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Geometrical Algebra and Associated Symbolic Notation

The term geometrical algebra is sometimes employed to describe the char-
acteristic nature of the content of Book II of Euclid’s Elements of Geometry.
This label derives from a perception that the results stated in Euclid’s propo-
sitions in this book correspond in some meaningful sense to simple identities
in basic algebra that can be justified in algebraic terms by means of straight-
forward algebraic computations. However, in more recent decades, some
historians of mathematics have deprecated the use of the term geometrical
algebra, and have argued strenuously against interpretations of the content
of Book II that suggests that the content is essentially algebraic, though
presented in geometric language.

Some might however consider it convenient to adopt some form of sym-
bolic notation to represent the essential ideas of the proofs in a form that
bears some resemblance to basic algebra. This has been common practice
for centuries.

For purposes of the commentaries which follow, let us establish here the
following notation and conventions.

Suppose that a polygon ABCD . . . HK in some plane is bounded by
straight line segments

AB, BC, CD, . . . HK, KA.

This polygon may be identified and represented, with respect to its area,
using the notation

Poly(ABCD . . .HK).

Further notation may then be introduced to represent, with respect to area,
squares and rectangles with sides equal to given straight line segments.

Thus suppose that a straight line segment is given, and let its endpoints
be A and B. Then all squares with sides equal to AB are equal to one another
in area. The notation Quad(AB) may therefore be used to represent, with
respect to area, a square whose sides are all equal to the straight line segment
AB. Thus

Quad(AB) = Poly(EFGH)

for all squares EFGH for which

AB = EF = FG = GH = HE.

(The Latin word meaning “square” is quadratum.)
Next suppose that two straight line segments AB and CD are given. Let

EFGH and KLMN be rectangles, where EF = KL = AB and FG =
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LM = CD. Then, with respect to area, the rectangle EFGH is double
the triangle EFG, and the rectangle KLMN is double the triangle KLM .
Now the two sides EF , FG are equal to the two sides KL, LM , and the

A B C D

E F

GH

K L

MN

included angle EFG is equal to the included angle KLM (as both angles
are right angles). Applying the SAS Congruence Rule (as stated in Euclid’s
Elements of Geometry, Book I, Proposition 4), we deduce that the triangles
EFG and KLM are equal to one another with respect to area, and therefore
the rectangles EFGH and KLMN , being the doubles of the corresponding
triangles, are equal in area to one another. Thus

Poly(EFGH) = Poly(KLMN).

Accordingly the notation Rect(AB,CD) may be employed to signify, with
respect to area, a rectangle contained by sides equal to AB and CD. These
containing sides accordingly share a common endpoint at some corner of the
rectangle.

In modern geometry, but not in ancient Greek geometry, it is possible,
and customary, to choose some straight line segment to represent a unit of
length, and to express the ratio of the length that an arbitrary straight line
segment bears to the chosen unit segment in the form of a real number. If,
for example, the real number c represents the ratio that some straight line
segment bears to the unit segment then we say that the length of straight
line segment is c units in length. Also the ratio of the area of a rectilineal
figure to that of a square constructed on the unit straight line segment may
be expressed as a real number that is considered to specify the area of the
figure in the appropriate units.

Nevetheless, in instances where the ratio that a straight line segment
bears to the unit segment is expressed by a positive integer n, then it would
be commonplace for the ancient Greeks to specify the length of the straight
line segment as the appropriate number of units. Thus taking a ‘foot’ as the
unit of length, one might describe a line segment as being, for example, four
feet in length (see, for example, Plato, Meno, 82 c–85 b).
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The ancient Greek mathematicians would say that, given two straight
line segments of unequal length, the shorter measures the longer if the longer
line segment can be subdivided into parts that are all equal in length to the
shorter segment. The positive integer that is the number of segments arising
from this subdivision would then express the ratio of the longer segment to
the shorter segment (see the definitions at the beginning of Books VII and
X of Euclid’s Elements of Geometry). Similarly a smaller rectilineal plane
figure measures a larger rectilinear plane figure if the larger plane figure can
be subdivided into a number of parts each equal in area to the smaller plane
figure. Again the number of parts expresses the ratio, in area, of the larger
plane figure to the smaller plane figure.

Two straight line segments are said to be commensurable if there exists
some straight line segment that measures both of the given line segments.
Otherwise those two line segments are said to be incommensurable. Similarly
two rectilineal plane figures are said to be commensurable if there exists some
rectilineal plane figure that measures both of the given line segments. Oth-
erwise those two figures are said to be incommensurable (see the definitions
the beginning of Book X of Euclid’s Elements of Geometry).

By the time of Plato, several generations before that of Euclid, the an-
cient Greek mathematicians knew that, if a smaller square measures a larger
square, and if the positive integer that specifies the ratio of the two squares is
not a square number, then the sides of the larger square are incommensurable
with those of the smaller square (see Plato, Theaetetus, 147 c–148 b).

A particular case of the more general result just stated is the well-known
result that the diagonal of an isosceles right-angled triangle is incommensu-
rable with the short sides of that triangle.

Consequently any version of “elementary geometry” associating real num-
bers to all straight line segments and rectilineal plane figures so as to repre-
sent “numerically” the lengths of the line segments and the areas of the plane
figures would constitute an anachronistic departure from an understanding of
ancient Greek geometry that aimed to adhere, so far as is practicable, to the
theoretical concepts and frameworks of the ancient Greek mathematicians.
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Commentary: Book II, Proposition 4

For this proposition we have to prove that, given a straight line segment
AB, a square constructed on this straight line segment is equal in area to
the combined area of the following geometric figures: a square constructed
on the line segment AC; a square constructed on the line segment CB; two
rectangles for which the two sides meeting at any corner have lengths equal
to AC and CB respectively.

Accordingly the proposition can be stated in somewhat symbolic notation
as follows:

Quad(AB) = Quad(AC + CB)

= Quad(AC) + Quad(CB) + 2 × Rect(AC,CB).

Here Quad(AB) may be considered to represent, with regard to area, a square
(or quadratum, in Latin) on the line AB, and Rect(AC,CB) may be con-
sidered to represent, with regard to area, a rectangle (or rectangulum) with
containing sides equal in length to the straight lines AC and CB.

A BC

D EF

G
H K

Of course if, in accordance with ‘modern’ practice, we were to choose a
unit of length, thereby determining a unit straight line and a unit square,
and represent the ratios of the lengths of the line segments AC and CB to
that of the unit straight line by real numbers represented by the algebraic
variables x and y, as has been common practice from at least the early 17th
century, then the result to be proved here would correspond to the familiar
algebraic identity

(x + y)2 = x2 + y2 + 2xy.

The symbolic language of algebra is not employed in this fashion in Euclid’s
Elements of Geometry.

The geometric equality to be proved seems obvious on considering the
associated diagram, provided that the commonplace geometric properties
taken for granted in drawing diagrams such as this one can indeed be justified
on the basis of the “elements” set out in the propositions of the first book of
Euclid’s Elements of Geometry.
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First we set out Euclid’s construction for generating all the straight lines
in the associated figure. Initially a straight line segment AB is given, together
with a point C in the interior of that segment. A square ADEB is constructed
on AB (i. 46), then the diagonal BD is drawn, then the line CF starting
at C is drawn parallel to AD and EB (i. 31). (Note that Proposition 30
of Book I of Euclid’s Elements of Geometry ensures that a line parallel to
at least one of the parallel lines AD and EB will necessarily be parallel to
both.)

Now the straight line CF and the diagonal BD intersect at a point G lying
between C and F . Euclid provides no explanation for this. Indeed the text
does not even identify the point G as the intersection point of the straight
lines CF and BD, and thus one needs to refer to the diagram to identify
the location of the point in question. More modern axiomatic treatments
of elementary synthetic geometry from the late nineteenth century onwards
will typically include axioms whose consequences will include propositions
and theorems establishing the circumstances in which lines intersect. In such
a more modern axiomatic treatment one would be able to prove formally that
the points C and F lie on opposite sides of the infinite straight line joining the
points B and D, and therefore the straight line segment CF must intersect
BD at some point G lying between B and D.

Having constructed the point G where CF and BD intersect, a line HK
is drawn through that point parallel to the top and bottom edges AB and
DE of the outermost square (i. 30 and i. 31).

A BC

D EF

G
H K

Euclid next shows that CGKB is a square. To verify this one must show
that the figure CGKB is both equilateral and right-angled. Now, because
ADEB is a square, ABD is an isoceles triangle, and therefore the angles
ABD and ADB subtended by the equal sides are equal (i. 5). Also the
corresponding angles ADB and CGB are equal because the straight lines AD
and CF are parallel (i. 29). It follows that the angles CBG and CGB are
equal, as both are equal to the angle ADB, and therefore CBG is an isosceles
triangle with equal sides CB and CG. Basic properties of parallelograms
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(i. 34) ensure that the straight line segments BK and GK are equal to CG
and CB respectively. Therefore the figure CGKB is equilateral.

Euclid also explains why the angles at the corners of the figure CGKB
are right angles. The angle KBC is right, because ADEB is a square. The
angles KBC and BCG add up to two right angles (i. 29), and the angle KBC
is right, therefore the angle BCG is right. Also CGKB is a parallelogram,
and opposite angles of a parallelogram are equal (i. 34) Therefore angles
CGK and GKB are equal to KBC and BCG respectively, and are therefore
right angles. Thus all angles of the quadrilateral CGKB are right angles.
The sides of this quadrilateral have been shown to be equal. Therefore the
quadrilateral CGKB is a square, representing the square on the straight line
segment CB. Similarly HDFG is a square, equal to the square on AC.

A BC

D EF

G
H K

Now the lines AC, HG, GF and KE are equal to one another because
HDFG is a square, AHGC and GFEK are rectangles, and are thus paral-
lelograms, and opposite sides of any parallelogram are equal (i. 34). Also the
lines CB, CG and GK are equal to one another for similar reasons. There-
fore both the rectangles AHGC and GFEK are equal to one another, and
both represent a rectangle contained by the straight line segments AC and
CB. We have now shown that

Poly(HDFG) = Quad(AC), Poly(CGKB) = Quad(CB)

and
Poly(AHGC) = Poly(GFEK) = Rect(AC,CB).

It follows that

Quad(AB) = Poly(HDFG) + Poly(CGKB)

+ Poly(AHGC) + Poly(GFEK)

= Quad(AC) + Quad(CB) + 2 × Rect(AC,CB).
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Commentary: Book II, Proposition 5

For this proposition we have to prove that, if a finite straight line AB is
cut at C and D, where the point C bisects AB and the point D lies between C
and B, and if a rectangle be constructed on AD, with its sides perpendicular
to AD equal in length to DB, and if the area of this rectangle be added to
that of a square with sides equal in length to CD, then the resultant area is
equal to that of a square with sides equal in length to CB.

Accordingly the proposition can be stated in somewhat symbolic notation
as follows:

Rect(AD,DB) + Quad(CD) = Quad(CB).

Here Quad(CD) and Quad(CB) may be considered to represent, with regard
to area, squares on the lines CD and CB respectively, and Rect(AD,DB)
may be considered to represent, with regard to area, a rectangle with con-
taining sides equal in length to the straight lines AD and DB.

A BC D

E FG

H
K L
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P

Of course if, in accordance with ‘modern’ practice, we were to choose a
unit of length, thereby determining a unit straight line and a unit square,
and represent the ratios of the lengths of the line segments CB and CD to
that of the unit straight line by real numbers represented by the algebraic
variables x and y, as has been common practice from at least the early 17th
century, then the result to be proved here would correspond to the algebraic
identity

(x + y)(x− y) + y2 = x2.

The symbolic language of algebra is not employed in this fashion in Euclid’s
Elements of Geometry.

In order to prove the proposition, let the square CEFB be constructed
on the finite line CB, let the vertices B and E of this square be joined by the
diagonal BE, and let the point D on the edge CB of this square be joined
to a point G on the opposite edge of the square by a line DG that is parallel
to both CE and BF , and let that line DG intersect that diagonal BE of
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the square at the point H. Then let the rectangle AKMB be completed so
as to ensure that the side KM of this rectangle passes through the point H.
Moreover let L be the point where CE intersects KM .

A BC D
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Now Proposition 43 in Book I of the Elements of Geometry ensures that
the rectangles CLHD and HGFM are equal in area. Accordingly

Poly(CLHD) = Poly(HGFM).

Also AK = DH = DB. Consequently

Rect(AD,DB) = Poly(AKHD) = Poly(AKLC) + Poly(CLHD)

= Poly(CLMB) + Poly(HGFM)

= Poly(CLHGFB),

where Poly(CLHGFB) represents, in area, the polygon CLHGFB. This
polygon is the figure referred to by Euclid as the ‘gnomon’ NOP . Also

Quad(CD) = Poly(LEGH),

because the sides of the square LEGH are equal in length to the finite line
CD. Accordingly

Rect(AD,DB) + Quad(CD) = Poly(CLHGFB) + Poly(LEGH)

= Quad(CB),

as required.
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Commentary: Book II, Proposition 6

For this proposition we have to prove that, if a finite straight line AB
is cut at bisected at C and is also produced in a straight line beyond the
point C to end at a point D, and if a rectangle be constructed on AD, with
its sides perpendicular to AD equal in length to BD, and if the area of this
rectangle be added to that of a square with sides equal in length to CB, then
the resultant area is equal to that of a square with sides equal in length to
CD.

Accordingly the proposition can be stated in somewhat symbolic notation
as follows:

Rect(AD,DB) + Quad(CB) = Quad(CD).

Here Quad(CB) and Quad(CD) may be considered to represent, with regard
to area, squares on the lines CB and CD respectively, and Rect(AD,DB)
may be considered to represent, with regard to area, a rectangle with con-
taining sides equal in length to the straight lines AD and DB.
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Of course if, in accordance with ‘modern’ practice, we were to choose a
unit of length, thereby determining a unit straight line and a unit square,
and represent the ratios of the lengths of the line segments CB and BD to
that of the unit straight line by real numbers represented by the algebraic
variables x and y, as has been common practice from at least the early 17th
century, then the result to be proved here would correspond to the algebraic
identity

(2x + y)y + x2 = (x + y)2.

The symbolic language of algebra is not employed in this fashion in Euclid’s
Elements of Geometry.

In order to prove the proposition, let the square CEFD be constructed
on the finite line CD, let the vertices D and E of this square be joined by the
diagonal DE, and let the point B on the edge CD of this square be joined
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to a point G on the opposite edge of the square by a line BG that is parallel
to both CE and DF , and let that line BG intersect that diagonal DE of
the square at the point H. Then let the rectangle AKMD be completed so
as to ensure that the side KM of this rectangle passes through the point H.
Moreover let L be the point where CE intersects KM .

A BC D

E FG
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Now Proposition 43 in Book I of the Elements of Geometry ensures that
the rectangles CLHB and HGFM are equal in area. Also the rectangles
AKLC and CLHB are equal in area, because AC and CB are equal in
length. Accordingly

Poly(AKLC) = Poly(CLHB) = Poly(HGFM).

Also AK = BH = BD. Consequently

Rect(AD,DB) = Poly(AKMD) = Poly(AKLC) + Poly(CLMD)

= Poly(HGFM) + Poly(CLMD)

= Poly(CLHGFD),

where Poly(CLHGFD) represents, in area, the polygon CLHGFD. This
polygon is the figure referred to by Euclid as the ‘gnomon’ NOP . Also

Quad(CB) = Poly(LEGH),

because the sides of the square LEGH are equal in length to the finite line
CB. Accordingly

Rect(AD,DB) + Quad(CB) = Poly(CLHGFD) + Poly(LEGH)

= Quad(CD),

as required.
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Commentary: Book II, Proposition 11

This proposition supplies a geometric construction using straightedge and
compasses for cutting a line segment in a particular ratio named by the
ancient Greeks as extreme and mean ratio (see Euclid, Elements of Geometry,
Book VI, Definition 3). In more modern times, this ratio is often referred to
as the golden ratio, having been named as such by the German mathematician
Martin Ohm in 1835.

In the context of Euclid’s Elements of Geometry, the term ratio does
not appear before Book V, and consequently Euclid simply describes the
properties that characterize the relationship between the line segments AH
and AB without making explicit reference to the concept of ’ratios’.

The problem set out in this proposition requires us, given a line segment
AB, to determine a point H in the interior of the segment so as to ensure
that a square constructed on the side AH is equal in area to a rectangle with
containing sides equal in length to AB and HB.

A
B

C D
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F G
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Of course if, in accordance with ‘modern’ practice, we were to choose a
unit of length, thereby determining a unit straight line and a unit square,
and represent the ratios of the lengths of the line segments AB and AH to
that of the unit straight line by real numbers represented by the algebraic
quantities b and x, as has been common practice from at least the early
17th century, then then our task would be to formulate a straightedge and
compass construction, given a line segment of length b, to determine a line
segment of length x, where b(b − x) = x2. In other words, we would be
seeking a positive real number x that is a root of the quadratic polynomial
x2+bx−b2. The symbolic language of algebra is not employed in this fashion
in Euclid’s Elements of Geometry.

In order to carry out the construction, a square ACDB is constructed on
the line segment AB, the side AC of that square is bisected at E, and that
side is produced beyond A to a point F so as to ensure that EF and EB are
equal in length. Of course this point F is the point at which the straight ray
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starting at E and passing through the point A intersects the circle centered
on the point E that passes through the point A. A square AHGF is then
constructed on AF so that the side AH of the square is a part of the line
segment AB. The point H then cuts the line segment AB in the required
ratio.

A
B

C D

E

F G
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K

The validity of the construction may be established by the following argu-
ment, which applies Pythagoras’s Theorem (which is Proposition 47 in Book
I) and Proposition 4 in Book II of Euclid’s Elements. Note that

Quad(EA) + Quad(AB) = Quad(EB) = Quad(EF )

= Quad(EA) + Quad(AF ) + 2 × Rect(EA,AF )

= Quad(EA) + Quad(AH) + Rect(AB,AH).

Subtracting the area of the square on EA, we find that

Quad(AB) = Quad(AH) + Rect(AB,AH).

But
Quad(AB) = Rect(AB,HB) + Rect(AB,AH).

Consequently
Quad(AH) = Rect(AB,HB),

as required.
Euclid sets out the argument somewhat differently, applying Proposition 6

in Book II of the Elements. Applying that proposition in the context of the
construction previously described, we find that

Rect(CF, FA) + Quad(EA) = Quad(EF ).

But the line segments EF and EB are equal in length. Consequently, apply-
ing Pythagoras’s Theorem (Proposition 47 in Book I of the Elements), we
find that

Quad(EF ) = Quad(AB) + Quad(EA).
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Consequently
Rect(CF, FA) = Quad(AB),

and thus
Poly(FGKC) = Poly(ACDB).

But
Poly(FGKC) = Quad(AH) + Poly(AHKC)

and
Poly(ACDB) = Poly(HKDB) + Poly(AHKC).

Consequently

Quad(AH) = Poly(HKDB) = Rect(AB,BH),

as required.

14



Commentary: Book II, Proposition 14

This proposition supplies a geometric construction using straightedge and
compasses for drawing a square equal in area to a given rectangle. Now
Proposition 45 in Book I of Euclid’s Elements of Geometry describes how
to construct a rectangle equal in area to any given plane rectilineal figure.
Consequently the construction described in Proposition 45 in Book I can be
followed by the construction set out by Euclid in this proposition in order to
construct, using straightedge and compasses, a square equal in area to any
given plane rectilineal figure.

Of course no further construction is needed when the given rectangle is
itself a square. We therefore only have to describe and justify the construction
when the given rectangle is oblong. Accordingly let BCDE be a rectangle
contained by sides BE and ED, where BE is longer than ED. In the context
of Euclid’s proposition, this rectangle is constructed, so as to be equal in area
to a given plane rectilineal figure A: Proposition 45 in Book I of the Elements
describes how the construction of the rectangle BCDE might be performed.
In Euclid’s construction of the square equal in area to the rectangle BCDE,
the side BE of that rectangle is produced in a straight line beyond E to a
point F so as to ensure that ED and EF are equal in length. The straight
line segment BF is bisected at the point G, and a semicircular arc from B to
F is constructed, centred on the point G and lying on the opposite side of BF
to the rectangle BCDE. The straight line segment DE is then produced in
a straight line beyond E till it intersects the semicircular arc at the point H.
Euclid then proves that a square constructed on the side EH would be equal
in area to the rectangle BCDE.

A
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C D

E FG
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Euclid’s argument proceeds as follows. Proposition 5 in Book II of the
Elements of Geometry ensures that

Rect(BE,EF ) + Quad(EG) = Quad(GF ).

Now GF and GH are equal in length, because the points F and H lie on
the semicircle centred on the point G. Also the angle GEH is a right angle.
Pythagoras’s Theorem (Elements, I.47) therefore ensures that

Quad(GF ) = Quad(GH) = Quad(HE) + Quad(EG).

Consequently

Rect(BE,EF ) + Quad(EG) = Quad(HE) + Quad(EG).

Also the straight line segments ED and EF are equal in length. Conse-
quently

Poly(BCDE) = Rect(BE,EF ) = Quad(HE).

In other words, the rectangle BCDE is equal in area to a square constructed
on the straight line segment EH.

We now consider how Euclid’s construction might be justified in the lan-
guage and notation of modern geometry. Thus we suppose that the ratios of
the the line segments BE, ED, GF , EG and HE to some chosen segment
representing a unit of length are expressed by the real numbers a, b, r, x and
y respectively. Then

a = r + x, b = r − x and x2 + y2 = r2.

The product ab then represents the ratio of the area of the rectangle BCDE
to that of the square on the unit line segment. Now

ab = (r + x)(r − x) = r2 − x2 = y2.

Thus the rectangle BCDE is equal in area to a square constructed on the
line segment HE.
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Commentary: Book III, Proposition 1

Heath begins his commentary on this construction as follows:

Todhunter observes that, when, in the construction, DC is
said to be produced to E, it is assumed that D is within the circle,
a fact which Euclid first demonstrates in iii.2. This is no doubt
true, although the word διήχθω, “let it be drawn through,” is used
instead of ἐκβεβλήσθω, “let it be produced.” And, although it is
not necessary to assume that D is within the circle, it is necessary
for the success of the construction that the straight line drawn
through D at right angles to AB shall meet the circle in two
points (and no more): an assumption which we are not entitled
to make on the basis of what has gone before only.

Hence there is much to be said for the alternative procedure
recommended by De Morgan as preferable to that of Euclid. De
Morgan would first prove the fundamental theorem that “the line
which bisects a chord perpendicularly must contain the centre,”
and then make iii. 1, iii. 25 and iv. 5 immediate corollaries of
it.. . .

Notwithstanding the comments of De Morgan, Todhunter and Heath as
described above, the Euclidean text could be considered to be structured so
that the construction is first described as it would be performed by someone
implementing the construction, thereby constructing a point D in the interior
of the circle and a perpendicular bisector cutting AB at the point D and
cutting the circle at two points C and E that would happen to lie on opposite
sides of the line AB.

A B

C

D

E

F G

Having described the practical steps for performing the construction, the
Euclidean text then supplies some theoretical justification for the procedure.
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Given two points A and B lying on the circumference of the circle, the
perpendicular bisector of the chord AB is constructed in the usual way.
Euclid establishes that the centre of the circle cannot lie anywhere other
than on this perpendicular bisector.

Indeed let G be a point in the plane of the circle that does not lie on
the perpendicular bisector of the chord AB. Euclid shows that G cannot
be the centre of the circle. Indeed suppose that G were the centre. Then
GA = GB, and therefore the triangle GAB would be isosceles. But then
∠GAB = ∠GBA (i. 5). Applying the SAS Congruence Rule (i. 4) to the
triangles GAD and GBD at the vertices A and B respectively, it would then
follow that ∠GDA = ∠GDB, and therefore both angles GDA and GDB
would be right. Thus GD would be perpendicular to AB. But this is not
possible, as G has been chosen to be a point not lying on the perpendicular
bisector of AB. Thus G cannot be the centre of the circle.

A B

C

D

E

F G

In the Euclidean text it seems to be left as an exercise for the reader to
show that the centre of the circle is indeed located at the point F , and thus
that a correct construction has indeed been set out.

Now the circle must have a centre somewhere. Euclid has shown that
this centre cannot lie away from the perpendicular bisector of the chord AB.
Therefore the perpendicular bisector of AB must pass through the centre
of the circle, and must therefore intersect that circle in exactly two points.
Let F be the midpoint of the diameter of the circle terminated at these two
points. Then F is the centre of the circle.

Furthermore the angle FAD is acute, because FDA is right and the sum
of any two angles of a triangle must be less than two right angles (i. 17). The
greater angle of a triangle is subtended by the greater side (i. 19). Therefore
the radius FA of the circle is greater than FD, and thus the point D lies in
the interior of the circle. This establishes the correctness of the construction
set out above for finding the centre of a circle.
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Commentary: Book III, Proposition 2

The proposition asserts that all points lying on a chord AB joining two
points A and B located on the circumference of some circle must lie in the
interior of that circle. Euclid employs a proof strategy that involves showing
that any point not located in the interior of the circle cannot lie on the chord
between the points A and B.

It would be more natural, in modern mathematics, to present a more
direct proof. And indeed such a proof is to be found in nineteenth century
textbooks that adapt and paraphrase Euclid’s Elements of Geometry. Let A
and B be points located on the circumference of a circle, and let E be a point
lying on the chord AB between A and B. Let the point D be the centre of
that circle, and let DA, DB and DE be joined.

A B

D

E

Then DA = DB, because the points A and B are located on a circle
centred on the point D, and therefore DAB is an isosceles triangle. It follows
that ∠DAB = ∠DBA (i. 5). Now ∠DEB is an exterior angle of the triangle
DAE, whilst ∠DAE is an interior angle of that triangle opposite to the
exterior angle DEB. Therefore ∠DEB > ∠DAE (i. 16). But

∠DAE = ∠DAB = ∠DBA = ∠DBE.

It follows that ∠DEB > ∠DBE. Also, in any triangle, the greater angle is
subtended by the greater side (i. 19). Consequently DB > DE, and therefore
the point E lies closer to the centre D of the circle than the points A and B
located on its circumference, and therefore lies in the interior of the circle.
Thus the chord AB does indeed fall within the circle.
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Commentary: Book III, Proposition 3

To prove this proposition one must establish, firstly, that if a diameter
CD of a circle bisect a chord AD not through the centre, then CD cuts AB
at right angles, and secondly, that if the diameter CD cut the chord AB at
right angles, then it bisects the chord. Let the point E be the centre of the

A B

C

D

E

F

circle, and let the diameter CD meet the chord AB at the point F . The
centre E of the circle is the midpoint of the diameter CD.

Euclid uses the SSS Congruence Rule to prove that if the diameter CD
bisects the chord, then it cuts the chord at right angles. Thus suppose that
CD bisects AB at the point F . Then the sides AF , FE and EA of the
triangle EAF are respectively equal to the sides the sides BF , FE and EB
of the triangle EBF . The SSS Congruence Rule (Elements, I.8) ensures that
the triangles EAF and EBF are congruent. Consequently the angles AFE
and BFE are equal, and thus both angles are right angles.

Note that applying the result that the angles subtending the equal sides of
an isosceles triangle are equal (Elements, I.5), we can deduce that the angles
EAB and EBA of the triangle EAB are equal to one another, whether or
not the chord AB is bisected at F , and whether or not the line FE is at
right angles to AB. Consequently, if the diameter CD bisects the chord AB
at F then the SAS Congruence Rule can be used to prove the equality of the
angles AFE and BFE, thus proving that the diameter CD cuts the chord
AB at right angles.

In the situation where the diameter CD cuts the chord AB at right angles
at F , and one is required to show that the chord AB is bisected at F , Euclid
proves that the chord is indeed bisected by applying the SAA Congruence
Rule established in Proposition 26 of Book I of the Elements of Geometry.
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Commentary: Book III, Proposition 16

In proving that a straight line drawn at right angles to a diameter of a
circle from its extremity will fall outside the circle, Euclid uses the fact that
a straight line from a point A on the circumference of the circle and passing
through a point in the interior of the circle will, when produced to the extent
necessary, intersect the circumference again at some other point.

As an alternative to Euclid’s argument, one may argue as follows. Let A
be a point on the circumference of a circle, let D be the centre of that circle,
and let K be some point in the interior of the circle that is not collinear with
A and D. Join AK and KD.

A

D

K

Now DK < DA, and the greater of two sides of any triangle subtends
the greater angle (i. 18). It follows therefore that ∠DKA > ∠DAK, and
therefore the sum of the angles of the triangle DAK at A and K exceeds
twice the angle of that triangle at A. But the sum of any two angles of a
triangle is less than two right angles (i. 17). It follows that the angle DAK
is less than a right angle.

From this we conclude that a straight line drawn from a point A on the
circumference of a circle at right angles to the line AD joining that point to
the centre D of the circle must necessarily fall outside the circle.

This proposition also discusses properties of the horn angle. This is the
“angle” between the circumference of the circle and its tangent line at the
point A. It is not a rectilineal angle. Heath’s commentary on this proposition
includes extensive discussion of disputes and discussions of such horn angles
from ancient times through to the seventeenth century.

Euclid asserts that “between the straight line” tangent to the circle at A
“and the circumference another straight line cannot be interposed.” Proving
this is tantamount to showing that if a straight line AF from the point A on
the circumference of the circle makes an an acute angle with the straight line
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AD joining the point A to the centre D of the circle then the line AF must
enter the interior of the circle. Euclid’s proof can be paraphrased and slightly
varied in the following manner. Drop a perpendicular from the centre D of
the circle to the line AF , and let that perpendicular meet the line AF at the
point G, as in Euclid’s figure.

A

B

C

D

E

F

G
H

Then the triangle DGA has a right angle at G and an acute angle at
A, and thus ∠DGA > ∠DAG. The greater of two angles of a triangle is
subtended by the greater side (i. 19). It follows that DA > DG and thus the
point G lies in the interior of the circle.
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Commentary: Book III, Proposition 17

The proposition describes and justifies a proposition for dropping, onto a
given circle, a straight line from a given point outside the circle so as to ensure
that the straight line so constructed touches the circle. In the configuration
depicted in Euclid’s diagram, the given circle is the circle BCD and the
given point is the point A. The point A is first joined to the centre E of the
circle. Then a line is drawn at right angles to AE at the point D at which
AE intersects the circle. This line at right angles to AE at the point D is
produced till it intersects, at the point F , the circle centred on E that passes
through the given point A. The point F is joined to the centre E of the circle,
and a line is drawn from the given point A to the point B at which the line
FE intersects the circle BCD. Euclid shows that the line AB touches the
circle BCD at the point B.

A

B

C

D

E

F

G

Now an application of the SAS Congruence Rule shows that the the tri-
angles AEB and FED are congruent. Consequently the angles EDF and
EBA are equal. But the angle EDF is a right angle. Consequently the angle
EBA is also a right angle. It then follows from the preceding proposition,
Proposition 16, applying the Porism associated with that proposition, that
the line AB touches the circle BCD at the point B.
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Commentary: Book III, Proposition 18

This proposition asserts that if a straight line touches a circle at a point C,
and if a straight line segment FC is drawn that joins the centre F of the
circle to the point C of contact, then the line FC is perpendicular to the
straight line touching the circle at the point C of contact.

Before discussing how this result is proved, we first discuss what is meant
by saying that a straight line touches a given circle, and then show that a
straight line that touches a given circle cannot pass inside that circle.

Now, according to the definitions that commence Book III, a straight line
touches a circle at a point C of contact if any only if it does not cut the the
circle at that point. However the definitions prefixed to Book III of Euclid’s
Elements of Geometry provide no specification of which is meant by saying
that a straight line cuts a circle at a point of intersection, or what is meant
by saying that two circles cut one another at a point of intersection.

The straight line would cut the circle at that point if, following the line in
one of the two directions along it, one passes from outside the circle to inside
the circle on passing through the point C. If one wished to be more precise,
one could say that the straight line cuts the circle at the point C of contact
if and only if, for some sufficiently small circle centred on the point C, the
point C separates the points on the straight line and within the small circle
that lie inside the given circle from those points on the straight line and
within the small circle that lie outside the given circle. A similar criterion
could define, formally and precisely, what is meant by saying that two circles
cut another.
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In the argument which follows, we shall demonstrate that a straight line
can touch a circle at at most one point of contact, and that a straight line
which touches a circle at any point cannot pass through any point lying inside
that circle. First let L, M and N be points lying on a given straight line,
and let F be a point that does not line on that straight line. Suppose that
FL is no longer than FM . We claim that FN is then longer than FM .

H K

F

L

M
N

To prove this, note that the angle FML subtended by FL is no larger than
the angle FLM subtended by FM (Elements, I.19). Moreover the exterior
angle FMN of the triangle FLM is greater than the interior and opposite
angle FLM of that triangle, and the exterior angle FML of the triangle
FNM is greater than the interior and opposite angle FNM (Elements, I.16).
Consequently

∠FNM < ∠FML ≤ ∠FLM < ∠FMN.

Consequently FN is longer than FM (Elements, I.19), as claimed.
This result may be reformulated as follows. Suppose that points L, M

and N lie on a straight line, with M lying between L and N , suppose that
some circle is given and that the point L lies inside or on the circle, and the
point M lies on the circle. Then the point N lies outside the circle.

It follows immediately from this result that if a straight line touches a
circle, it cannot pass through any point that lies inside the circle.

Next we note that if a straight line that meets a circle at two distinct
points cannot touch the circle at those two points, because the straight line
joining those points lies within the circle (Elements, III.2), and consequently
the straight line does not touch the circle. We conclude therefore that a
straight line can touch a circle at at most one point.
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Examination of Euclid’s proof of Proposition 18 shows that he assumed
that, when a straight line touches a circle at a some point of contact, then
all points on the straight line other than the point of contact lie outside the
circle.

Indeed in the proof he argues that, in the configuration depicted by the
following figure, if the straight line DE touching the circle ABC at the
point C were not perpendicular to FC, where F is the centre of the circle,
then the perpendicular let fall from F onto the straight line would meet that
straight line at a point G lying outside the circle. The sum of the two angles

A

B

C

D

E

F G

FGC and FCG would be less than two right angles (Elements, I.17) and
the angle FGC would be a right angle, therefore the angle FCG would be
less than a right angle, and therefore would be less than the angle FGC.
Consequently FG would be shorter than FC (Elements, I.19), contradicting
the result that all points on the line DE other than the point C lie outside
the circle.

One may justify the assertion made in this proposition as follows. Suppose
that a straight line touches a circle at a given point on the circle. Then, as
noted above, all points on the straight line other than that point of contact
lie outside the circle, and therefore the point of contact is the unique point
on the line that closest to the centre of the circle.

Next we note that it follows immediately from Proposition 16 in Book III
of the Elements of Geometry that if a perpendicular is dropped onto the
straight line from the centre of the given circle, then the point at which that
perpendicular intersects the straight line is the closest point on the straight
line to the centre of the circle.

Combining these observations, we conclude that if a straight line touches
a circle at some point, then the perpendicular let fall from the centre of the
circle onto that straight line will intersect the straight line at the point of
contact.
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Commentary: Book III, Proposition 19

The result stated in this proposition is justified on the grounds that,
from the point C of contact at which the line DE touches the circle ABC,
only one infinite line can be drawn that is at right angles to to DE at C.
The preceding proposition, Proposition 18, ensures that the line joining the
point C to the centre of the circle ABC is at right angles to the line DE at
the point C of contact. Therefore the infinite line drawn at right angles to
the line DE at the point C must pass though the centre of the circle.

A

B

C
D E

F

27



Commentary: Book III, Proposition 20

Let a circle be drawn with centre E, and let three distinct points P , Q
and R be taken on the circumference of that circle. Then the configuration
of the four points E, P , Q and R will be as described in exactly one of the
following five cases:—

(Case A) the centre E of the circle lies within the triangle PQR;

(Case B) the centre E of the circle lies on one or other of the sides the
triangle PQR that join the point P to the points Q and R;

(Case C) the centre E of the circle does not line on the line QR, lies on
the same side of that line as the point P , and lies outside the triangle
PQR;

(Case D) the centre E of the circle lies on the line QR; circle;

(Case E) the point P and the centre E of the circle lie on opposite sides of
the line QR.

The diagram associated to Proposition 20 in Book III of Euclid’s Elements
of Geometry is the following.

A

B

C

D

E F

G

The statement of that proposition is applicable in cases A, B and C set
out above, and is explicitly proved by Euclid in cases A and C. Moreover
all these three cases A, B and C are represented within the configuration
depicted by the above diagram.

We now consider the five individual cases.
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Case A

In this case the points P , Q and R in the specification of the cases given
above correspond to the points A, B and C of Euclid’s diagram respectively.
The centre E of the circle then lies within the triangle ABC. In this con-

A

B

C

E F

figuration, the triangle EAB is isosceles, and therefore the angles EAB and
EBA at the endpoints of the base AB of that triangle are equal to one
another (Elements, I.5). But these two angles are the interior angles oppo-
site the exterior angle FEB of that triangle, and that exterior angle is the
sum of the two corresponding interior and opposite angles Elements, I.32).
Consequently

∠FEB = ∠EAB + ∠EBA = 2 × ∠EAB.

Similarly
∠FEC = ∠EAC + ∠ECA = 2 × ∠EAC.

Therefore

∠BEC = ∠FEB + ∠FEC = 2 × ∠EAB + 2 × ∠EAC = 2 × ∠BAC.

The required result therefore follows in this case.
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Case B

In this case the points P , Q and R in the specification of the cases given
above correspond to the points A, B and F of Euclid’s diagram respectively.
The centre E of the circle then on the side AF of the triangle ABF . In this

A

B

E F

configuration, it follows, for the reasons set out in the discussion of Case A,
that

∠FEB = ∠EAB + ∠EBA = 2 × ∠EAB.

The required result therefore follows in this case.
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Case C

In this case the points P , Q and R in the specification of the cases given
above correspond to the points D, B and C of Euclid’s diagram respectively.
The centre E of the circle then lies on the same side of the line BC as
the point D, and lies outside the triangle DBC. In this configuration, the

B

C

D

E

G

triangles EDB and EDC are isosceles, and therefore

∠EDB = ∠EBD and ∠EDC = ECD

(Elements, I.5). The exterior angles GEB and GEC of the triangles EDB
and EDC respectively are the sums of the corresponding interior and oppo-
site angles (Elements, I.32). Consequently

∠GEB = ∠EDB + ∠EBD = 2 × ∠EDB

and
∠GEC = ∠EDC + ∠ECD = 2 × ∠EDC.

Therefore

∠BEC = ∠GEC − ∠GEB = 2 × ∠EDC − 2 × ∠EDB = 2 × ∠BDC.

The required result therefore follows in this case.
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Case D

In this case the points P , Q and R in the specification of the cases given
above correspond to the points A, B and C of the diagram accompanying
Proposition 31 in Book III of Euclid’s Elements of Geometry, and the cen-
tre E of the circle then lies on the side BC of the triangle ABC. That side
BC is then a diameter of the circle. In Proposition 31 in Book III, Euclid

A

B

C

E

establishes that, in this configuration, the angle of triangle ABC at the ver-
tex A is a right angle. Now the triangles EBA and ECA are isosceles, and
therefore

∠EAB = ∠EBA and ∠EAC = ECA

(Elements, I.5). The exterior angles CEA and BEA of the triangles EAB
and EAC respectively are the sums of the corresponding interior and opposite
angles (Elements, I.32). Consequently

∠AEC = ∠EAB + ∠EBA = 2 × ∠EAB

and
∠AEB = ∠EAC + ∠ECA = 2 × ∠EAC.

Therefore

two right angles = ∠AEB+∠AEC = 2×∠EAB+2×∠EAC = 2×∠BAC.

Consequently the angle BAC is a right-angle.
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Case E

In this case the points P , Q and R in the specification of the cases given
above correspond to the points A, B and C of the following diagram, and
the centre E of the circle and the point A then lies on opposite sides of the
line BC. We prove that, in this case, twice the angle BAC is equal to the
remainder obtained on subtracting the angle BEC from four right angles.

A

B

C

E

To establish this result, let the line segment AE joining the point A to
the centre E of the circle be produced in a straight line beyond E so as to
intersect the circle again at F . Let the points B and C be joined to F as
depicted in the diagram below. In this configuration, the line segment AF is
a diameter of the circle BACF .

A

B

C

E
F

The discussion above regarding Case D establishes that the angles ABF
and ACF are right angles. (Euclid establishes this result in Proposition 31
in Book III of the Elements.) Now the sum of the angles of any triangle is
equal to two right angles (Elements, I.32). It follows therefore that

∠BFA + ∠FAB = one right angle

and
∠CFA + ∠FAC = one right angle.
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Consequently

∠BFC + ∠BAC = ∠BFA + ∠FAB + ∠CFA + ∠FAC

= two right angles.

Now the results established in cases A, B and C above (and by Euclid in his
proof of Proposition 20 in Book III for the configurations that he explicitly
considers) ensure that

∠BEC = 2 × ∠BFC.

Consequently

2 × ∠BAC + ∠BEC = four right angles.

Consequently twice the angle BAC is equal to the remainder obtained on
subtracting the angle BEC from four right angles.

Moreover

∠CEF + ∠BEF + ∠BEC = ∠CEF + ∠BEF + ∠BEA + ∠CEA

= four right angles

(applying Elements, I.13). Consequently

2 × ∠BAC + ∠BEC = ∠CEF + ∠BEF + ∠BEC,

and therefore
2 × ∠BAC = ∠CEF + ∠BEF.

Now, in modern geometry, the combination of the two angles CEF and
BEF would together constitute a “reflex angle” exceeding two right angles,
and twice the angle BAC would then be equal in magnitude to this reflex
angle. However the only rectilineal angles recognized by the ancient Greeks
are acute, right and obtuse angles. Thus, in ancient Greek geometry, all
angles considered are less than two right angles.
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Commentary: Book III, Proposition 21

Euclid only proves Proposition 21 in Book III of the Elements for configu-
rations in which centre of the circle lies inside the segment in question. Such
a configuration is depicted in Euclid’s diagram for this proposition, shown
below.

A

B

C

D

E
F

In cases in which the segment BAED is a semicircle, it can be shown
that the triangles BAD and BED are right-angled, and consequently the
result follows immediately.

It remains to consider configurations in which the centre F of the circle
lies outside the segment BAED. Such configurations are as depicted in the
following diagram

A

B

C

D

E

F

In such configurations, one can show that

2 × ∠BAD + ∠BFD = four right angles;

2 × ∠BED + ∠BFD = four right angles.
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Consequently

2 × ∠BAD + ∠BFD = 2 × ∠BED + ∠BFD,

and therefore the angles BAD and BED are equal, as required.

It is possible to give a proof of Proposition 21, covering all cases, which
only requires, as prerequisite, the cases of Proposition 20 explicitly considered
by Euclid, in which the segment considered in that proposition is greater
than a semicircle. Such a proof was given by Robert Simson (1687–1768)
in his translation of the first six books of Euclid’s Elements of Geometry, in
which he amended or extended those proofs that he considered inaccurate,
insufficient or incomplete in the standard version of the Greek text available
in the eighteenth century. Simson’s statement and proof of Proposition 21
in Book III of the Elements are quoted below (copied from the 5th Edition,
1775).

PROP. XXI. THEOR.

The angles in the same segment of a circle are equal to one
another.

Let ABCD be a circle, and BAD, BED angles in the same
segment BAED: the angles BAD, BED are equal to one another.

Take F the center of the circle ABCD: And, first, let the
segment BAED be greater than a semicircle, and join BF, FD:
And because the angle BFD is at the centre, and the angle BAD

A

B

C

D

E

F

at the circumference, and that they have the same part of the
circumference, viz. BCD for their base; therefore the angle BFD
is double of the angle BAD: For the same reason, the angle BFD
is double of the angle BED: Therefore the angle BAD is equal to
the angle BED.
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But, if the segment BAED be not greater than a semicircle,
let BAD, BED be angles in it; these also are equal to one an-
other: Draw AF to the center, and produce it to C, and join
CE: Therefore the segment BADC is greater than a semicircle;

A

B

C

D

E

F

and the angles in it BAC, BEC are equal, by the first case: For
the same reason, because CBED is greater than a semicircle, the
angles CAD, CED are equal: Therefore the whole angle BAD is
equal to the whole angle BED. Wherefore the angles in the same
segment, &c. Q. E. D.
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Commentary: Book III, Proposition 22

The figure accompanying Euclid’s proof of Proposition 22 of Book III of
the Elements of Geometry depicts a quadrilateral ABCD inscribed in a circle,
where all four sides of the quadrilateral cut of a segment of the circle lying
outside the quadrilateral that is less than a semicircle. In this configuration,

A

B

C

D

the segments BADC and ADCB are both greater than a semicircle, and
therefore the Euclid’s proof of Proposition 21, which explicitly considers only
angles in segments greater than a semicircle, can be applied to show that

∠CAB = ∠BDC and ∠ACB = ∠ADB.

Also the internal angles of the triangle ABC add up to two right angles
(Elements, I.32). Consequently

∠ABC + ∠ADC = ∠ABC + ∠ADB + ∠BDC

= ∠ABC + ∠ACB + ∠CAB

= two right angles.

A similar argument would then show that

∠BAD + ∠DCB = two right angles.

Alternatively one could deduce this equality by making use of the result that
the sum of the four internal angles of the quadrilateral ABCD is equal to
four right angles.

38



Now let us consider how the proof of Proposition 22 of Book III of the
Elements of Geometry can be applied when the four sides of the quadrilateral
ABCD cut off segments of the circle outside the quadrilateral are not all less
than a semicircle. Now if any pair of these segments meet one another, they
can only meet at vertices of the quadrilateral. Therefore at most one of the
segments outside the quadrilateral cut off by the sides of the quadrilateral can
be greater than a semicircle. Let us suppose that it is the segment outside
the quadrilateral cut off by the side AD that is greater than a semicircle.
Then the segments outside the quadrilateral cut off by the sides AB and
BC are both less than a semicircle, and therefore the segments BADC and
ADCB are both greater than a semicircle.

A

B

C

D

Consequently Euclid’s proof of Proposition 21, valid for angles in seg-
ments greater than a semicircle, can be used to deduce that

∠CAB = ∠BDC and ∠ACB = ∠ADB.

The argument presented above then shows that the angles ABC and ADC
must sum to two right angles. Then, given that all four internal angles of
the quadrilateral must sum to four right angles, we can deduce also that the
angles BAD and DCB must also sum to two right angles.

Given this result, we can prove that all angles in segments less than a
semicircle must be equal to one another, using the result already established
explicitly by Euclid in the case of angles in a segment greater than a semicir-
cle. Indeed let B, A, E, D and C be points in cyclic order around a circle.
Then Proposition 22, applied to the quadrilaterals BADC and BEDC, en-
sures that

∠BAD + ∠BCD = two right angles = ∠BED + ∠BCD.

Consequently the angles BAD and BED in the segment BAED are equal
to one another.
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Commentary: Book III, Proposition 31

The various results stated in this proposition can be proved on the basis
of the geometric configuration depicted in the diagram associated with the
proposition.

A

B

C
D

E

F

Let a diameter AB be drawn across the given circle ABCD, and let E
be the centre of that triangle. The line segments EA, EB and EC are then
equal in length, and therefore

∠BAE = ∠ABE = ∠ABC and ∠CAE = ∠ACE = ∠ACB

(Elements, I.5). Now

∠BAC = ∠BAE + ∠CAE.

Consequently
∠BAC = ∠ABC + ∠ACB.

But the angle BAF is an exterior angle of the triangle ABC at the vertex A
and is therefore equal to the sum of the interior angles of this triangle at
vertices B and C (Elements, I.32). Consequently

∠BAF = ∠ABC + ∠ACB.

It follows that the adjacent angles BAC and BAF are equal to one another,
and are therefore by definition right angles. We conclude therefore that the
angle in any semicircle must be equal to a right angle.
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Let a chord be drawn across a given circle ABCD that is not a diameter
of the circle, and let that chord be the line segment AC. The chord partitions
the circle into two segments: one segment is the segment ABC greater than
a semicircle bounded by the chord AC and the circular arc ABC; the other
segment is the segment ADC less than a semicircle bounded by the chord
AC and the circular arc ADC. Let the diameter BD be drawn which has one
endpoint located at the endpoint C of the chord AC, and let the configuration
be completed as depicted in the diagram. The angle ABC is then the angle
in the segment ABC greater than a semicircle.

A

B

C
D

E

F

Now the angle ABC must be less than a right angle, because BAC is
a right angle and the sum of ABC and BAC is less than two right angles
(Elements, I.17). We conclude therefore that the angle in any segment greater
than a semicircle must be less than a right angle.

Also the sum of the angles ABC and ADC is equal to two right angles
because the vertices of the quadrilateral ABCD all lie on a circle (Elements,
I.22). It follows that the angle ADC must be greater than a right angle.
But this angle is the angle in the segment ADC. We conclude therefore that
the angle in any segment less than a semicircle must be greater than a right
angle.

The angle of the segment ABC is represented by the angle between the
chord AC and the arc ABC at the point A: this is not a rectilineal angle.
This angle contains the right angle CAB. We conclude therefore that the
angle of any segment greater than a semicircle must be greater than a right
angle.

The angle of the segment ADC is represented by the angle between the
chord AC and the arc AFC at the point A: this is not a rectilineal angle.
This angle is contained within the right angle CAF . We conclude therefore
that the angle of any segment greater than a semicircle must be less than a
right angle.
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Commentary: Book III, Proposition 32

Euclid’s proof of this proposition covers the cases where the chord drawn
across the circle is not a diameter of the circle.

Let the configuration be as depicted by Euclid in the figure below, in
which the line EF is the tangent line to the circle touching the circle at the
point B.

A

B

C

D

E F

First let us consider the particular case in which the angle between the
straight line touching the circle and the chord drawn across the circle that is
under consideration is the angle FBD. In this case, the alternate segment is
the segment BAD of the circle bounded by the chord BD and the circular
arc BAD. The angle in this alternate segment is, by definition, the angle
which, at any point on the circular arc BAD between B and D, is formed by
the straight line segments joining that point to the endpoints B and D of the
arc B. The magnitude of this angle is the same whichever point on the arc
is chosen (Elements, III.21). We may therefore choose the point in question
to be the point A for which AB is a diameter of the circle. The angle in the
alternate segment BAD is then equal to the angle BAD. We must therefore
prove in this case that the angles BAD and DBF are equal.

Now the angle ABD is a right angle (Elements, III.31), and the sum
of the angles of any triangle is equal to two right angles (Elements, I.32).
Consequently

∠BAD + ∠ABD = one right angle.

But the angle ABF is also a right angle (Elements, III.16), and consequently

∠DBF + ∠ABD = ∠ABF = one right angle.

Consequently
∠BAD + ∠ABD = ∠DBF + ∠ABD,
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and therefore, subtracting the angle ABD from both sides of this equality,

∠BAD = ∠DBF,

as required in this case.

Next let us consider the particular case in which the angle between the
straight line touching the circle and the chord drawn across the circle that is
under consideration is the angle EBD. In this case, the alternate segment is
the segment DCB of the circle bounded by the chord BD and the circular
arc DCB. The angle in this alternate segment is, by definition, the angle
which, at any point on the circular arc DCB between D and B, is formed by
the straight line segments joining that point to the endpoints B and D of the
arc B. The magnitude of this angle is the same whichever point on the arc is
chosen (Elements, III.21). We may therefore choose the choose the point in
question to be the point C indicated on Euclid’s diagram. The angle in the
alternate segment DCB is then equal to the angle DCB. We must therefore
prove in this case that the angles DBE and DCB are equal.

A

B

C

D

E F

Now, in the configuration depicted by Euclid, the quadrilateral ABCD
is inscribed in a circle. Consequently the sum of opposite angles of this
quadrilateral is equal to two right angles (Elements, III.22). Consequently

∠BAD + ∠DCB = two right angles.

But
∠DBF + ∠DBE = two right angles

(Elements, I.13). Consequently

∠DBF + ∠DBE = ∠BAD + ∠DCB.
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But we have already shown that

∠DBF = ∠BAD.

Consequently
∠DBE = ∠DCB,

as required in this case.
Euclid does not explicitly consider the case in which the straight line

drawn across the circle is a diameter of the circle. The result in this case
follows directly from the preceding proposition (Elements, III.31). Moreover
the result in this case can be established employing the configuration depicted
in Euclid’s diagram.

A

B

C

D

E F

Thus consider the case where the straight line drawn across the circle
is the diameter AB and the angle under consideration is that between the
tangent line is the angle ABE. Then the alternate segment is the semicircle
bounded by the diameter AB and the circular arc ADCB. The angle in the
alternate segment is thus equal to the angle ADB. Now the angle between
the tangent line BE and the diameter BA is a right angle (Elements, III.18).
Morever the preceding proposition (Elements, III.31) ensures that the angle
ADB in the semicircle is also a right angle. Consequently

∠ABE = ∠ACB,

as required in this case.
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Commentary: Book III, Proposition 35

Euclid considers two cases, depending on whether or not the two given
lines pass through the centre of the circle.

First suppose that the lines AC and BD pass through the centre E of
the circle. Then

AE = EC = DE = EB.

Therefore both Rect(AE,EC) and Rect(BE,ED) are equal to the square
on AE, and are therefore equal to one another.

A

B

C

D
E

In the second case the lines AC and BD intersect at a point E that is not
the centre of the circle. Let F be the centre of the circle, join FE and drop
perpendiculars from the centre F to the lines AC and BD (i. 12), meeting
those lines at G and H respectively. Then AC and BD are bisected at G
and H respectively (iii. 3). We label the points A, B, C and D so that the
point E of intersection lies between C and G, and between B and H.

A

B C

D

E

F

G
H

Now
Rect(AE,EC) + Quad(EG) = Quad(GC)

(see ii 5). Adding the square Quad(GF ) on GF to both sides, we find that

Rect(AE,EC) + Quad(EG) + quad(GF ) = Quad(GC) + Quad(GF ).
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But FGE and FGC are right-angled triangles with the right angle at G. It
follows from Pythagoras’s Theorem (i. 47) that

Quad(EG) + Quad(GF ) = Quad(FE)

and
Quad(CG) + Quad(GF ) = Quad(FC).

It follows that

Rect(AE,EC) + Quad(FE) = Quad(FC).

The same argument ensures that

Rect(DE,EB) + Quad(FE) = Quad(FB).

But FC = FB, because the points B and C lie on a circle with centre F . It
follows that

Rect(AE,EC) + Quad(FE) = Quad(FC) = Quad(FB)

= Rect(DE,EB) + Quad(FE).

On subtracting the square Quad(FE) on FE, it follows that

Rect(AE,EC) = Rect(DE,EB).

The required geometric equality has now been verified in the case in which
the lines AC and BD intersect at some point E that is not the centre of the
circle, and has therefore been verified in all required cases.
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Commentary: Book III, Proposition 36

Euclid considers two cases, depending on whether or not the line from
the point outside the circle passes through the centre of the circle.

First suppose that the line from the point D outside the circle passes
through the centre F of the circle, and cuts the circumference of the circle at
points A and C, where C lies between D and F . Also let DB be a line from
the point D which touches the circle at the point B on its circumference. It
is required to prove that

Rect(AD,DC) = Quad(DB).

(Here Rect(AD,DC) represents, with respect to area, a rectangle whose sides
meeting at a corner have lengths equal to the finite lines AD and DC, and
Quad(AB) represents, with respect to area, a square whose sides are equal
to the finite line AB.)

A

B

C

D

F

Now the angle FBD is a right angle, because BD is tangent to the circle
at the point B (iii. 16). It follows from Pythagoras’s Theorem (i. 47) that

Quad(FD) = Quad(FB) + Quad(BD).

Also
Rect(AD,DC) + Quad(FC) = Quad(FD)

(ii. 6). (N.B., This geometric equality corresponds to the algebraic identity

(2a + b)b + a2 = (a + b)2,

on taking a and b to represent, in basic algebra, the lengths of the finite lines
FC and CD respectively.) It follows that

Rect(AD,DC) + Quad(FC) = Quad(FB) + Quad(BD).
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But FC = FB, because the points B and C both lie on the circumference
of a circle with centre D. It follows that Quad(FC) = Quad(FB), and
therefore

Rect(AD,DC) = Quad(BD),

Thus the required geometric equality is satisfied in the case where the line
ACD passes through the centre F of the circle.

We must also establish the stated geometric equality in the case where
the line ACD does not pass through the centre of the circle. In this case let
DB touch the circle at B, and let F be the point on the line ACD that is
the foot of the perpendicular dropped to the line ACD from the centre E of
the circle.

A

B

C

D

E

F

Now the point F bisects the chord AC because the line EF cuts that
chord at right angles (iii. 3), and thus AF = FC. It then follows that

Rect(AD,DC) + Quad(FC) = Quad(FD)

(ii. 6). Adding Quad(EF ) to both sides, we find that

Rect(AD,DC) + Quad(EF ) + Quad(FC) = Quad(EF ) + Quad(FD).

Now ∠EFC, ∠EFD and ∠EBD are right angles. It follows from Pythago-
ras’s Theorem (i. 47) that

Quad(EF ) + Quad(FC) = Quad(EC),

Quad(EF ) + Quad(FD) = Quad(ED),

Quad(EB) + Quad(BD) = Quad(ED).

It follows that

Rect(AD,DC) + Quad(EC) = Quad(ED) = Quad(EB) + Quad(BD).
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But EB = EC, because the points B and C lie on the circumference of a
circle with centre E, and therefore Quad(EB) = Quad(EC). It follows that

Rect(AD,DC) = Quad(BD).

The required geometric equality has now been verified in the case in which
the line ACD does not pass through the centre of the circle, and has therefore
been verified in all required cases.

49



Commentary: Book III, Proposition 37

The proposition asserts that if a point D is taken outside a circle, if a line
through D cut the circle in points A and C, where C lies between A and D,
if a line joins D to a point B on the circle, and if

Quad(DB) = Rect(AD,DC),

then the line DB touches the circle at the point B.

AB

C

D
E

F

As Sir Thomas L. Heath points out in his commentary on this proposition,
it is not necessary, in proving this proposition, to construct the line DE
touching the circle on the opposite side of the line DCA to the point B.
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Indeed suppose that a line DHG through with endpoints D and G cuts
the circle at points G and H. The preceding proposition, Proposition 36,
ensures that

Rect(GD,DH) = Rect(AD,DC).

Consequently

Quad(DH) < Rect(GD,DH) = Rect(AD,DC)

and
Quad(DG) > Rect(GD,DH) = Rect(AD,DC)

It follows that if the point B is located such as to ensure that

AB

C

D

F

GH

Quad(DB) = Rect(AD,DC)

then the point B cannot be located on a line through the point D that cuts
the circle at two distinct points, and therefore the line DB joining D to B
must touch the circle at the point B, as required.
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Commentary: Book IV, Proposition 1

The problem discussed in this proposition is to construct a chord joining
two points of a given circle ABC, where the chord is to be equal in length to
a given straight line segment D that does not exceed in length the diameter
of the given circle.

A

B C

D

E

F

The construction is straightforward. Note that to perform the construc-
tion with straightedge and compasses, one would need to perform the con-
struction set out in Proposition 2 of Book I of the Elements of Geometry
in order to locate some point that can be joined to the point C by a line
segment equal in length to the given line segment. Once such a point has
been found, the circle centred on C can be drawn so as to pass through the
point E on the diameter BC for which CE and D are equal in length.
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Commentary: Book IV, Proposition 2

The problem discussed in this proposition is that of inscribing, in a given
circle, a triangle with the same angles as some given triangle. Thus, given
a circle, and given a triangle DEF , we seek to construct a triangle ABC
whose vertices lie on the given circle, where the angles of the triangle ABC
at A, B and C are respectively equal to the angles of the triangle DEF at
D, E and F respectively.

To achieve the construction, a line GH is drawn touching the given circle
at some point A. This can be done by constructing a line through the point A
that is at right angles to the line joining that point A to the centre of the
circle (Elements, III.16, Porism). Then chords AB and AC of the given circle
are drawn across the circle so as to ensure that

∠HAC = ∠DEF and ∠GAB = ∠DFE.

The points B and C are then joined so as to construct a triangle ABC
inscribed in the given circle.
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Now the angle between a tangent line and a chord of a circle is equal to
the angle in the alternate segment cut off by the chord (Elements, III.32).
Accordingly

∠HAC = ∠ABC and ∠GAB = ∠ACB.

Consequently

∠ABC = ∠DEF and ∠ACB = ∠DFE.

Finally we note that
∠BAC = ∠EDF.

because the interior angles of each of the triangles ABC and DEF add up
to two right angles (Elements, I.32). The required construction has therefore
been achieved.
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Commentary: Book IV, Proposition 3

This proposition discusses the problem of circumscribing, around a given
circle, a triangle with the same angles as some given triangle. Thus, given
a circle, and given a triangle DEF , we seek to construct a triangle ABC
whose sides touch the given circle, where the angles of the triangle ABC at
A, B and C are respectively equal to the angles of the triangle DEF at D,
E and F respectively.

To achieve the construction, the side EF of the triangle DEF is produced
in a straight line beyond E and F to points G and H respectively. A point B
is chosen at random on the circle and is joined by a line segment to the
centre K of the circle. Points B and C are then determined on the given
circle, on opposite sides of the line BK, so as to ensure that

∠BKA = ∠DEG and ∠BKC = ∠DFH

(Elements, I.23). Then lines LM , MN and NL are drawn, touching the
given circle at points A, B and C respectively. These lines are determined
so that LM and KA are at right angles, MN and KB are at right angles
and NL and KC are at right angles (Elements, III.16, Porism). The points
L, M and N are then determined so that the lines LM and NL intersect at
the point L, the lines LM and MN intersect at the point M , and the lines
MN and NL intersect at the point N .
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The angles of any quadrilateral add up to four right angles. Moreover the
angles KAM and KBM are right angles. Consequently

∠AKB + ∠AMB = two right angles.
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But ∠AKB = ∠DEG and

∠DEG + ∠DEF = two right angles

(Elements, I.13). Consequently

∠LMN = ∠AMB = ∠DEF.

Thus the angles of the triangles DEF and LMN at the vertices M and E
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are equal. Similarly the angles of those triangles at the vertices N and F are
equal, and the angles of those triangles at the vertices L and D are equal, as
required.
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Commentary: Book IV, Proposition 4

This proposition discusses the problem of inscribing a circle in a triangle
so that the circle touches all three sides of the triangle.

Let a triangle ABC be given. To achieve the construction, the angles of
the triangle at B and C are bisected by straight lines BD and CD that are
produced so as to intersect at a point D inside the triangle. Straight lines
DE, DF and DG are then drawn from the point D so as to intersect the
sides AB, BC and CA of the triangle at the points E, F and G respectively.
It can be shown that the straight line segments DE, DF and DG are equal
in length. Accordingly a circle can be drawn passing through the points E,
F and G. Moreover this circle will touch the sides of the triangle ABC at
those points.
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It remains to prove that the straight line segments DE, DF and DG are
indeed equal in length. This can be established by applying that SAA Con-
gruence Rule. The side DB is common to the two triangles EBD and FBD
and the angles of the triangle EBD at E and B are respectively equal to the
angles of the triangle FBD at F and B. Consequently the triangles EBD and
FBD are congruent (Elements, I.26), and therefore DE = DF . Similarly the
triangles FCD and GCD are congruent, and consequently DF = DG. Thus
the three straight line segments DE, DF and DG are equal in length. Now,
by construction, the sides of the triangle ABC intersect DE, DF and DG
at right angles at the points E, F , G. Consequently the sides of the triangle
ABC touch the circle EFG at those points (Elements, III.16, Porism).
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Commentary: Book IV, Proposition 5

The problem discussed in this proposition is that of circumscribing a circle
around a triangle so that the circle passes through all three vertices of the
triangle.

The construction is standard and well-known, and is readily justified on
applying the results proved in Propositions 1 and 3 in Book III of the Ele-
ments of Geometry.

Euclid divides the demonstration into three cases: but the essence of the
construction is the same in all three cases, and thus the proof as presented
by Euclid is, for this reason, repetitive.

In all the configurations identified by Euclid, the procedure, given the
triangle ABC, is to construct the perpendicular bisectors DF and EF of the
sides AB and AC of the triangle. The point at which these perpendicular
bisectors intersect is then the centre of a circle that passes through all three
vertices of the triangle ABC.

If it is regarded as appropriate to consider three cases separately the
appropriate cases are the following: the case in which the point F at which
the perpendicular bisectors intersect lies inside the triangle ABC; the case
in which the point F at which the perpendicular bisectors intersect lies on
one of the three sides of the triangle ABC; the case in which the point F
at which the perpendicular bisectors intersect lies outside the triangle ABC.
In the second of these cases, the vertices of the triangle may be relabelled, if
necessary, so as to ensure that the point F lies on the side BC. In the third
of these cases, the vertices of the triangle may be relabelled, if necessary, so
as to ensure that the points A and F lie on opposite sides of the straight line
BC.

When the vertices of the triangle are relabelled in the manner just de-
scribed, if necessary, an immediate application of the results stated in Propo-
sition 31 of Book III of the Elements of Geometry establishes that the angle
BAC is acute in the first case, right in the second case, and obtuse in the
third case.
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Commentary: Book IV, Proposition 10

The objective of this proposition is to show that it is possible construct,
using straightedge and compasses, an isosceles triangle in which the two
equal angles are double the remaining angle. For such an isosceles triangle,
five times the smallest angle will be equal to two right angles. Therefore,
given ten such triangles, all congruent to one another, the triangles could
be arranged with their smallest angles positioned at a single vertex, so as
to form a regular decagon with centre located at the common vertex of the
smallest angles of those triangles.

Euclid’s construction of the isosceles triangle is as depicted in the follow-
ing diagram in which ABD is an isosceles triangle, the sides AB and AD
being equal in length, the point C is located on AC so as to ensure that the
square on AC is equal in area to a rectangle contained by sides of lengths
AD and DC, and in which BD is equal in length to AC.
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E

Let a straight line segment AB be taken to serve as one of the two equal
sides of the isosceles triangle. Proposition 11 of Book II of the Elements of
Geometry sets out a straightedge and compasses construction for finding a
point C on the straight line segment AB with the property that a square
constructed with side AC is equal in area to a rectangle with containing
sides equal to AB and BD. Then, in the symbolic notation employed in
these commentaries,

Quad(AC) = Rect(AB,BC).

A point can then be located, by means of an appropriate straightedge and
compasses construction, so that the straight line segment joining that point to
the point B is equal in length to the straight line segment AC (see Elements,
I.2). A circle passing through this point and centred on the point B will
intersect the circle centred on A and passing through the point B at two
points. Let D be one of those points of intersection. Then

AD = AB and BD = AC.
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The triangle ABD is then an isosceles triangle on the side BD of which is
located a point C for which

Quad(BD) = Quad(AC) = Rect(AB,BC).

Euclid proves that the isosceles triangle ABD so constructed has the required
properties.

Now Euclid has established that a straightedge and compasses construc-
tion can be used to circumscribe a circle around any triangle (Elements, IV.5).
Accordingly let such a circle be circumscribed about the triangle ACD, as
in the following diagram. Now the triangle ABD was constructed so as to

A

B

C

D

ensure that the square on BD is equal in area to a rectangle with containing
sides equal to AD and DC. Proposition 37 in Book III of the Elements of
Geometry then ensures that the line BD is a tangent line to the circle ACD
at the point D. Then Proposition 32 in that book ensures that the angle
BDC between the tangent line BD and the chord DC of the circle is equal
to the angle DAC in the alternate segment. The latter angle is the same as
the angle DAB. We have thus shown that

∠BDC = ∠DAC = ∠ADB.

(Note that this equality has been established through the application of
Propositions 32 and 37 of Book III of the Elements of Geometry. The results
established in the first four books of the Elements of Geometry do not sup-
ply any alternative method for proving the equality of these two angles in a
convenient fashion.)

Following Euclid, we now add the angle CDA to the equal angles BDC
and DAC. We find that

∠BDA = ∠BDC + ∠CDA = ∠DAC + ∠CDA = ∠BCD,
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because the exterior angle BCD of the triangle ACD is equal to sum of
the interior and opposite angles of that triangle at the vertices A and D
(Elements, I. 32). But

∠BDA = ∠DBA,

because these two angles are the angles subtended by the equal sides AB and
AD of the isosceles triangle ABD (Elements, I.5). We have now established
that

∠BDA = ∠DBA = ∠BCD.
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The equality of the angles of the triangle BCD at C and D now en-
sures that that triangle is an isosceles triangle with equal sides DC and DB
(Elements, I.6). But the construction of the triangle ensured that the line
segments AC and BD are equal in length. Consequently

CA = BD = CD.

Thus the triangle CAD is isoceles, and therefore

∠CDA = ∠DAC

(Elements, I.32). But, as previously noted

∠DAC + ∠CDA = ∠BCD.

Consequently

∠BDA = ∠DBA = ∠BCD = 2 × ∠DAB.

Thus an isoceles triangle ABD has indeed been constructed with the required
properties.
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Commentary: Book IV, Proposition 11

The problem discussed in this proposition is that of inscribing a regular
pentagon inside a given circle. Specifically the problem is that of inscribing
a pentagon inside a given circle that is both equilateral and equiangular.
One therefore needs to prove both that the sides of the pentagon are equal
in length and also that the interior angles of the pentagon are equal to one
another.

The preceding proposition, Proposition 10, establishes that one can con-
struct, with straightedge and compasses, an isosceles triangle in which the
two equal angles are double the third angle. Applying Proposition 2 of this
book, one can then inscribe an isosceles triangle ACD with these properties
inside the given circle. The equal angles of this isosceles triangle at C and
D are then bisected, and the bisecting straight lines are produced till they
meet the circle at the points E and B.
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C D
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We now analyse the geometry of the depicted configuration without fol-
lowing closely Euclid’s argument. The isosceles triangle ACD has been con-
structed so as to ensure that

∠ACD = ∠ADC = 2 × ∠CAD.

Also
∠ADB = ∠CDB = ∠ACE = ∠DCE = ∠CAD

because the straight lines CE and DB bisect the angles BCD and EDC.
It follows that the angles in the larger segments cut off by the chords AB,
BC, CD, DE and EA are equal to one another. Consequently the angles
subtended by those chords at the centre of the circle are equal to one another
(Elements, III.20). Applying the SAS Congruence Rule (Elements, I.4), it
follows that the chords AB, BC, CD, DE and EA are equal in length. Thus
the pentagon is equilateral. Furthermore the interior angle at each of the
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vertices A, C and D of the pentagon is composed of three angles of equal
magnitude. Those angles are therefore equal to three times the angle CAD.
Also

∠ABD = ∠ACD = 2 × ∠CAD and ∠AEC = ∠ADC = 2 × ∠CAD,

and consequently the interior angles of the pentagon at each of the vertices
B and E is equal to three times the angle CAD. The pentagon is therefore
equiangular. Thus an equilateral and equiangular pentagon has indeed been
inscribed in the given circle.
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