +d

- (cw +d)? X (2= w) x cz+d

n(z) — plw) =
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Now the quotient (cz+d)/(cw+d) approaches the value 1 as the complex
number z approaches w. Consequently a positive real number sg can be found

such that p(z) € C and
Re [CZ - d} >0

cw +d

whenever |z —w| < s¢. Let the real number s be chosen such that 0 < s < s,
and let

a(t) = w + s(cos 2mt + v/ —1 sin 27t)

for all real numbers ¢ satisfying 0 < ¢ < 1. Then, for each real number ¢

between 0 and 1 there exists a unique real number 7(t) satisfying —;11 <
n(t) < % such that
ca(t)+d  |ca(t) +d

‘ (cos(2mn(t)) + v/ —1sin(2mn(t)))

cw+d cw +d

We obtain in this fashion a continuous real-valued function 7: [0, 1] — R that
sends each real number ¢ satisfying 0 < ¢ < 1 between zero and one to the
unique real number 7(¢) in the range —1 < n(¢) < 1 for which the above
equation is satisfied. Moreover «(0) = «(1), and therefore n(0) = n(1). A

real number m can also be found such that
ad — bc ad — bc
(cw + d)? B (cw +d)?
Well-known trigonometrical identies involving sine and cosine functions then
ensure that

(cos(2mm) + v/ —1sin(27m)).

plaft) = p(w)
|(e(t)) = p(w)]
for all real numbers t lying between 0 and 1, where

o(t) =m+1t—n(t)

for all real numbers ¢ between 0 and 1. (We are here using the fact that
the argument of a product of complex numbers is the sum of the arguments
of those complex numbers.) Now (1) — ¢(0) = 1, because n(0) = n(1).
Consequently the point p(a(t)) moves once round the point u(w) in the
complex plane in an anticlockwise direction as ¢ increases from 0 to 1, as
required. ||

= cos(2mip(t)) + vV —1sin(2mi(t))

Proposition 1.28 ensures that Mobius transformations of the Riemann
sphere are orientation-preserving.

A subset X of the complex plane C is said to be open if, given any any
complex number w belonging to X, some open disk in the complex plane of
sufficiently small radius centred on w is wholly contained within the set X.
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Definition An invertible function ¢: X — Y between open subsets X and
Y of the complex plane is said to be orientation-preserving if, given any
point w of X, paths that traverse circles of sufficiently small radius centred
on w once in the anticlockwise direction are mapped by ¢ to paths that wind
around (w) once in the anticlockwise direction.

Definition An invertible function ¢: X — Y between open subsets X and Y
of the complex plane is said to be orientation-reversing if, given any point w
of X, paths that traverse circles of sufficiently small radius centred on w once
in the anticlockwise direction are mapped by ¢ to paths that wind around
p(w) once in the clockwise direction.

The transformation of the complex plane that maps each complex number
to its complex conjugate is an example of an orientation-reversing transfor-
mation of the complex plane.

The composition of two orientation-preserving transformations between
open subsets of the complex plane is orientation-preserving, as is the com-
position of two orientation-reversing transformations between such subsets.
A transformation obtained on composing an orientation-preserving transfor-
mation with an orientation-reversing transformation is orientation-reversing,
as is a transformation obtained on composing an orientation-reversing trans-
formation with an orientation-preserving transformation.
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2 The Disk Model of the Hyperbolic Plane

2.1 Inversion of the Riemann Sphere in the Unit Circle

Let D denote the open unit disk in the complex plane C, and in the Riemann
sphere, defined so that

D={zeC:|z| <1}

and let S denote the unit circle in the complex plane C, and in the Riemann
sphere, defined so that
S={ze€C:|z| =1}

We define the inversion ) of the Riemann sphere in the circle S bounding the
open unit disk D to be the transformation of the Riemann sphere defined
so that ©(0) = oo, Q2(c0) = 0 and §2(z) = 1/Z for all non-zero complex
numbers z. Then Q(z) = z for all z € S, and the composition €2 o Q of the
inversion 2 with itself is the identity transformation of the Riemann sphere.
Moreover €2 maps the open unit disk D into the region of the Riemann sphere
that lies outside the unit circle S.
The transformation Q: P! — P! is characterized by the property that

of2)-:

for all complex numbers v and w that are not both zero.

Lemma 2.1 Let o be a Mobius transformation of the Riemann sphere, and
let € be the inversion of the Riemann sphere in the unit circle, defined so that
Q(0) = oo, Q(c0) =0 and Q(z) = 1/Z for all non-zero complex numbers z.
Also let a, b, ¢ and d be complex coefficients determined so that

az+b
cz+d

wz) =

for all complex numbers z for which cz +d # 0. Then Qo poQ is also a
Moébius transformation, and moreover

_c_lz—i-E
bz+a

Q(u(2(2)))

for all complex numbers z € C for which bz +a # 0.

34



Proof The definition of Mdbius transformations and of the inversion €2 of
the Riemann sphere in the unit circle ensure that

o) =tra = o)1

v cu + dv

for all complex numbers u and v that are not both zero. Consequently

u v av+bu\ du+cv
Q Q- =0 - )=0l——=) ==
(“( (U))) (/”L (a)) (cUerU) bu-+av
for all complex numbers v and v that are not both zero. The result follows. |}

Proposition 2.2 Let u be a Mobius transformation of the Riemann sphere,
let D be the open unit disk in the complex plane, where

D={2eC:|z| <1}

and let € be the inversion of the Riemann sphere in the unit circle that is
defined so that

Q0) =00, Qoo)=0 and Qz)= % for all z € C\ {0}.

Then the Mdbius transformation p maps the unit disk D onto itself if and
only if both of the following two conditions are satisfied:

(i) Qop=poll
(i) there exists at least one z € D for which pu(z) € D.

Proof First suppose that the Mobius transformation g maps the unit disk D
onto itself. Let z be a complex number satisfying |z| = 1. If it were the case
that [x(z)] < 1 then there would exist some complex number w for which
lw| < 1and p(w) = p(z), because p maps the open unit disk onto itself. But
this is not possible because all M6bius transformations are invertible. Next
we note that if it were the case that |u(z)| > 1 then, for real numbers ¢ that
are less than 1 but sufficiently close to 1, it would follow that |[tz| < 1 but
\pu(tz)] > 1, contradicting the requirement that the Mobius transformation p
map the open unit disk onto itself. Consequently |u(z)| = 1. We conclude
therefore that the Mdbius transformation g maps the unit circle bounding the
open unit disk into itself. The same is true of the inverse of u. Consequently
the Mobius transformation g must map the unit circle onto itself.

Now let i = Qopo€2. Then fi is a Mobius transformation of the Riemann
sphere (Lemma 2.1). Now Q(z) = z and |u(2)| = 1 for all complex numbers z
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satisfying |z| = 1. It follows that fi(z) = u(z) for all complex numbers z sat-
isfying |z| = 1. Now two distinct Mobius transformations cannot coincide at
three or more points of the Riemann sphere. (see Proposition 1.9). Conse-
quently ji = u, and therefore Qo = o). It now follows directly that any
Mobius transformation that maps the unit disk D onto itself must satisfy
conditions (i) and (ii) in the statement of the proposition.

Conversely, suppose that Mobius transformation p of the Riemann sphere
satisfies conditions (i) and (ii) in the statement of the proposition. Then
Qopu = pof. Let z be a complex number satisfying |z| # 1. Then Q(z) # z.
It follows that p(2(z)) # p(z), because Mdbius transformations are invertible
transformations of the Riemann sphere, and therefore Q(u(2)) # p(z), from
which it follows that |u(z)| # 1. Consequently no complex number belonging
to the open unit disk D is mapped by the Mobius transformation D to a point
that lies on the unit circle. It follows that if one endpoint of a straight line
segment or circular arc contained in the open disk D is mapped by p into D,
then the same must be true of the other endpoint of that straight line segment
or circular arc.

Now the complex numbers belonging to the unit disk D can be joined to
one another by straight line segments. Moreover condition (ii) in the state-
ment of the proposition ensures that at least one complex number belonging
to the unit disk D is mapped by the Mobius transformation g into the unit
disk D. Consequently the unit disk is mapped into itself by the Mobius
transformation pu.

Moreover if the Mobius transformation g has the property that 2oy =
(o ) then

Qo“_l:l,[,_lquOQO/,L_l:M_loQOHOM_1:M_10Q7

and consequently the inverse =1 of the Mobius transformation p also satisfies
(i) and (ii) in the statement of the proposition, and therefore maps the open
unit disk D into itself. It follows that if the Mobius transformation u satisfies
conditions (i) and (ii) then it must map the open unit disk D onto itself, as
required. |

Corollary 2.3 Let o be a Mobius transformation of the Riemann sphere,
and let S be the unit circle consisting of all complex numbers z for which
|z| = 1. Suppose that p(S) C S and that |(0)] < 1. Then the Mdébius
transformation p maps the open unit disk onto itself. Moreover Qopu = o),
where ) is the inversion of the Riemann sphere in the unit circle S, defined
so that Q(0) = oo, Q(oo) = 0 and Q(z) = 1/Z for all non-zero complex
numbers z.
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Proof Let fi = Qo o . Then fi is a Mdbius transformation of the Rie-
mann sphere (Lemma 2.1), and moreover /i(z) = u(z) for all z € S, because
u(S) C S and Q(z) = z for all z € S. Now two distinct M&bius transforma-
tions cannot coincide at three or more points of the Riemann sphere. (see
Proposition 1.9). It follows that i = u, and therefore Q o yu = o Q. The
required result now follows on applying Proposition 2.2. |}

Lemma 2.4 Given distinct complex numbers zy and zo, where |z1| = |z3| =
1, there exists a Mobius transformation p of the Riemann sphere mapping
the unit disk D onto itself for which u(z) = —1 and p(z) = 1.

Proof Choose a complex number z3 distinct from z; and 2z for which |z3| =
1. Then there exists a unique Mobius transformation py with the proper-
ties that py(21) = —1, p1(22) = 1 and py(z3) = i. Mdbius transformations
map circles to circles, and, given any three distinct complex numbers that
are not collinear, there exists exactly one circle in the complex plane pass-
ing through all three of these complex numbers. Consequently the Mobius
transformation gy must map the unit circle onto itself. If |x1(0)] < 0 let
the Mobius transformation p be identical to py; if |1 (0)] > 1 or py(0) = oo
let the Mdbius transformation p be defined so that p(z) = 1/p(2) for all
complex numbers z for which p;(2) # 0. Then p maps the unit circle onto
itself, u(z1) = —1, p(z2) = 1 and |p(0)| < 1. Then p(D) must map the open
unit disk onto itself (see Corollary 2.3). The Mobius transformation p then
has the required properties. |}

Proposition 2.5 Let a and b be complex numbers satisfying |b| < |a|, and
let p be the Mobius transformation of the Riemann sphere defined so that
az+0b

Z) == whenever bz +a # 0,
1(z) P #

pw(—=a/b) = oo and p(oo) = a/b in cases where b # 0 and p(c0) = oo in
cases where b = 0. Then |u(2)| < 1 whenever |z| < 1, |u(z)| = 1 whenever
12| = 1, and |u(2)| > 1 whenever |z| > 1 and bz +a # 0. Moreover the
Moébius transformation p maps the open unit disk {z € C : |z| < 1} onto
itself.

Proof Calculating, we find that

bz +al* —|az +b]* = (bz+a)(bz+a)— (az+b)(az +b)
= [bz)* + |a]* + abz +abz
— la|?|z]* = |b|* —abz —abz
= (la]* = [p]*)(1 = [2*) > 0.
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Consequently [u(2)| < 1 whenever |z| < 1, |u(2)| = 1 whenever [z[ =1 and
\p(2) > 1 whenever |z| > 1 and bz +a # 0.
Now the inverse p~! of the Mobius transformation y is characterized by

the property that

1 az—b
2)= ———

o) —bz+a

for all complex numbers z for which —bz+4a # 0 (see Corollary 1.6). Because

the coefficients of this Mobius transformation ;~! have properties analogous

to those of the Mobius transformation u, we can conclude that x4~ maps the

open unit disk into itself, and therefore ;. maps the open unit disk onto itself,

as required. |}

Corollary 2.6 Let w be a complex number satisfying |w| < 1, and let ji,
be the Mdbius transformation of the Riemann sphere that is defined so that
fw(—1/W) = 00, p(00) = 1/w and

(2) z+w

w\?) = —

a l+wz

for all complex numbers z distinct from —1/w. Then the Mdbius transfor-
mation [, maps the open unit disk onto itself. Moreover

t+1
w(tw) = ——
() 1—|—|w|2tw

for all real numbers t distinct from —1/|w|?, and consequently the diameter
of the unit circle passing through 0 and w is mapped onto itself by the Mdbius
transformation p,,. In particular p1,,(0) = w and p,(—w) = 0.

Proposition 2.7 Let p be a Mobius transformation of the Riemann sphere
that maps the unit circle {z € C : |z| = 1} into itself and satisfies the
condition |(0)] < 1. Then there exist complex numbers a and b, where
b| < |a|, such that

_az—i—b

=-"——  forall z € C for which @z + b # 0.
bz +a

()

Proof The Mobius transformation g maps the unit circle into itself, and
moreover |x(0)| < 1. Tt follows from Corollary 2.3 that Qo u = po 2, where
2(0) = o0, 2(c0) = 0 and €(z) = 1/Z for all non-zero complex numbers z.
Consequently 4 = Qo Qo pu = Qo o) because the composition of the
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inversion 2 with itself is the identity transformation of the Riemann sphere.
Let aq, by, ¢y and dy be complex coefficients determined so that

agz + b()

= p— whenever c¢oz + dy # 0.

Then the identity p = €2 o p o € ensures that

apz + bo B E()Z —I—EO
Coz + d() Z_?()Z + ag

for all complex numbers z for which agz 4+ by # 0, @+ boz # 0, coz +dy # 0,
and ¢ + dpz # 0 (see Lemma 2.1). Consequently there exists some non-zero
complex number w with the property that ay = wdy, by = weg, Gy = why and
dy = way (see Proposition 1.10). It then follows that

60 d(] = w2a0do.

But B
|ao d0| = |a0d0|.
It follows that |w?| = 1, and therefore |w| = 1. Accordingly a real number ¢

can be found so that

w = cos 20 + /—1 sin 26.

Let
1N =cosf +v—1 sinb.

It then follows from De Moivre’s Theorem that n? = w. Now 72 7% = |n|* = 1.
It follows that H?w = 1. Let a = nag and b = nby, ¢ = ncy and d = ndy. Then
_az+b

wu(z) = o d whenever cz 4+ d # 0.

Also ag = na, by =nb, ¢y = Nc and dy = Nd. Consequently

and
C=T7¢c) = Nwby = T'wb =
Accordingly
b _
p(z) = ozt whenever bz +a # 0.
bz+a

Moreover |p(0)] < 1, and consequently |b| < |al|, as required. |
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2.2 The Poincaré Distance Function on the Unit Disk

Definition Let D be the open unit disk in the complex plane C, defined so
that
D={zeC:|z| <1}

The Poincaré distance function p on D is defined so that

1—w —
e = tog (L= e )

1 —wz| — |z —w|
for all complex numbers z and w satisfying |z| < 1 and |w| < 1.

Note that
B
— <1
|1 —w 2|

for all complex numbers z and w satisfying |z| < 1 and |w| < 1. (This
follows directly from Corollary 2.6). Consequently the Poincaré distance
p(z,w) between any two points z and w of the unit disk is a well-defined
positive real-number.

Proposition 2.8 Let s and t be real numbers satisfying —1 < s < t < 1.
Then the Poincaré distance, in the unit disk, between s and t is given by the

formula
1+1 1+s
t) =1 — ) =1 :
p(s;1) 0g<1_t) og<1_8>

Proof Evaluating, and noting that 1 — st > 0 (because |s| < 1 and |¢| < 1)
and |t — s| =t — s (since s < ¢ by assumption), we find that

|1—st|+]t—s|
t) =1

1—st+t—s
1l—st+s—1t

(e
o (L0 20)
(1) == (i)

= log

= log

as required. |
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Proposition 2.9 Let p be the Poincaré distance function on the open unit
disk D, and let 6 be a positive real number. Then

{z€D:p(z,0)=6} ={z€ D:|z| =R},
where
_65—1
e 41

Proof It follows from the definition of Poincaré distance function that all
complex numbers z satisfying p(z,0) = § are equidistant from zero. They
therefore constitute a circle centred on zero. It remains to determine the
radius of that circle. Now it follows, on applying Proposition 2.8, that

1
0 =log (%)

Consequently
2R 2
5 P
B ki 1= =
¢ —r T TiZw
and therefore 5
e —1
R—
ed+1’

as required. |}

The Poincaré distance function p on the unit disk D has the property
that p(z,w) = p(w, z) for all z,w € D. It therefore follows immediately from

Proposition 2.8 that
| 1+1¢ | 1+s
og| —— | —lo
S\1—¢ S\1=s

for all real numbers s and ¢ satisfying —1 < s <1 and —1 <t < 1.

p(s,t) =

Lemma 2.10 Let z and w be complex numbers, and let € be the inversion of
the Riemann sphere in the unit circle, defined so that 2(0) = 0o, Q(c0) =0
and Q(z) = 1/Z for all non-zero complex numbers z. Then

2
Z—Ww

(2, Q(2); w, Q(w)) =

1 —wz

for all complex numbers z and w with the exception of those pairs z, w for
which |z| =1 and z = w.
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Proof Let z and w be complex numbers. Suppose that it is not the case that
|z| =1 and z = w. Examination of possible cases shows that it is not then
possible for three of the complex numbers z, Q(z), w and Q(w) to coincide
with one another. Indeed if |z| # 1 and |w| # 1 then exactly two of the
points z,Q(2), w, Q(w) will lie in the unit disk consisting of those complex
numbers whose modulus is less than one, and therefore it is not possible for
any three of the four points to coincide with one another. If |z| = 1, it would
only be possible for three of the points z,Q(z), w, Q(w) to coincide with one
another if it were also the case that w = z. Consequently the cross-ratio
(z,Q2(2);w,Q(w)) is defined in all cases with the exception of those where
|z| =1 and w = z.

Now let uy =z, vy =1, us =1, 1 =2, u3=w,v3 =1, uy = 1, vy = w.
Then uy /vy = z, uy /vy = Q(2), uz/vzy = w and uy /vy = Q(w). The definition
of cross-ratio then ensures that
(Ul’l)g — Ugvl)(U2U4 — U4U2)
<U2U3 — U3UQ)(U1’U4 — U4U1)

(z —w)(w—72)

(1 —wz)(zw — 1)

(2, Q(2); w, Qw)) =

Z—Ww

)

1 —wz

as required. Jj

Proposition 2.11 Let z and w be complex numbers satisfying |z| < 1 and
lw| < 1, and let p(z,w) denote the Poincaré distance between z and w. Then

1+ J(z,Q(z);w,Q(w)))

1= /(2 Q(2); w, Q(w))

where Q(0) = oo, Q(oc0) = 0 and Q(z) = 1/Z for all non-zero complex
numbers z.

p(Z,w) = log (

Proof Evaluating, and applying the result of Lemma 2.10, we find that

(2. w) o |1 —wz|+ |z — w|
z,w) =
ke & 1—wz|— |z —w|

|z — w)
14+ —
g |1 —w 2]
Ll
|1 —w z|
e 1+\/(Z,Q(Z);w,Q(W))>
1 /(2. 90);w, QW) )
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as required.  Jj

Corollary 2.12 Let z and w be complex numbers satisfying |z| < 1 and
lw| < 1, and let p(z,w) denote the Poincaré distance between z and w.
Then the cross-ratio (z,Q(z); w, Q(w)) is expressed in terms of the Poincaré
distance according to the formula

epzw) _ 1\
(2, Q(z); w, Q(w)) = <_€p(z,w) T 1> '

Proof Let ¢ = (2,Q(2); w, Q(w)) and s = p(z,w). It follows from Proposi-

tion 2.11 that .
s = log <+—\/C_]) :
N

Consequently

ef—1l=—— ¢+ 1=

1—\/6’ 1—\/67
B e —1 2
1= es+1/) °

Definition A transformation ¢ that maps the open unit disk D in the com-
plex plane onto itself is said to be an isometry (with respect to Poincaré
distance) if

and thus

The result follows. |

p((2),p(w)) = p(z,w)

for all complex numbers z and w in the open unit disk D, where p denotes
the Poincaré distance function on D.

Proposition 2.13 Let D be the open unit disk in the complex plane, defined
so that D = {z € C : |z| < 1}. Then every Mdébius transformation of the
Riemann sphere that maps the open unit disk D onto itself is an isometry
with respect to the Poincaré distance function on D.

Proof The Mobius transformation p has the property that po Q2 = Qo p,
because it maps the unit disk onto itself (see Proposition 2.2). Moreover the
values of cross-ratios are preserved under the action of M6bius transforma-
tions (Proposition 1.18). Consequently

(1(2). 2u(2): plw), An(w))) = () 1O (), w(QAw)))
= (z,Q(z);w,Q(w)).
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The required result therefore follows immediately from an identity previously
established (Proposition 2.11) expressing the Poincaré distance p(z,w) in
terms of the cross-ratio (z,€(2);w, Q(w)). |

Proposition 2.14 Let z1, wy, 29 and wy be elements of the open unit disk
D, where
D={2eC:|z| <1}.

Suppose that p(z1,w1) = p(za,ws), where p denotes the Poincaré distance
function on D. Then there exists a Mobius transformation p mapping the
open unit disk D onto itself with the property that pi(z1) = 2o and p(wy) = ws.

Proof The values of the cross-ratios
(z1,Q2z1); w1, Qwy)) and (22, Q(29); wa, Q(ws))

are determined by the values of the Poincaré distances p(z1,w;) and p(za, wo)
respectively (see Corollary 2.12). Now p(z1) = 22 and pu(w;) = wy. Conse-
quently

(21, 2z1); wi, Qwy)) = (22, Q(22); wa, Q(ws)).

It follows from this that there exists a unique Mobius transformation u
with the properties that p(z1) = 22, u(Q(z1)) = Q(2q), p(wy) = we and
w(Q2(wr)) = Q(wy), (see Proposition 1.18).

Now let = Qo po €. Then g is itself a Mobius transformation
(Lemma 2.1) Then

i(z) = Qu((21))) = QA 2)) = 2,
A(z1)) = Qu((Q(=21)))) = Au(z1)) = A=),
flwi) = Qu(Q(wn))) = QQws)) = w2,
A(Qwn)) = Qu(Q(2(w1)))) = Qp(w)) = Q(w,).

Consequently the M&bius transformations p and i both map zy, Q(z;), w;
and Q(w) to zq, (29), we and Q(wy) respectively. But two distinct Mobius
transformations cannot coincide at three or more points of the Riemann
sphere. (see Proposition 1.9). Consequently f = u, and thus Qo u = po .
Moreover elements z; and 2, of the open unit disk D are mapped into D.
Applying Proposition 2.2, we conclude that the Mobius transformation u
maps the open unit disk D onto itself. This completes the proof. |}

Proposition 2.15 Let D be the open unit disk in the complex plane, let wy
be a complex number lying in D, let  be a positive real number, and let

I'={z€ D:p(z,wy) = 6}.
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Then T" is a circle contained within the open unit disk D. Moreover if wq lies
on the real line then the centre of the circle I' also lies on the real line.

Proof Let
I'o={z€ D:p(z0) =4}

Then T'y is a circle in the complex plane (see Proposition 2.9). Now there
exists a Mobius transformation g mapping the open unit disk D onto it-
self with the property that 1(0) = wy (see Corollary 2.6). Now the image
1(Ty) of the circle Ty must itself be a circle containined within the unit
disk. Indeed Mo6bius transformations map circles and straight lines to cir-
cles and straight lines (Proposition 1.11), and obviously u(I'g) cannot be a
straight line. Moreover u(I'g) = I', because Mébius transformations mapping
the open unit disk D onto itself are isometries with respect to the Poincaré
distance function p on the open unit disk (Proposition 2.13). The result
follows. |}

Proposition 2.16 Let p be the Poincaré distance function on the open unit
disk D in the complex plane, let t be a real number satisfying 0 <t < 1, and
let w be a complex number distinct from 0 and t for which |w| < 1. Then

p(0,w) < p(0,) + p(t, w).

Moreover p(0,w) = p(0,t) + p(t,w) if and only if the complex number w is a
positive real number for which t < w < 1.

Proof We first note that

1+t
0,t) =log [ —
p(0,1) og(l_t)

(see Proposition 2.8).
Given a complex number w in the unit disk that is distinct from 0 and ¢,
let real numbers s and u between —1 and 1 be determined so that

1+1 1+s
log ([ —— ) —1 — plt
og<1_t) og(1_8> p(t, w)

1+u 1+t
log (1 —u) — log (E) = p(t,w).

Then -1 <s<t<u<1and

and

p(s,t) = p(t,u) = p(t,w)
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and consequently

pls, 1) = pls,t) + plt,u) = 2 x plt, u) < 2 x p(0, 1) = p(—u, )

(again applying Proposition 2.8). It follows that —u < s < t < u.
Let
I'1={z€D:p(2,0) = p(u,0)}

and
Iy ={z€D:p(zt)=plut)}.

It follows from Proposition 2.15 that I';y and I'y are circles in the complex
plane, containined in the open unit disk D, whose centres lie on the real line.
The circle I'y passes through —u and u, and the circle I'y passes through s
and u. Now —u < s < u. It follows from elementary geometry that all points
of the circle I'y with the exception of the point u lie within the circle I';. Now
the point w lies on the circle I'y. Therefore

p(07w) < p(07u> = p(O,t) + p(t,u) = p(O,t) + p(t,w).

Moreover p(0,w) = p(0,t) + p(t,w) if and only if w = w, in which case w lies
on the real line and t < w < 1. The result follows. |

Proposition 2.17 (Triangle Inequality for Poincaré Distance) The
Poincaré distance function p on the open unit disk D has the property that

p(z1,23) < p(21, 22) + p(22, 23)
for all complex numbers z1, zo and z3 belonging to the disk D.

Proof This inequality follows directly in cases where any two of zq, z5 and
23 coincide with one another. Accordingly it remains to prove that the in-
equality holds in cases where these three complex numbers are distinct.

Accordingly let z;, 29 and z3 be any three distinct points of the unit
disk D. There exists a real number ¢ satisfying 0 < ¢ < 1 determined so
that p(0,t) = p(z1,22). There then exists a Mdbius transformation p that
maps the open unit disk onto itself and satisfies ;1(0) = z; and u(t) = 22 (see
Proposition 2.14). Let w be the unique point of the open unit disk for which
p(w) = z3. Then

p(0,w) < p(0,t) + p(t, w).

(see Proposition 2.16). But the Mobius transformation p is an isometry of
the Poincaré distance function (Proposition 2.13). Consequently

p(z1,23) < p(z1, 22) + pl(22, 23).

as required. |

46



Lemma 2.18 Let u be a real number satisfying 0 < u < 1 and let z be a
point of the open unit disk that does not lie on the real line between 0 and wu.
Then

p(0,u) < p(0,2) + p(z, u),

where p denotes the Poincaré distance function on the open unit disk.

Proof A positive real number 6 can be chosen for which ¢ is a positive real
number, where

t = (cosf ++v/—1sinb)z.

Let
w = (cosf + v—1 sinf)u.

The condition in the statement of the lemma regarding the location of z
ensures that the complex number w is not a real number lying between ¢ and
1. It follows from Proposition 2.16 that

p(0,w) < p(0,) + p(t, w).

Now rotations of the open unit disk about zero are isometries of the Poincaré
distance function defined on the unit disk. Consequently

p(0,u) < p(0,2) + p(z, w),

as required.  |j

2.3 Hyperbolic Length

Definition Let I' be a straight line segment or circular arc contained in the
open unit disk, and let p and ¢ be points lying on I". We define the hyperbolic
length of T' between the points p and ¢ to be the smallest non-negative real
number L with the property that

p(z0,21) + p(z1,22) + -+ + p(Zm—1, 2m) < L

for all choices of distinct points zg, 21, 22, .- ., Zm_1, Zm lying in order along
the line or curve I' with 2y = p and z,, = q.

Remark Those familiar with the concept of least upper bounds will note
that the hyperbolic length of T' is, according to this definition, the least
upper bound of the values of the sums of the prescribed form.

Now a basic principle of real analysis asserts that if a non-empty set
of real numbers is bounded above, then that set has a least upper bound.
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Accordingly, in order to prove that any straight line segment or circular arc
contained within the open unit disk in the complex plane has a well-defined
hyperbolic length, provided that the endpoints of that segment or arc lie
within the open disk, it would be necessary to show that there exists some
positive real number M that is large enough to ensure that, whenever points
20, 21, - - -, Zm are taken in order along that segment or arc, then

m

Y n(zz1) S M.

=1

Now suppose that the straight line segment or circular arc is contained
within a disk of radius R centred on zero in the complex plane, where 0 <
R < 1. One can then establish the existence of a real constant K, determined
by R, such that p(z, 2’) < K|z—2/| for all complex numbers z and 2’ satisfying
|z| < R and |Z/| < R. One can then show that

m

Zp(zjazj—l) < KN7

i=1

where N is the Euclidean length of the straight line segment or arc in ques-
tion. Consequently the basic principle of real analysis described above guar-
antees that the segment or circular arc has a well-defined hyperbolic length.

Remark The definition given is applicable also to certain other curves be-
sides straight line segments and circular arcs, provided that those curves are
sufficiently well-behaved.

In particular, if the curve is parametrized by a real variable ¢ so that the
the points of the curve are of the form z(t) + v/—1y(t), where x(t) and y(t)
are continuously differentiable real-valued functions of ¢ as t increases from ¢,
to t1, then the hyperbolic length of the curve may be defined in the manner
described. Its value can be shown to be equal to the value of the integral

t 2 dz\>  [dy\’
[ r==y(@) (&) «
o 1—2°—y dt dt

Given points p and ¢ that lie on some straight line segment or circular
arc [" in the open unit disk, let us denote by

Liyp(T5 p,q)

the hyperbolic length of I" between the points p and gq.
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Lemma 2.19 Let p, q be points lying on straight line segment or circular
arc I' in the open unit disk. Then

Ly (Tsp,q) > p(p, q),

where Ly, (I'; p, q) denotes respectively the hyperbolic length of I' between the
points p and q and p(p,q) denotes the Poincaré distance between p and q.

Proof This result follows directly from the definition of hyperbolic length.
(The criterion in that definition applies in particular to the case where the
collection of points along I' between p and ¢ just consists of the two points p
and ¢, with m = 1, zp = p and 2z; = ¢, employing the notation employed in
the definition of hyperbolic length given above.) |}

Proposition 2.20 Let p, g and r be points lying in order along a straight
line segment or circular arc I' in the open unit disk. Then

Lhyp(r;p7 T) = Lhyp(r;pa Q) + Lhyp(r; q, ’l“)-

Proof Let zg, 21, 29, . . ., 2, be points in order along I' with 2y = p and z,, = r.
Then either ¢ = z; for some integer k between 1 and n—1 or else ¢ lies between
zr—1 and z; for some integer k£ between 1 and n. In the case where ¢ = z;
for some integer k between 1 and n — 1, we find that

n k n
Y oGz = Yoz + Y Az %)
3=0 j=0 j=k+1
S Lhyp(r;pv Q) + Lhyp(F;q)T)'
In the case where ¢ lies between z,_; and z; for some integer k£ between 1

and n, the Triangle Inequality satisfied by the Poincaré distance function
(Proposition 2.17) ensures that

N

-1

Z p(zj-1,2) = p(zj-1,25) + p(26-1, 21)
=0

+ Y plzim )

j=k+1

<.
Il
o

kol

-1
P(Zj—la ZJ) + p(zk—la Q)

IA
i
o

n

+ p(q, 2x) + Z p(zj-1, %))
Jj=k+1

Lhyp(r;p7 Q) + Lhyp<F; q, T)'

IN
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It follows from these observations that

Lhyp(FEZ?a 7’) < Lhyp<r§p7 Q) + Lhyp(F; q, 7’)-

Now let some positive real number € be given. Then there exist points

20, 21, - - -, Zm i order along I'" with zp = p and z,, = ¢ such that
m
Zp(zj_l, 2j) > Luyp(T;p,q) — €.
j=1
There also exist points z,, Zmi1,---, 2, in order along I' with z,, = ¢ and

zy = 1 such that
Z p(2j-1, 25) > Lnyp(I'5q,7) — €.
j=m+1

Consequently

n

> p(zj1,2) > Ligp(T 0, @) + Liyp(Ti ¢, 7) — 22

j=1
It follows that
Luyp(T3p,7) > Lingp(T3p, @) + Ly (T g, 1) — 2¢
for all positive real numbers e, and therefore
Luyp(Tsp,7) 2 Ligp(I's p, @) + Lp (I3 ¢, 7).
The inequalities established within the proof now enable us to conclude that
Luyp (s p,7) = Liyp(I's p, @) 4 Lyp (L3 ¢, 1),
as required. |}

Proposition 2.21 Let I be the straight line segment in the open unit disk
with endpoints p and q, where p and q are real numbers satisfying —1 < p <
qg < 1. Then the hyperbolic length of I" is equal to the Poincaré distance
p(p, q) between p and q.

Proof Let tg,t1,...,t, be real numbers for which

p=1g <ty <tlo < -+ <lpo1 <ty =4q.
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Applying Proposition 2.8 we find that

=~ “ 1+t 1+t
Zp(tj—latj) = Z (log (1 — t]) — log (1_—;1)>
; J J—

j=1 j=1

1 1
= log (ﬂ> — log (ﬂ> = p(p, q)-
1—g¢q l—p

The result follows. |

Proposition 2.22 Let u be a Mobius transformation mapping the open unit
disk in the complex plane onto itself, and let I' be a straight line segment or
circular arc contained within the open unit disk. Then the hyperbolic length
of the image (') of T' under the Mdébius transformation u is equal to the
hyperbolic length of T' itself.

Proof This result follows from the definition of hyperbolic length, in view
of the fact that Mobius transformations that map the open unit disk onto
itself are isometries with respect to the Poincaré distance function (Proposi-
tion 2.13). |

2.4 Geodesics in the Open Unit Disk

Definition We say that a straight line segment or circular arc contained
within the open unit disk in the complex plane is a geodesic if the hyperbolic
length of the segment or arc between any two points lying on it is equal to
the Poincaré distance between those two points.

Proposition 2.23 Mobius transformations mapping the open unit disk onto
itself map geodesics onto geodesics.

Proof Mobius transformations mapping the open unit disk onto itself are
isometries with respect to the Poincaré distance function (Proposition 2.13)
and they preserve hyperbolic distance (Proposition 2.22) The result therefore
follows immediately from these observations and the definition of geodesics
in the open unit disk. |}

Theorem 2.24 Let I' be a straight line segment or circular arc contained
within the open unit disk in the complex plane. Then I' is a geodesic if and
only if the straight line or circle of which it forms part intersects the unit
circle orthogonally.
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Proof First suppose that the straight line or circle of which I' forms part
intersects the unit circle orthogonlly at points z; and z;. It follows from
Lemma 2.4 that there exists a Mobius transformation p of the Riemann
sphere mapping the unit disk D onto itself for which pu(z;) = —1 and p(z2) =
1. Now Mobius transformations map circles and straight lines to circles
and straight lines (Proposition 1.11). Moreover they preserve the angles
between circles and straight line segments at their points of intersection (see
Proposition 1.27). Therefore the straight line or circle of which the image
p(I') under the the Mébius transformation p forms part must intersect the
unit circle orthogonally at —1 and 1, and consequently it must coincide with
the real line. We conclude therefore that p(I') must be contained within the
real line.

It then follows from Proposition 2.21 p(I') must be a geodesic. Now
Mobius transformations that map the open unit disk onto itself map geodesics
to geodesics (Proposition 2.23). Consequently I', being the image of geodesic
under the inverse of the Mobius transformation p, must itself be a geodesic.

Now suppose that I' is a geodesic. Let p and ¢ be points lying on I', and
let u be the positive real number for which p(0,u) = p(p, ¢), where p denotes
the Poincaré distance function on the open unit disk. Then there exists a
Mobius transformation p, mapping the open unit disk onto itself, which is
such as to ensure that u(p) = 0 and p(q) = u. Now Mdébius transformations
map circles and straight lines to circles and straight lines (Proposition 1.11).
Consequently p(T") is a straight line or circular arc on which lie the real
numbers 0 and w.

Suppose that p(I") were to pass through some point z of the unit disk that
did not lie on the real line between 0 and u. Then, applying Lemma 2.18
and Proposition 2.20 it would follow that

Lnyp (1(I); 0,u) - = Ly (1(1); 0, 2) + Ly (u(I'); 2, )
> p(0,2) + p(z,u) > p(0,u).

Consequently 1 (I') would not be a geodesic. It follows that I" would not be a
geodesic, because Mobius transformations that map the open unit disk onto
itself map geodesics to geodesics (Proposition 2.23).

We conclude therefore that if I' is a geodesic, and if p is a Mobius trans-
formation mapping the points p and ¢ of I' to 0 and u respectively, where
0 <u<1and p(0,u) = p(p,q), then all points of u(I') must lie on the real
line.

Now the real line cuts the unit circle orthogonally at the points of inter-
section. Also Md6bius transformations preserve the angles between circles and
straight line segments at their points of intersection (see Proposition 1.27).
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Therefore the straight line or circle of which I' forms part must also intersect
the unit circle orthogonally, as required. |}

2.5 Complete Geodesics

Definition A geodesic contained within the open unit disk is said to be
complete if it is the intersection of the open unit disk with a straight line or
circle in the complex plane.

Proposition 2.25 Given two complete geodesics in the open unit disk D,
there exists a Mobius transformation of the Riemann sphere that maps the
open unit disk D onto itself and maps one complete geodesic onto the other.

Proof Let I'y and I's be complete geodesics in the open unit disk D, and
let I be the geodesic joining —1 and 1 that is the intersection of the disk D
with the real axis of the complex plane. Then, given distinct points p;
and ¢ lying on I'y, there exists a Mdbius transformation u; that maps the
segment of ['; with endpoints p; and ¢, into the real line. Then p; maps the
complete geodesic I'y onto the complete geodesic I. Similarly there exists a
Mobius transformation that maps the complete geodesic I's onto the complete
geodesic I. Then ju; o pu1 is a Mobius transformation of the Riemann sphere
that maps the open unit disk D onto itself and also maps the complete
geodesic I'; onto the complete geodesic I'y, as required. |

2.6 Geodesic Rays and Segments

Definition A geodesic segment is a geodesic that is a straight line segment
or circular arc whose endpoints both lie within the open unit disk.

Definition A geodesic ray is a geodesic that has an endpoint within the
open unit disk and which includes that endpoint together with all points of
a complete geodesic that lie between the endpoint and some point at which
the straight line or circle of which the geodesic ray forms part crossses the
unit circle that bounds the open unit disk.

2.7 The Group of Hyperbolic Motions of the Disk

Definition Let X be a subset of the complex plane. A collection of invertible
transformations of the set X is said to be a transformation group acting on
the set X if the following conditions are satisfied:

(i) the identity transformation belongs to the collection;
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(ii) any composition of transformations belonging to the collection must
itself belong to the collection;

(iii) the inverse of any transformation belonging to the collection must itself
belong to the collection.

The collection of all Mobius transformations of the Riemann sphere that
map the open unit disk {z € C : |z| < 1} onto itself is a transformation group
acting on the open unit disk. Indeed the identity transformation is a Mobius
transformation mapping the open unit disk onto itself, the composition of
any two Mobius transformations that each map the open unit disk onto itself
must also map the open unit disk onto itself, and the inverse of any Mobius
transformation that maps the open unit disk onto itself must also map the
open unit disk onto itself.

Definition Let D be the open unit disk in the complex plane, defined so
that D = {z € C : |z| < 1}, and let k: D — D be the transformation of
the open unit disk defined so that k(z) = Z for all z € D, where Z denotes
the complex conjugate of the complex number z. A transformation of the
open unit disk is said to be a hyperbolic motion of the unit disk if either
it is a Mobius transformation mapping the unit disk D onto itself or else it
expressible as a composition of transformations of the form p o x, where p is
a Mobius transformation mapping the open unit disk onto itself.

Mobius transformations give rise to orientation-preserving transforma-
tions of the complex plane (see Proposition 1.28 and the discussion of orien-
tation-preserving and orientation-reversing transformations of the complex
plane that follows the proof of that proposition). Also the transformation
k: D — D that maps each complex number z in D to its complex conjugate z
is orientation-reversing. Consequently a composition of two transformations
in which some Mobius transformation follows the complex conjugation trans-
formation k is orientation-reversing.

Orientation-preserving hyperbolic motions are the analogues, in hyper-
bolic geometry, of transformations of the flat Euclidean plane that can be
represented as the composition of a rotation followed by a translation.

Orientation-reversing hyperbolic motions are the analogues, in hyperbolic
geometry, of reflections and glide reflections of the flat Euclidean plane.

Proposition 2.26 Let D be the open unit disk in the complex plane, con-
sisting of those complex numbers z that satisfy |z| < 1. Then, given any
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orientation-preserving hyperbolic motion ¢ of the open unit disk D, there
exist complex numbers a and b, where |b| < |a|, such that
az+0b

zZ) = = or all z € D.
#(2) bz+a J

Similarly, given any orientation-reversing hyperbolic motion @ of the open
unit disk D, there exist complex numbers a and b, where |b| < |a| such that

o(z) = = forall z € D.

Proof This result follows directly on applying Proposition 2.7. |}

Proposition 2.27 The collection of all hyperbolic motions of the open unit
disk is a transformation group acting on the open unit disk.

Proof The identity transformation is a Mobius transformation that maps
the open unit disk onto itself and is thus a hyperbolic motion. Next let 1y
and ps be Mobius transformations that map the open unit disk onto itself,
Then ko g ok is also a Mobius transformation that maps the open unit disk
onto itself. Indeed there exist complex numbers as and by, where |by| < |as],
such that

(Z) _ asz + b2
1z 52 z + 52

for all complex numbers z for which by z+@y # 0 (see Proposition 2.7). Then
. 522’ + 52
(i) = 2.

and therefore k o o K is also a Mobius transformation that maps the open
unit disk D onto itself. Now

i1 (20 k) = (y o) ok, (paor)ops = (uo(ropzor))on

and

(1 ok)o (g0 k) = pyo(kopusor).
Moreover piy o pg and py o (ko g © k), being compositions of Mobius trans-
formations that map the open unit disk onto itself, are themselves Mobius
transformations that map the open unit disk onto itself. It follows from this
observation that any composition of hyperbolic motions of the open unit disk
is itself a hyperbolic motion of the open unit disk. Also

(npo k) =kopuy' = (ko oK) ok,
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and the inverse of any Mobius transformation that maps the open unit disk
onto itself must itself be a Mobius transformation that maps the open unit
disk onto itself. Consequently the inverse of any hyperbolic motion is itself a
hyperbolic motion. It follows that the collection of all hyperbolic motions of

the open unit disk is indeed a transformation group acting on the open unit
disk. |

Proposition 2.28 Let I' be a complete geodesic in the open unit disk D.
Then there exists an orientation-reversing hyperbolic motion @ with the prop-
erty that o(z) = z for all complex numbers z that lie on the geodesic I' and
also those points of the open unit disk D that lie on one side of the geodesic I’
are mapped by ¢ to points that lie on the other side of T'.

Proof Let I be the set of real numbers ¢ that satisfy the inequalities —1 <
t < 1. Then I is a complete geodesic in the open unit disk D. There
then exists a Mobius transformation g that maps the geodesic I onto the
geodesic T'. (see Proposition 2.25). Let ¢ = po ko ™!, where k(z) = 2
for all z € D. Then the orientation-reversing hyperbolic motion I' has the
required properties. [

Proposition 2.29 Let z, wy, 2o and ws be compler numbers belonging to
the open unit disk D. Suppose that p(z1,w1) = p(ze,ws), and suppose also
that one of the sides of the geodesic I'y in D passing through z, and w, has
been chosen, and that one of the sides of the geodesic I'y in D passing through
2o and wo has also been chosen. Then there exists a hyperbolic motion ¢ with
the following properties: p(z1) = zo; w(wy) = wy; @ maps complex numbers
on the chosen side of the geodesic 'y to complex numbers on the chosen side
of the geodesic I's.

Proof It follows from Proposition 2.14 that there exists a Mobius transfor-
mation that maps the open unit disk onto itself and also maps z; and w; to
29 and wsq respectively. If this Mobius transformation does not itself map the
chosen side of I'; to the chosen side of I'y, then it may be composed with an
orientation-reversing hyperbolic motion that fixes all complex numbers of the
geodesic I'y whilst mapping complex numbers on one side of I's to complex
numbers on the other side. The result follows. |

2.8 The Hyperbolic Centre of a Circle in the Disk

Proposition 2.30 Let w be a complex number belonging to the open unit
disk D in the complex plane, and let p denote the Poincaré distance function
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on D. Let 0 be a positive real number. Then

{z€D:p(z,w) <} = {zED: ‘12__;; <R},
where
B ed—1
e+ 1
Proof Let
(z) _ z+w
How 1+wz

for all complex numbers z. Then pu,, is a Mobius transformation mapping
the open unit disk onto itself for which 1,,(0) = w (see Corollary 2.6). Now
Mobius transformations mapping the open unit disk onto itself are isome-
tries with regard to the Poincaré distance function (see Proposition 2.13).
Consequently

{2€D:plz,w) <6} ={z€D:p(u,(z),0) <d}.
The required result now follows on applying Proposition 2.9. |}

Definition Let D be the open unit disk in the complex plane that consists
of those complex numbers z satisfying |z| < 1, and let C' be a circle in the
complex plane that is contained within D. A complex number w is said to
be the hyperbolic centre of the circle C' if the Poincaré distance between z
and w is the same for all points 2z that lie on the circle C.

Proposition 2.31 Let C be a circle in the complex plane that is contained
within the open unit disk D. Suppose that the circle C intersects the real
axis at real numbers u and v, where —1 < u < v < 1. Suppose also that
the hyperbolic centre of the circle C' lies on the real axis, and is located at t,
where u <t <wv. Then

1+\>  (T+u)(l+v)

1—t)  (I—u)(l—-v)
Proof Applying Proposition 2.8, we find that ¢, v and v must satisfy the
identity

lo 1+v —lo ﬂ =lo ﬂ —lo 1t+u
g\1-% g\1=7) % \1 ¢ s\1-u

Consequently
1+¢ I1+u 1+w
21 — ] =1 1 .

The required result then follows on taking the exponential of both sides of
this identity. |
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