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1 Möbius Transformations and Cross-Ratios

1.1 Stereographic Projection

Let a sphere in three-dimensional spaces be given, let C be the centre of that
sphere, let AB be a diameter of that sphere with endpoints A and B, and let
P be the plane through the centre of the sphere that is perpendicular to the
diameter AB. Given a point D of the sphere distinct from the point A, the
image of D under stereographic projection from the point A is defined to be
the point E at which the line passing through the points A and D intersects
the plane P .

A

B

C
P

D

E

Proposition 1.1 Let S2 be the unit sphere in R3, consisting of those points
(u, v, w) of R3 that satisfy the equation u2 + v2 + w2 = 1, and let P be the
plane consisting of those points (u, v, w) of R3 for which w = 0. Then, for
each point (u, v, w) of S2 distinct from the point (0, 0,−1), the straight line
passing through the points (u, v, w) and (0, 0,−1) intersects the plane P at
the point (x, y, 0) at which

x =
u

w + 1
and y =

v

w + 1
.

Proof Let A = (0, 0,−1), D = (u, v, w) and E = (x, y, 0). Then the dis-
placements of the points D and E from the point A are represented by the
vectors (u, v, w + 1) and (x, y, 1) respectively. These vectors are parallel be-
cause the points A, D and E are collinear. Consequently

x

u
=
y

v
=

1

w + 1
.
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The result follows.

(0, 0,−1)

(0, 0, 1)

P

(u, v, w)

(x, y, 0)

(0, 0, w)

Definition Let (u, v, w) be a point on the unit sphere distinct from the
point (0, 0,−1), where u2 + v2 + w2 = 1, and let (x, y) be a point of the
plane R2. We say that the point (x, y) is the image of the point (u, v, w)
under stereographic projection from the point (0, 0,−1) if

x =
u

w + 1
and y =

v

w + 1
.

Proposition 1.2 Each point (x, y) of R2 is the image, under stereographic
projection from the point (0, 0,−1), of the point (u, v, w) of the unit sphere
for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2
1 + x2 + y2

.

This point (u, v, w) is distinct from the point (0, 0,−1).

Proof Given a point (x, y) of R2, the straight line passing through the points
(0, 0,−1) and (x, y, 0) is not tangent to the unit sphere, and therefore inter-
sects the unit sphere at some point distinct from (0, 0,−1). It follows that
every point of R2 is the image, under stereographic projection from (0, 0,−1),
of some point of the unit sphere distinct from the point (0, 0,−1).
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Let (x, y) be the image, under stereographical projection from the point
(0, 0,−1), of a point (u, v, w), where u2 + v2 + w2 = 1 and w 6= −1. Then

x =
u

w + 1
, y =

v

w + 1
.

It follows that

x2 + y2 =
u2 + v2

(w + 1)2
=

1− w2

(w + 1)2
=

1− w
w + 1

.

It follows that
w(x2 + y2) + x2 + y2 = 1− w,

and therefore

w =
1− x2 − y2
1 + x2 + y2

.

But then

1 + w = 1 +
1− x2 − y2
1 + x2 + y2

=
2

1 + x2 + y2
,

and therefore

u = (1 + w)x =
2x

1 + x2 + y2
,

v = (1 + w)y =
2y

1 + x2 + y2
.

Conversely if

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2
1 + x2 + y2

.

then

u2 + v2 + w2 =
4(x2 + y2) + (1− x2 − y2)2

(1 + x2 + y2)2
= 1,

because

4(x2 + y2) + (1− x2 − y2)2
= 4(x2 + y2) + 1− 2(x2 + y2) + (x2 + y2)2

= 1 + 2(x2 + y2) + (x2 + y2)2

= (1 + x2 + y2)2.

Also w > −1 and
x =

u

w + 1
and y =

v

w + 1
.

The result follows.
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1.2 The Riemann Sphere

The Riemann sphere P1 may be defined as the set C ∪ {∞} obtained by
augmenting the system C of complex numbers with an additional element,
denoted by ∞, where ∞ is not itself a complex number, but is an additional
element added to the set, with the additional conventions that

z +∞ =∞, ∞×∞ =∞, z

∞ = 0 and
∞
z

=∞

for all complex numbers z, and

z ×∞ =∞, and
z

0
=∞

for all non-zero complex numbers z. The symbol ∞ cannot be added to, or
subtracted from, itself. Also 0 and ∞ cannot be divided by themselves.

Note that, because the sum of two elements of P1 is not defined for every
single pair of elements of P1, this set cannot be regarded as constituting a
group under the operation of addition. Similarly its non-zero elements cannot
be regarded as constituting a group under multiplication. In particular, the
Riemann sphere cannot be regarded as constituting a field.

The following proposition follows directly from Proposition 1.2.

Proposition 1.3 Let ϕ:P1 → R3 be the mapping from the Riemann sphere
P1 to R3 defined such that ϕ(∞) = (0, 0,−1) and

ϕ(x+ y
√
−1) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
1− x2 − y2
1 + x2 + y2

)
for all real numbers x and y. Then the map ϕ sets up a one-to-one corre-
spondence between points of the Riemann sphere P1 and points of the unit
sphere S2 in R3. To each point of the Riemann sphere P1 there corresponds
exactly one point of the unit sphere S2 in three-dimensional Euclidean space,
and vice versa. Moreover if (u, v, w) is a point of the unit sphere S2 distinct
from (0, 0,−1) then (u, v, w) = ϕ(x+ y

√
−1), where

x =
u

w + 1
and y =

v

w + 1
.

1.3 Möbius Transformations

Definition Let a, b, c and d be complex numbers satisfying ad − bc 6= 0.
The Möbius transformation µa,b,c,d:P1 → P1 with coefficients a, b, c and d is
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defined to be the function from the Riemann sphere P1 to itself determined
by the following properties:

µa,b,c,d(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0; µa,b,c,d(−d/c) = ∞ and
µa,b,c,d(∞) = a/c if c 6= 0; µa,b,c,d(∞) =∞ if c = 0.

Note that the requirement in the above definition of a Möbius transfor-
mation that its coefficients a, b, c and d satisfy the condition ad − bc 6= 0
ensures that there is no complex number for which az+b and cz+d are both
zero.

Let A be a non-singular 2 × 2 matrix whose coefficients are complex
numbers, and let

A =

(
a b
c d

)
.

We denote by µA the Möbius transformation µa,b,c,d with coefficients a, b, c,
d, defined so that

µA(z) =


az + b

cz + d
if cz + d 6= 0;

∞ if c 6= 0 and z = −d/c;

µA(∞) =

{ a

c
if c 6= 0;

∞ if c = 0.

Lemma 1.4 Let A be a non-singular 2× 2 matrix with complex coefficients,
and let

A =

(
a b
c d

)
.

The corresponding Möbius transformation µA can then be characterized as the
unique function mapping the Riemann sphere P1 to itself with the property
that

µA

(u
v

)
=
au+ bv

cu+ dv

for all complex numbers u and v that are not both zero (where u/v = ∞ in
all cases, and in only those cases, where u 6= 0 and v = 0).

Proof Every point of the Riemann sphere may be expressed as a quotient
of the form u/v, where u and v are complex numbers that are not both zero,
and where u/v = ∞ in all cases, and in only those cases, where u 6= 0 and
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v = 0. Let u, v, u′ and v′ are complex numbers, where u and v are not
both zero, where u′ and v′ are not both zero, and where u/v = u′/v′. Then
either v and v′ are both non-zero or else u/v =∞, in which case v = v′ = 0.
If v and v′ are both non-zero then there exists a unique non-zero complex
number w for which v′ = wv, and then u′ = v′u/v = wu. If v = v′ = 0 then
u 6= 0 and u′ 6= 0, and then u′ = wu and v′ = wv, where w = u′/u.

We conclude that, in all cases with u and v not both zero, u′ and v′ not
both zero and u/v = u′/v′, there exists some non-zero complex number w
such that u′ = wu and v′ = wv. But then au+ bv and cu+ dv are not both
zero, because the matrix A is non-singular, au′ + bv′ and cu′ + dv′ are not
both zero, for the same reason, and

au′ + bv′

cu′ + dv′
=
w(au+ bv)

w(cu+ dv)
=
au+ bv

cu+ dv
.

Consequently there exists a well-defined function µ:P1 → P1, mapping the
Riemann sphere to itself, characterized by the property that

µ
(u
v

)
=
au+ bv

cu+ dv

for all complex numbers u and v with the property that u and v are both
zero.

Now if v 6= 0 and z = u/v then

µ(z) = µ
(u
v

)
=
au+ bv

cu+ dv
=
azv + bv

czv + dv
=
az + b

cz + d
= µA(z).

On the other hand, if v = 0 then u 6= 0 and u/v =∞, and therefore

µ(∞) = µ
(u
v

)
=
au

cu
=
a

c
= µA(∞).

We conclude therefore that µ = µA. The result follows.

Proposition 1.5 The composition of any two Möbius transformations is a
Möbius transformation. Specifically let A and B be non-singular 2×2 matri-
ces with complex coefficients, and let µA and µB be the corresponding Möbius
transformations of the Riemann sphere. Then the composition µA ◦ µB of
these Möbius transformations is the Möbius transformation µAB of the Rie-
mann sphere determined by the product AB of the matrices A and B.

Proof Let

A =

(
a b
c d

)
and B =

(
f g
h k

)
,
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and let

AB =

(
m n
p q

)
.

Then
m = af + bh, n = ag + bk,

p = cf + dh and q = cg + dk.

Now let u and v be complex numbers that are not both zero. Then
fu+gv and hu+kv are not both zero, because the matrix B is non-singular.
Applying Lemma 1.4, we see that

µA

(
µB

(u
v

))
= µA

(
fu+ gv

hu+ kv

)
=

a(fu+ gv) + b(hu+ kv)

c(fu+ gv) + d(hu+ kv)

=
mu+ nv

pu+ qv
= µAB

(u
v

)
.

The result follows.

Corollary 1.6 Let a, b, c and d be complex numbers satisfying ad− bc 6= 0,
let

A =

(
a b
c d

)
and C =

(
d −b
−c a

)
,

and let µA and µC be the corresponding Möbius transformations, defined so
that

µA

(u
v

)
=
au+ bv

cu+ dv
and µC(z) =

du− bv
−cu+ av

for all complex numbers u and v that are not both zero. Then the map-
ping µA:P1 → P1 is invertible, and its inverse is the Möbius transformation
µC :P1 → P1.

Proof Let

M =

(
ad− bc 0

0 ad− bc

)
.

Then AC = CA = M . It follows from Proposition 1.5 that

µA ◦ µC = µC ◦ µA = µM = IdP1 ,

where IdP1 denotes the identity map of the Riemann sphere. The result
follows.
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1.4 Inversion of the Riemann Sphere in its Equatorial
Circle

Let S2 denote the unit sphere in R3, defined so that

S2 = {(u, v, w) ∈ R3 : u2 + v2 + w2 = 1},

and let us refer to the points (0, 0, 1) and (0, 0,−1) as the North Pole and
South Pole respectively. Let E denote the Equatorial Plane in R3, consisting
of those points whose Cartesian coordinates are of the form (x, y, 0), where
x and y are real numbers.

Stereographic projection from the South Pole maps each point (u, v, w)
of the unit sphere S2 distinct from the South Pole to the point (x, y, 0) of
the equatorial plane E for which

x =
u

w + 1
and y =

v

w + 1
.

Moreover a point (x, y, 0) of the Equatorial Plane E is the image under
stereographic projection from the South Pole of the point (u, v, w) of the
unit sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

1− x2 − y2
1 + x2 + y2

.

We can also stereographically project from the North Pole. Note that,
given a point in the Equatorial Plane, reflection in that Equatorial Plane will
interchange the points of the sphere corresponding to it under stereographic
projection from the North and South Poles. Thus a point (u, v, w) of the
unit sphere S2 distinct from the North Pole corresponds under stereographic
projection to the point (x, y, 0) of the Equatorial Plane E for which

x =
u

1− w and y =
v

1− w.

In the other direction, a point (x, y, 0) of the Equatorial Plane E corresponds
under stereographic projection from the North Pole to the point (u, v, w) of
the unit sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

x2 + y2 − 1

1 + x2 + y2
.

Proposition 1.7 Let O denote the origin (0, 0, 0) of the Equatorial Plane E,
where

E = {(x, y, z) ∈ R3 : z = 0},
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and let A be a point (x, y, 0) of E distinct from the origin O. Let C be the
point on the unit sphere S2 that corresponds to A under stereographic pro-
jection from the North Pole (0, 0, 1), and let B be the point of the Equatorial
Plane E that corresponds to C under stereographic projection from the South
Pole. Then B = (p, q, 0), where

p =
x

x2 + y2
and q =

y

x2 + y2
.

Thus the points O, A and B are collinear, and the points A and B lie on the
same side of the origin O. Also the distances |OA| and |OB| of the points A
and B from the origin satisfy |OA| × |OB| = 1.

Proof Let (x, y, 0) be a point of the Equatorial plane E distinct from the
origin. This point is the image, under stereographic projection from the
North Pole (0, 0, 1) of the point (u, v, w) of the unit sphere S2 for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
, w =

x2 + y2 − 1

1 + x2 + y2
.

This point then gets mapped under stereographic projection from the South
Pole to the point (p, q, 0) of the Equatorial Plane E for which

p =
u

w + 1
and q =

v

w + 1
.

Now

w + 1 =
2(x2 + y2)

1 + x2 + y2
.

It follows that
p =

x

x2 + y2
and q =

y

x2 + y2
.

Finally we note that O, A and B are collinear, where 0 = (0, 0, 0), A =
(x, y, 0) and B = (p, q, 0), and the points A and B lie on the same side of the
origin O. Also

|OA| =
√
x2 + y2, and |OB| = 1√

x2 + y2
,

and therefore |OA| × |OB| = 1, as required.
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1.5 The Action of Möbius Transformations on the Rie-
mann Sphere

Proposition 1.8 Let p1, p2, p3 be distinct points of the Riemann sphere P1,
and let q1, q2, q3 also be distinct points of P1. Then there exists a unique
Möbius transformation µ:P1 → P1 of the Riemann sphere with the property
that µ(pj) = qj for j = 1, 2, 3.

Proof First we show that, given distinct points p1, p2 and p3 of the Rie-
mann sphere, there exists a Möbius transformation µ∗p1,p2,p3 :P

1 → P1 with
the property that µ∗p1,p2,p3(p1) = ∞, µ∗p1,p2,p3(p2) = 0 and µ∗p1,p2,p3(p3) = 1.
Now there exist complex numbers uj and vj for j = 1, 2, 3 such that uj and
vj are not both zero and uj/vj = pj for j = 1, 2, 3. Then u1v3 − u3v1 and
u2v3 − u3v2 are non-zero, because the points p1, p2 and p3 of the Riemann
sphere are specified to be distinct.

Also let u and v be complex numbers that are not both zero. Were it the
case that

u1v − uv1 = u2v − uv2 = 0

then the point u/v of the Riemann sphere would coincide with both p1 and
p2, which is impossible, given that p1 and p2 are specified to be distinct.

We conclude therefore that, for distinct points p1, p2, p3 of the Riemann
sphere, and for any complex numbers u and v that are not both zero, the
complex numbers

(u1v3 − u3v1)(u2v − uv2) and (u2v3 − u3v2)(u1v − uv1)

are not both zero, and consequently there is a well-defined element µ∗p1,p2,p3(u/v)
of the Riemann sphere characterized by the property that

µ∗p1,p2,p3

(u
v

)
=

(u1v3 − u3v1)(u2v − uv2)
(u2v3 − u3v2)(u1v − uv1)

for all complex numbers u and v that are not both zero. Then the function
sending u/v to µ∗p1,p2,p3(u/v) for all complex numbers u and v that are not
both zero is a Möbius transformation of the Riemann sphere. Moreover

µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0 and µ∗p1,p2,p3(p3) = 1.

Now let p1, p2 and p3 be distinct points of the Riemann sphere and also
let q1, q2 and q3 be distinct points of the Riemann sphere. Then there exist
Möbius transformations µ∗p1,p2,p3 :P

1 → P1 and µ∗q1,q2,q3 :P
1 → P1 characterized

by the properties that

µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0, µ∗p1,p2,p3(p3) = 1,
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µ∗q1,q2,q3(q1) =∞, µ∗q1,q2,q3(q2) = 0 and µ∗q1,q2,q3(q3) = 1.

Let µ:P1 → P1 be the Möbius transformation of the Riemann sphere defined
such that

µ = µ∗−1q1,q2,q3
◦ µ∗p1,p2,p3 .

Then
µ(p1) = q1, µ(p2) = q2 and µ(p3) = q3.

Now suppose let µ̂:P1 → P1 be any Möbius transformation of the Rie-
mann sphere with the properties that

µ̂(p1) = q1, µ̂(p2) = q2 and µ̂(p3) = q3,

and let σ:P1 → P1 be the Möbius transformation of the Riemann sphere
defined such that

σ = µ∗q1,q2,q3 ◦ µ̂ ◦ µ∗−1p1,p2,p3
.

Then σ(∞) = ∞, σ(0) = 0 and σ(1) = 1. There then exist complex coeffi-
cients a, b, c and d, where ad− bc 6= 0, such that

σ
(u
v

)
=
au+ bv

cu+ dv

for all complex numbers u and v that are not both zero. Evaluating the
Möbius transformation σ at the points ∞, 0 and 1 of the Riemann sphere,
we find that

a

c
=∞, b

d
= 0 and

a+ b

c+ d
= 1.

Consequently c = 0, a 6= 0, b = 0, d 6= 0 and a = d. It follows that σ is the
identity map of the Riemann sphere, and therefore

µ̂ = µ∗−1q1,q2,q3
◦ µ∗p1,p2,p3 = µ.

We conclude therefore that µ is the unique Möbius transformation of the
Riemann sphere with the properties that µ(pj) = qj for j = 1, 2, 3, as re-
quired.

Proposition 1.9 Let p1, p2 and p3 be three distinct points of the Riemann
sphere, and let µ1 and µ2 be Möbius transformations of the Riemann sphere.
Suppose that µ1(pj) = µ2(pj) for j = 1, 2, 3. Then the Möbius transforma-
tions µ1 and µ2 coincide.

Proof Let qj = µ1(pj) for j = 1, 2, 3. Then both µ1 and µ2 must be identical
to the unique Möbius transformation of the Riemann sphere that maps p1, p2
and p3 to q1, q2 and q3 respectively, and therefore µ1 and µ2 must be identical
to one another, as required.
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Proposition 1.10 Let a, b, c, d, f , g, h and k be complex numbers satisfying
ad 6= bc and fk 6= gh, and let µ1 and µ2 be the Möbius transformations of
the Riemann sphere defined so that

µ1(z) =
az + b

cz + d
, µ2(z) =

fz + g

hz + k

for all complex numbers with cz + d 6= 0 and hz2 + k 6= 0. Then the Möbius
transformations µ1 and µ2 coincide if and only if there exists some non-zero
complex number m such that f = ma, g = mb, h = mc and k = md.

Proof Clearly if there exists a complex number m with the stated properties
then the Möbius transformations µ1 and µ2 coincide.

Conversely suppose that there is some Möbius transformation µ of the
Riemann sphere with the property that

µ(z) =
az + b

cz + d
=
fz + g

hz + k

whenever cz + d 6= 0 and hz + k 6= 0.
First consider the case when c = 0. Then no real number is mapped by µ

to the point∞ of the Riemann sphere “at infinity” and therefore h = 0. But
then d 6= 0, k 6= 0, b/d = g/k and a/d = f/k. Therefore if we take m = k/d
in this case we find that m 6= 0, f = ma, g = mb, h = mc and k = md.
The existence of the required non-zero complex number m has therefore been
verified in the case when c = 0.

Suppose then that c 6= 0. Then h 6= 0 and µ(−k/h) =∞ = µ(−d/c), and
therefore k/h = d/c. Let m = h/c. Then k/d = m. It then follows that

fz + g = (hz + k)µ(z) = m(cz + d)µ(z) = m(az + b)

for all complex numbers z distinct from −d/c, and therefore f = ma and
g = mb. The result follows.

Proposition 1.11 Any Möbius transformation of the Riemann sphere maps
straight lines and circles to straight lines and circles.

Proof The equation of a line or circle in the complex plane can be expressed
in the form

g|z|2 + 2Re[bz] + h = 0,

where g and h are real numbers, and b is a complex number. Moreover a
locus of points in the complex plane satisfying an equation of this form is a
circle if g 6= 0 and is a line if g = 0.
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Let g and h be real constants, let b be a complex constant, and let z =
1/w, where w 6= 0 and w satisfies the equation

g|w|2 + 2Re[bw] + h = 0,

Then
g|w|2 + bw + bw + h = 0,

Then

g + Re[bz] + h|z|2 = g + bz + bz + h|z|2

=
1

|w|2
(
g|w|2 + bw + bw + h

)
= 0.

We deduce from this that the Möbius transformation that sends z to 1/z for
all non-zero complex numbers z maps lines and circles to lines and circles.

Let µ:P1 → P1 be a Möbius transformation of the Riemann sphere. Then
there exist complex numbers a, b, c and d satisfying ad− bc 6= 0 such that

µ(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0. The result is immediate
when c = 0. We therefore suppose that c 6= 0. Then

µ(z) =
az + b

cz + d
=
a

c
− ad− bc

c
× 1

cz + d

when cz + d 6= 0. The Möbius transformation µ is thus the composition of
three maps that each send circles and straight lines to circles and straight
lines and preserve angles between lines and circles, namely the maps

z 7→ cz + d, z 7→ 1

z
and z 7→ a

c
− (ad− bc)z

c
.

Thus the Möbius transformation µ must itself map circles and straight lines
to circles and straight lines, as required.

1.6 Cross-Ratios of Points of the Riemann Sphere

Definition The cross-ratio (z1, z2; z3, z4) of four distinct complex numbers
z1, z2, z3 and z4 is defined so that

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

.
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We now extend the definition of cross-ratio so that, given any quadruple
p1, p2, p3, p4 of points of the Riemann sphere satisfying the condition that
no three of the points all coincide with one another, a corresponding point
(p1, p2; p3, p4) of the Riemann sphere is determined to represent the cross-
ratio of the points p1, p2, p3 and p4.

Proposition 1.12 There is a well-defined function, defined on quadruples
p1, p2, p3, p4 of points of the Riemann sphere that satisfy the condition that
no three of the members of the quadruple all coincide with one another, and
sending such a quadruple p1, p2, p3, p4 to the point (p1, p2; p3, p4) of the Rie-
mann sphere characterized by the property that

(p1, p2; p3, p4) =
(u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

.

for all complex numbers u1, v1, u2, v2, u3, v3, u4, v4 that are such as to
ensure that uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4.
The function defined in this fashion generalizes the definition of cross-ratio
previously given for quadruples of distinct complex numbers.

Proof Let p1, p2, p3, p4 be a quadruple of points of the Riemann sphere.
Then, for each integer j between 1 and 4, complex numbers uj and vj can be
chosen, not both zero, such that pj = uj/vj, where uj/vj =∞ in cases where
uj 6= 0 and vj = 0. Moreover, pj = pk, where j and k are integers between 1
and 4, if and only if ujvk − ukvj = 0.

Now if the points p1, p2, p3, p4 and ∞ are all distinct (so that p1, p2, p3
and p4 are distinct complex numbers), then v1, v2, v3, v4 are all non-zero, and
also

(u2v3 − u3v2)(u1v4 − u4v1) 6= 0,

and, in this case, the definition of cross-ratios of distinct complex numbers
requires that

(p1, p2; p3, p4) =

(
u1
v1
− u3
v3

)(
u2
v2
− u4
v4

)
(
u2
v2
− u3
v3

)(
u1
v1
− u4
v4

)
=

(u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

=
u

v

where
u = (u1v3 − u3v1)(u2v4 − u4v2)
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and
v = (u2v3 − u3v2)(u1v4 − u4v1),

and where u/v =∞ in cases where u 6= 0 and v = 0.
Now suppose that p1, p2, p3, p4 are any points of the Riemann sphere that

satisfy the requirement that no three of the listed points all coincide with
one another. Suppose also that, for each integer j between 1 and 4, uj, vj,
u′j and v′j are complex numbers, uj and vj and not both zero, u′j and v′j are
not both zero, and

pj = uj/vj = u′j/v
′
j.

Then there exist non-zero complex numbers w1, w2, w3 and w4 such that
u′j = wjuj and v′j = wjvj for j = 1, 2, 3, 4. Let

u = (u1v3 − u3v1)(u2v4 − u4v2),

v = (u2v3 − u3v2)(u1v4 − u4v1),
u′ = (u′1v

′
3 − u′3v′1)(u′2v′4 − u′4v′2)

and
v′ = (u′2v

′
3 − u′3v′2)(u′1v′4 − u′4v′1).

Then u′ = w1w2w3w4u and v′ = w1w2w3w4v, and therefore u′/v′ = u/v.
Moreover the requirement that no three of the points p1, p2, p3, p4 all coincide
with one another ensures that the complex numbers u and v are not both
zero. Indeed if it were the case that u = v = 0, then at least one of the
following four conditions would need to hold:

• u1v3 − u3v1 = 0 and u2v3 − u3v2 = 0;

• u1v3 − u3v1 = 0 and u1v4 − u4v1 = 0;

• u2v4 − u4v2 = 0 and u2v3 − u3v2 = 0;

• u2v4 − u4v2 = 0 and u1v4 − u4v1 = 0.

in the first case we would have p1 = p2 = p3; in the second p1 = p3 = p4; in
the third p2 = p3 = p4; and in the fourth p1 = p2 = p4.

Accordingly, given points p1, p2, p3 and p4 of the Riemann sphere P1,
where no three of these points all coincide with one another, the quadruple
of points p1, p2, p3, p4 determines a point (p1, p2; p3, p4) of the Riemann sphere
characterized by the property that, given any complex numbers uj and vj
with the properties that uj and vj are not both zero and pj = uj/vj for

15



j = 1, 2, 3, 4, the point (p1, p2; p3, p4) of the Riemann sphere is determined so
that

(p1, p2; p3, p4) = u/v,

where
u = (u1v3 − u3v1)(u2v4 − u4v2)

and
v = (u2v3 − u3v2)(u1v4 − u4v1),

and where u/v = ∞ in cases where u 6= 0 and v = 0. This completes the
proof.

Accordingly we can define the cross-ratio of appropriate quadruples of
points of the Riemann sphere in the following manner.

Definition The cross-ratio of points of the Riemann sphere assigns points
(p1, p2; p3, p4) of the Riemann sphere to those those quadruples p1, p2, p3, p4 of
points of the Riemann sphere for which no three points all coincide with one
another, so as to ensure that, given complex numbers u1, v1, u2, v2, u3, v3,
u4 and v4, where uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4,
and where no three of the points p1, p2, p3, p4 all coincide with one another,
the cross-ratio of those points is determined so that

(p1, p2; p3, p4) =
(u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

.

We now show that, given four elements p1, p2, p3, p4 of the Riemann
sphere satisfying the condition that no three of the points all coincide with
one another, the value of the cross-ratio (p1, p2; p3, p4) taken with respect to
any one particular ordering of those four elements determines the value of
the cross-ratio taken with respect to any other ordering of those elements.

Proposition 1.13 Let p1, p2, p3 and p4 be distinct elements of the Riemann
sphere P1, and let q = (p1, p2; p3, p4). Then

• (p1, p2; p3, p4), (p2, p1; p4, p3), (p3, p4; p1, p2), (p4, p3; p2, p1) are all equal
to q;

• (p1, p2; p4, p3), (p2, p1; p3, p4), (p4, p3; p1, p2), (p3, p4; p2, p1) are all equal

to
1

q
.
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• (p1, p3; p2, p4), (p3, p1; p4, p2), (p2, p4; p1, p3), (p4, p2; p3, p1) are all equal
to 1− q;

• (p1, p4; p2, p3), (p4, p1; p3, p2), (p2, p3; p1, p4), (p3, p2; p4, p1) are all equal

to
q − 1

q
;

• (p1, p3; p4, p2), (p3, p1; p2, p4), (p4, p2; p1, p3), (p2, p4; p3, p1) are all equal

to
1

1− q ;

• (p1, p4; p3, p2), (p4, p1; p2, p3), (p3, p2; p1, p4), (p2, p3; p4, p1) are all equal

to
q

q − 1
;

Proof Let u1, v1, u2, v2, u3, v3, u4 and v4 be complex numbers with the
properties that uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4
(where uj/vj =∞ in cases where uj 6= 0 and vj = 0). Then

q = (p1, p2; p3, p4) =
(u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

.

It follows directly that

(p1, p2; p3, p4), (p2, p1; p4, p3), (p3, p4; p1, p2) and (p4, p3; p2, p1)

are all equal to q. Also

(p1, p2; p4, p3) =
(u2v3 − u3v2)(u1v4 − u4v1)
(u1v3 − u3v1)(u2v4 − u4v2)

=
1

q
.

Next we note that

(p4, p2; p3, p1) =
(u4v3 − u3v4)(u2v1 − u1v2)
(u2v3 − u3v2)(u4v1 − u1v4)

.

It follows that

1− (p4, p2; p3, p1)

=
(u2v3 − u3v2)(u1v4 − u4v1) + (u4v3 − u3v4)(u2v1 − u1v2)

(u2v3 − u3v2)(u1v4 − u4v1)
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=
u1u2v3v4 − v1u2v3u4 − u1v2u3v4 + v1v2u3u4

(u2v3 − u3v2)(u1v4 − u4v1)
+
v1u2v3u4 − v1u2u3v4 − u1v2v3u4 + u1v2u3v4

(u2v3 − u3v2)(u1v4 − u4v1)
=

u1u2v3v4 + v1v2u3u4 − v1u2u3v4 − u1v2v3u4
(u2v3 − u3v2)(u1v4 − u4v1)

=
(u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

= q.

Consequently
(p4, p2; p3, p1) = 1− q.

It then follows that

(p4, p2; p1, p3) =
1

1− q .

Furthermore

(p3, p2; p1, p4) = 1− (p4, p2; p1, p3) = 1− 1

1− q =
q

q − 1
,

and therefore

(p3, p2; p4, p1) =
q − 1

q
.

The remaining identities follow directly.

Lemma 1.14 Let z1, z2 and, z3 be distinct complex numbers. Then

(z1, z2; z3,∞) =
z1 − z3
z2 − z3

Proof Let u1 = z1, u2 = z2, u3 = z3, u4 = 1, v1 = v2 = v3 = 1 and v4 = 0.
Then zj = uj/vj for j = 1, 2, 3 and∞ = u4/v4. It follows from the definition
of cross-ratios that

(z1, z2; z3,∞) =
(u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

=
z1 − z3
z2 − z3

,

as required.

Lemma 1.15 Let p1, p2, p3, p4 be a quadruple of points of the Riemann sphere
satisfying the condition that no three of the points all coincide with one an-
other. Then the following identities hold when two of the points coincide with
one another:

(p1, p2; p3, p4) =∞ whenever p2 = p3 or p1 = p4;

(p1, p2; p3, p4) = 0 whenever p1 = p3 or p2 = p4;

(p1, p2; p3, p4) = 1 whenever p1 = p2 or p3 = p4.
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Proof Let complex numbers uj and vj be chosen for j = 1, 2, 3, 4 such that
uj and vj are not both zero and pj = uj/vj for j = 1, 2, 3, 4. The definition
of cross-ratios ensures that

(p1, p2; p3, p4) =
(u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

.

Now, for distinct integers j and k between 1 and 4, pj = pk if and only
if ujvk = ukvj. Also there exists a non-zero complex number w for which
u2 = wu1 and v2 = wv1 if and only if p1 = p2, and there exists a non-zero
complex number w for which u4 = wu3 and v4 = wv3 if and only if p3 = p4.
The required identities therefore follow directly.

Lemma 1.16 Let p1, p2 and p3 be distinct elements of the Riemann sphere,
and let µ∗p1,p2,p3 :P

1 → P1 be the unique Möbius transformation of the Riemann
sphere for which µ∗p1,p2,p3(p1) = ∞, µ∗p1,p2,p3(p2) = 0 and µ∗p1,p2,p3(p3) = 1.
Then

µ∗p1,p2,p3(p) = (p1, p2; p3, p)

for all points p of the Riemann sphere.

Proof The Möbius transformation µ∗p1,p2,p3 is characterized by the property
that

µ∗p1,p2,p3

(u
v

)
=

(u1v3 − u3v1)(u2v − uv2)
(u2v3 − u3v2)(u1v − uv1)

for all complex numbers u and v that are not both zero (as noted in the proof
of Proposition 1.8). The result therefore follows on comparing this expression
characterizing the Möbius transformation µ∗p1,p2,p3 with the definition of cross-
ratios of quadruples of points on the Riemann sphere.

Proposition 1.17 Let p1, p2 and p3 be distinct elements of the Riemann
sphere, and let q be a point of the Riemann sphere. Then there exists a
unique element p4 of the Riemann sphere for which (p1, p2; p3, p4) = q.

Proof Möbius transformations of the Riemann sphere are invertible func-
tions from the Riemann sphere to itself (see Corollary 1.6). Let p4 =
µ∗−1p1,p2,p3

(q), where µ∗p1,p2,p3 denotes the unique Möbius transformation of the
Riemann sphere for which

µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0 and µ∗p1,p2,p3(p3) = 1.

It then follows (applying the identity established in Lemma 1.16) that

q = µ∗p1,p2,p3(p4) = (p1, p2; p3, p4),

as required.
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Proposition 1.18 Let p1, p2, p3, p4 be distinct elements of the Riemann
sphere P1, and let q1, q2, q3, q4 also be distinct elements of P1. Then a nec-
essary and sufficient condition for the existence of a Möbius transformation
µ:P1 → P1 of the Riemann sphere with the property that µ(pj) = qj for
j = 1, 2, 3, 4 is that

(p1, p2; p3, p4) = (q1, q2; q3, q4).

Proof Let µ∗p1,p2,p3 :P
1 → P1 and µ∗q1,q2,q3 :P

1 → P1 be the unique Möbius
transformations of the Riemann sphere for which

µ∗p1,p2,p3(p1) =∞, µ∗p1,p2,p3(p2) = 0, µ∗p1,p2,p3(p3) = 1,

µ∗q1,q2,q3(q1) =∞, µ∗q1,q2,q3(q2) = 0 and µ∗q1,q2,q3(q3) = 1.

Then
µ∗p1,p2,p3(p) = (p1, p2; p3, p)

and
µ∗q1,q2,q3(p) = (q1, q2; q3, p)

for all points p of the Riemann sphere. Let µ:P1 → P1 be the Möbius trans-
formation of the Riemann sphere defined that is the composition function
µ∗−1q1,q2,q3

◦ µp1,p2,p3 obtained on following the Möbius transformation µ∗p1,p2,p3
with the inverse of the Möbius transformation µ∗q1,q2,q3 . Then the Möbius
transformation µ is the unique Möbius transformation that satisfies µ(pj) =
qj for j = 1, 2, 3 (see Proposition 1.8). Now µ(p4) = µ(q4) if and only if
µ∗p1,p2,p3(p4) = µ∗q1,q2,q3(q4), and this is the case if and only if

(p1, p2; p3, p4) = (q1, q2; q3, q4).

The result follows.

Proposition 1.19 Four distinct complex numbers z1, z2, z3 and z4 lie on
a single line or circle in the complex plane if and only if their cross-ratio
(z1, z2; z3, z4) is a real number.

Proof Let µ:P1 → P1 be the Möbius transformation of the Riemann sphere
defined such that µ(p) = (z1, z2; z3, p) for all p ∈ P1. Then µ(z1) = ∞,
µ(z2) = 0 and µ(z3) = 1. Möbius transformations map lines and circles
to lines and circles (Propostion 1.11). It follows that a complex number z
distinct from z1, z2 and z3 lies on the circle in the complex plane passing
through the points z1, z2 and z3 if and only if µ(z) lies on the unique line in
the complex plane that passes through 0 and 1, in which case µ(z) is a real
number. The result follows.
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1.7 Cross-Ratios and Angles

We recall some basic properties of the algebra of complex numbers. Any
complex number z can be written in the form

z = |z| (cos θ +
√
−1 sin θ)

where |z| is the modulus of z and θ is the angle in radians, measured anticlock-
wise, between the positive real axis and the line segment whose endpoints
are represented by the complex numbers 0 and z. Moreover

1

cosα +
√
−1 sinα

= cosα−
√
−1 sinα

and

(cosα +
√
−1 sinα)(cos β +

√
−1 sin β)

= cos(α + β) +
√
−1 sin(α + β)

for all real numbers α and β.

Proposition 1.20 Let z1, z2, z3 and z4 be distinct complex numbers lying
on a circle in the complex plane, listed in anticlockwise around the circle.
Then the angle between the lines joining z2 to z4 and z1 is equal to the angle
between the lines joining z3 to z4 and z1.

αα′

z1

z2
z3

z4

Proof Let α denote the angle between the lines joining z2 to z4 and z1, and
let α′ be the angle between the lines joining z3 to z4 and z1. We must show
that α = α′. Now it follows from the standard properties of complex numbers
that

z1 − z2
z4 − z2

=
|z1 − z2|
|z4 − z2|

(cosα +
√
−1 sinα),

z1 − z3
z4 − z3

=
|z1 − z3|
|z4 − z3|

(cosα′ +
√
−1 sinα′).
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It now follows from the definition of cross-ratio that

(z2, z3; z1, z4) =
(z1 − z2)(z4 − z3)
(z1 − z3)(z4 − z2)

=
z1 − z2
z4 − z2

÷ z1 − z3
z4 − z3

=
|z1 − z2| |z4 − z3|
|z1 − z3| |z4 − z2|

× cosα +
√
−1 sinα

cosα′ +
√
−1 sinα′

.

Now
1

cosα′ +
√
−1 sinα′

= cosα′ −
√
−1 sinα′,

and therefore

cosα +
√
−1 sinα

cosα′ +
√
−1 sinα′

= (cosα +
√
−1 sinα)(cosα′ −

√
−1 sinα′)

= cos(α− α′) +
√
−1 sin(α− α′).

Consequently

(z2, z3; z1, z4) = |(z2, z3; z1, z4)|(cos(α− α′) +
√
−1 sin(α− α′)).

But the cross ratio (z2, z3; z1, z4) is a real number, because the complex num-
bers z1, z2, z3 and z4 lie on a circle (see Proposition 1.19), and consequently
α − α′ must be an integer multiple of π. Also 0 < α < π and 0 < α′ < π,
and therefore −π < α− α′ < π. It follows that α− α′ = 0, and thus α = α′,
as required.

Proposition 1.21 Let z1, z2, z3 and z4 be distinct complex numbers lying
on a circle in the complex plane, listed in anticlockwise around the circle, let
β be the angle between the lines joining z2 to z3 and z1, and let γ be the angle
between the lines joining z4 to z1 and z3. Then β + γ = π.

β

γ

z1

z2z3

z4

22



Proof It follows from the standard properties of complex numbers that

z1 − z2
z3 − z2

=
|z1 − z2|
|z3 − z2|

(cos β +
√
−1 sin β),

z3 − z4
z1 − z4

=
|z3 − z4|
|z1 − z4|

(cos γ +
√
−1 sin γ).

It now follows from the definition of cross-ratio that

(z2, z4; z1, z3)

=
(z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

=
z1 − z2
z3 − z2

× z3 − z4
z1 − z4

=
|z1 − z2| |z3 − z4|
|z1 − z4| |z3 − z2|

(cos β +
√
−1 sin β)(cos γ +

√
−1 sin γ)

= |(z2, z4; z1, z3)| (cos(β + γ) +
√
−1 sin(β + γ)).

But the cross ratio (z2, z4; z1, z3) is a real number, because the complex num-
bers z1, z2, z4 and z3 lie on a circle (see Proposition 1.19), and consequently
β + γ must be an integer multiple of π. Also 0 < β < π and 0 < γ < π, and
therefore 0 < β + γ < 2π. It follows that β + γ = π, as required.

Proposition 1.22 Let z1, z2 and z3 distinct complex numbers lying on a
circle in the complex plane, listed in anticlockwise around the circle. Then
the angle between the lines joining z2 to z3 and z1 is equal to the angle between
the line joining z3 to z1 and the ray tangent to the circle at z1 that is directed
so that the point z2 and the tangent ray lie on opposite sides of the line that
passes through the points z1 and z3.

β

β ′ z1

z2
z3
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Proof Let β denote the angle between the lines joining z2 to z3 and z1. Also
let a point z4 be taken on the circle so that z1, z2, z3 and z4 are distinct and
moreover the points z1 and z4 lie on opposite sides of the line that passes
through z1 and z3, and let γ denote the angle between the lines joining z4 to
z1 and z3. It follows from Proposition 1.21 that β + γ = π.

β

γ

β ′
γ′

z1

z2
z3

z4

Now suppose that the point z4 moves along the circle towards the point
z1. As the point z4 approaches z1 the direction of the chord of the circle
from z4 to z1 approaches the direction of the ray tangent to the circle at
z1 that points into the side of the line through z1 and z3 in which z2 lies.
But the angle between the rays joining z4 to z1 and z3 remains constant as
z4 approaches z1. Consequently the angle γ′ between the tangent ray at z1
pointing into the side of the chord joining z1 to z3 and that chord itself is
equal to the angle γ. The angle β′ between the chord joining z1 and z3 and
the tangent ray pointing into the side of that chord opposite to z2 is then the
supplement of the angle γ′, where γ′ = γ, and therefore β′ + γ = π = β + γ.
Consequently β′ = β. The result follows.
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Proposition 1.23 Let a geometrical configuration be as depicted in the ac-
companying figure. Thus let ACB and ADB be circular arcs that cut at the
points A and B. Let the line joining points A and B be produced beyond A
and B to E and F respectively. Let AG and AH be tangent to the circular
arcs BCA and BDA respectively at A, where C and H lie on one side of AB
and D and G lie on the other. Also let the lines AC and AD be produced to
K and L respectively. Then the angle GAH is the sum of the angles KCB
and LDB.

A

B
C

D
E

F

G

H

K

L

Proof Applying results of previous propositions, together with standard ge-
ometrical results, we find that

∠GAB = ∠ACB (Proposition 1.22)
⇒ ∠EAG = ∠KCB (supplementary angles)

∠HAB = ∠ADB (Proposition 1.22)
⇒ ∠EAH = ∠LDB (supplementary angles)
⇒ ∠GAH = ∠EAG+ ∠EAH

= ∠KCB + ∠LDB,

as required.
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Proposition 1.24 Let two circles in the complex plane intersect at points
represented by complex numbers z1 and z2, and let points represented by com-
plex numbers z3 and z4 be taken on arcs of the respective circles joining z1
and z2 so that the point representing z3 lies on the left hand side of the di-
rected line from z1 and z2 and the point represented by the point z4 lies on
the right hand side of that line (as depicted in the accompanying figure).

z1

z2
z3

z4

α

βγ

Then

(z1, z2; z3, z4) =
|z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ),

where γ is the angle between the tangent lines to the two circles at the inter-
section point represented by the complex number z1.

Proof The configuration of the points z1, z2, z3 and z4 ensures that direction
of the line from z1 to z3 is transformed into the direction of the line from z3
to z2 by rotation clockwise through an angle α less than two right angles.
Similarly the direction of the line from z1 to z4 is transformed into the direc-
tion of the line from z4 to z2 by rotation anticlockwise through an angle β
less than two right angles. Basic properties of complex numbers therefore
ensure that

z2 − z3
z3 − z1

=
|z2 − z3|
|z3 − z1|

(cosα−
√
−1 sinα).

z2 − z4
z4 − z1

=
|z2 − z4|
|z4 − z1|

(cos β +
√
−1 sin β).

Now

cos β +
√
−1 sin β

cosα−
√
−1 sinα

= (cosα +
√
−1 sinα)(cos β +

√
−1 sin β)

= cos(α + β) +
√
−1 sin(α + β).
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Moreover the geometry of the configuration ensures that α + β = γ (Propo-
sition 1.23). Thus

z2 − z4
z4 − z1

× z3 − z1
z2 − z3

=
|z2 − z4| |z3 − z1|
|z4 − z1||z2 − z3|

(cos γ +
√
−1 sin γ).

But
z2 − z4
z4 − z1

× z3 − z1
z2 − z3

=
(z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

= (z1, z2; z3, z4).

The result follows.

Example The circles in the complex plane of radius 2 centred on −1 and
1 intersect at the points ±

√
3 i, where i =

√
−1. In this situation, take

z1 = −
√

3 i, z2 =
√

3 i, z3 = −1 and z4 = 1. Then

z3 z4

z2

z1

(z1, z2; z3, z4) =
(−1 +

√
3 i)(1−

√
3 i)

(−1−
√

3 i)(1 +
√

3 i)
=

2 + 2
√

3 i

2− 2
√

3i

=
(2 + 2

√
3 i)2

(2− 2
√

3i)(2 + 2
√

3i)

=
1

2
(−1 +

√
3 i)

It follows that (z1, z2; z3, z4) = cos γ +
√
−1 sin γ, where γ = 2

3
π. Thus the

angle between the tangent lines to the circles at the intersection point z1
is thus 4

3
of a right angle. This is what one would expect from the basic

geometry of the configuration, given that the triangle with vertices z1, z3
and z4 is equilateral and the tangent lines to the circles are perpendicular to
the lines joining the point of intersection to the centres of those circles.
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Proposition 1.25 Let z1 and z2 be complex numbers representing the end-
points of a circular arc in the complex plane. Also, in the case where the
circular arc lies on the left hand side of the directed line from z1 to z2, let
points z3 and z4 be taken between z1 and z2 on the circular arc and the straight
line segment respectively, and, in the case where the circular arc lies on the
right hand side of the directed line from z1 to z2, let points z3 and z4 be
taken between z1 and z2 on the straight line segment and the the circular arc
respectively. Then

(z1, z2; z3, z4) =
|z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ),

where γ is the angle between the tangent line to the circle at the intersection
point represented by the complex number z1 and the line obtained by producing
the chord joining z2 and z1 beyond z1.

Proof We consider the configuration in which the circular arc lies on the left
hand side of the directed line from z1 to z2. In that case the configuration is
as depicted in the accompanying figure. In this configuration the angle made

z1

z2
z3

z4

γ

γ

at z3 by the lines from z1 and z2 is equal to the angle between the chord from
z1 to z2 and the depicted tangent line. The complements of those angles are
then also equal to one another; these equal complements have been labelled
γ in the figure.

Also the direction of the line from z3 to z2 is obtained from the direction
of the line from z1 to z3 by rotation clockwise through an angle γ less than
two right angles. It follows that

z2 − z3
z3 − z1

=
|z2 − z3|
|z3 − z1|

(cos γ −
√
−1 sin γ).

Also the direction of z2 − z4 is the same as that of z4 − z1, and therefore

z2 − z4
z4 − z1

=
|z2 − z4|
|z4 − z1|

.
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It follows that

(z1, z2; z3, z4) =
(z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

=
z2 − z4
z4 − z1

× z3 − z1
z2 − z3

=
|z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ).

We consider now the case in which the circular arc from z1 to z2 lies on
the right hand side of the directed line from z1 to z2. In this case the complex
numbers z3 and z4 represent points between z1 and z2 on the line and the
circular arc respectively, as depicted in the following figure.

z1

z2z3

z4
γ

γ

In this configuration, the angle sought is the angle γ, which in this case is
equal both to the angle between the depicted tangent line to the circle at z1
and the line that produces the chord joining z2 to z1 beyond z1. Moreover,
in this case

z2 − z4
z4 − z1

=
|z2 − z4|
|z4 − z1|

(cos γ +
√
−1 sin γ)

and
z2 − z3
z3 − z1

=
|z2 − z3|
|z3 − z1|

.

It follows in this case also that

(z1, z2; z3, z4) =
(z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

=
z2 − z4
z4 − z1

× z3 − z1
z2 − z3

=
|z3 − z1| |z4 − z2|
|z3 − z2| |z4 − z1|

(cos γ +
√
−1 sin γ).

This completes the proof.

Proposition 1.26 Let two lines in the complex plane intersect at at point
represented by the complex number z1, and let points represented by z3 and z4

29



be taken distinct from z1, one on each of the two lines, where these points are
labelled so that the direction of z3−z1 is obtained from the direction of z4−z1
by rotation anticlockwise through an angle γ less than two right angles. Then

(z1,∞; z3, z4) =
|z3 − z1|
|z4 − z1|

(cos γ +
√
−1 sin γ).

Proof The cross-ratio in this situation is defined so that

(z1,∞; z3, z4) =
z3 − z1
z4 − z1

.

Furthermore
z3 − z1
z4 − z1

=
|z3 − z1|
|z4 − z1|

(cos γ +
√
−1 sin γ).

The result follows directly.

Lines in the complex plane correspond to circles on the Riemann sphere
that pass through the point at infinity. With that in mind, it can seen that
Propositions 1.24, 1.25 and 1.26 conform to a common pattern, and show
that, where two curves intersect at a point, each of those curves being either
a circle or a straight line, the angle between the tangent lines to those curves
at the point of intersection may be expressed in terms of the argument of an
appropriate cross-ratio.

Indeed, to determine the angle the tangent lines to two circles on the
Riemann sphere at a point p1 where they intersect, one can determine the
other point of intersection p2, a point p3 on one circular arc between p1 to
p2, and a point p4 on the other circular arc between p1 and p2. A positive
real number R and a real number γ satisfying −π < γ < π can then be
determined so that

(p1, p2; p3, p4) = R(cos γ +
√
−1 sin γ).

Then the angle between the tangent lines to those circles at the point p1 of
intersection, measured in radians, is then the absolute value |γ| of γ.

Proposition 1.27 Möbius transformations of the Riemann sphere P1 are
angle-preserving. Thus if two circles on the Riemann sphere intersect at a
point p of the Riemann sphere, and if a Möbius transformation µ maps p to a
point q of the Riemann sphere, then the angle between the tangent lines to the
original circles at the point p is equal to the angle between the tangent lines
to the corresponding circles at the point q, the corresponding circles being the
images of the original circles under the Möbius transformation.
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Proof The angle between the tangent lines to the original circles at p is
determined by the value of a cross ratio of the form (p1, p2; p3, p4), where
p1 and p2 are the points of intersection of the original circles, and p3 and
p4 lie on the circular arcs joining p1 to p2, with p4 on the right hand side
as the circle through p3 is traversed in the direction from p1 through p3
to p2. The angle between the tangent lines to the corresponding circles
at q is determined in the analogous fashion by the value of the cross ratio
(q1, q2; q3, q4), where qj is the image of pj under the Möbius transformation
sending the original circles to the corresponding circles. Proposition 1.18
ensures that (p1, p2; p3, p4) = (q1, q2; q3, q4). The result follows.

1.8 The Orientation-Preserving Property of Möbius
Transformations

Proposition 1.28 Let µ be a Möbius transformation of the Riemann sphere,
let w be a complex number for which µ(w) is also a complex number, let s be
a positive real number, and let α: [0, 1]→ R be the path in the complex plane
defined such that

α(t) = w + s(cos 2πt+
√
−1 sin 2πt)

for all real numbers t satisfying 0 ≤ t ≤ 1, so that the point α(t) moves round
a circle of radius s about w in the anticlockwise direction as t increases from
0 to 1. Then, provided that s is sufficiently close to zero, the point µ(α(t))
will move in an anticlockwise direction around µ(w) as t increases from 0 to
1.

Proof There exist complex coefficients a, b, c and d satisfying ad − bc 6= 0
that are such as to ensure that

µ(z) =
az + b

cz + d

for all complex numbers z that are distinct from −d/c. Then

µ(z)− µ(w) =
az + b

cz + d
− aw + b

cw + d

=
(az + b)(cw + d)− (aw + b)(cz + d)

(cz + d)(cw + d)

=
(ad− bc)(z − w)

(cz + d)(cw + d)

=
ad− bc

(cw + d)2
× (z − w)× cw + d

cz + d
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Now the quotient (cz+d)/(cw+d) approaches the value 1 as the complex
number z approaches w. Consequently a positive real number s0 can be found
such that µ(z) ∈ C and

Re

[
cz + d

cw + d

]
> 0

whenever |z−w| ≤ s0. Let the real number s be chosen such that 0 < s ≤ s0,
and let

α(t) = w + s(cos 2πt+
√
−1 sin 2πt)

for all real numbers t satisfying 0 ≤ t ≤ 1. Then, for each real number t
between 0 and 1 there exists a unique real number η(t) satisfying −1

4
<

η(t) < 1
4

such that

cα(t) + d

cw + d
=

∣∣∣∣cα(t) + d

cw + d

∣∣∣∣ (cos(2πη(t)) +
√
−1 sin(2πη(t)))

We obtain in this fashion a continuous real-valued function η: [0, 1]→ R that
sends each real number t satisfying 0 ≤ t ≤ 1 between zero and one to the
unique real number η(t) in the range −1

4
< η(t) < 1

4
for which the above

equation is satisfied. Moreover α(0) = α(1), and therefore η(0) = η(1). A
real number m can also be found such that

ad− bc
(cw + d)2

=

∣∣∣∣ ad− bc(cw + d)2

∣∣∣∣ (cos(2πm) +
√
−1 sin(2πm)).

Well-known trigonometrical identies involving sine and cosine functions then
ensure that

µ(α(t))− µ(w)

|µ(α(t))− µ(w)| = cos(2πψ(t)) +
√
−1 sin(2πψ(t))

for all real numbers t lying between 0 and 1, where

ψ(t) = m+ t− η(t)

for all real numbers t between 0 and 1. (We are here using the fact that
the argument of a product of complex numbers is the sum of the arguments
of those complex numbers.) Now ψ(1) − ψ(0) = 1, because η(0) = η(1).
Consequently the point µ(α(t)) moves once round the point µ(w) in the
complex plane in an anticlockwise direction as t increases from 0 to 1, as
required.

Proposition 1.28 ensures that Möbius transformations of the Riemann
sphere are orientation-preserving.

A subset X of the complex plane C is said to be open if, given any any
complex number w belonging to X, some open disk in the complex plane of
sufficiently small radius centred on w is wholly contained within the set X.
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Definition An invertible function ϕ:X → Y between open subsets X and
Y of the complex plane is said to be orientation-preserving if, given any
point w of X, paths that traverse circles of sufficiently small radius centred
on w once in the anticlockwise direction are mapped by ϕ to paths that wind
around ϕ(w) once in the anticlockwise direction.

Definition An invertible function ϕ:X → Y between open subsets X and Y
of the complex plane is said to be orientation-reversing if, given any point w
of X, paths that traverse circles of sufficiently small radius centred on w once
in the anticlockwise direction are mapped by ϕ to paths that wind around
ϕ(w) once in the clockwise direction.

The transformation of the complex plane that maps each complex number
to its complex conjugate is an example of an orientation-reversing transfor-
mation of the complex plane.

The composition of two orientation-preserving transformations between
open subsets of the complex plane is orientation-preserving, as is the com-
position of two orientation-reversing transformations between such subsets.
A transformation obtained on composing an orientation-preserving transfor-
mation with an orientation-reversing transformation is orientation-reversing,
as is a transformation obtained on composing an orientation-reversing trans-
formation with an orientation-preserving transformation.
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2 The Disk Model of the Hyperbolic Plane

2.1 Inversion of the Riemann Sphere in the Unit Circle

Let D denote the open unit disk in the complex plane C, and in the Riemann
sphere, defined so that

D = {z ∈ C : |z| < 1}

and let S denote the unit circle in the complex plane C, and in the Riemann
sphere, defined so that

S = {z ∈ C : |z| = 1}
We define the inversion Ω of the Riemann sphere in the circle S bounding the
open unit disk D to be the transformation of the Riemann sphere defined
so that Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z. Then Ω(z) = z for all z ∈ S, and the composition Ω ◦ Ω of the
inversion Ω with itself is the identity transformation of the Riemann sphere.
Moreover Ω maps the open unit disk D into the region of the Riemann sphere
that lies outside the unit circle S.

Lemma 2.1 Let µ be a Möbius transformation of the Riemann sphere, and
let Ω be the inversion of the Riemann sphere in the unit circle, defined so that
Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex numbers z.
Also let a, b, c and d be complex coefficients determined so that

µ(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0. Then Ω ◦ µ ◦ Ω is also a
Möbius transformation, and moreover

Ω(µ(Ω(z))) =
c+ dz

a+ bz

for all complex numbers z ∈ C for which a+ bz 6= 0 and c+ dz 6= 0.

Proof It follows from the definition of Möbius transformations that there
exist complex numbers a, b, c and d such that

µ(z) =
az + b

cz + d
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for all complex numbers z for which cz + d 6= 0. Then

Ω(µ(Ω(z))) = Ω

a1

z
+ b

c
1

z
+ d

 = Ω

(
a+ bz

c+ dz

)
=
c+ dz

a+ bz

for all z ∈ C for which z 6= 0, c+ dz 6= 0 and a+ bz 6= 0. Also

Ω(µ(Ω(0))) = Ω(µ(∞)) = Ω
(a
c

)
=
c

a

provided that a 6= 0 and c 6= 0,

Ω(µ(Ω(0))) = Ω(µ(∞)) = Ω(∞) = 0 when c = 0,

Ω(µ(Ω(0))) = Ω(µ(∞)) = Ω(0) =∞ when a = 0,

Ω

(
µ

(
Ω

(
− c
d

)))
= Ω

(
µ

(
−d
c

))
= Ω(∞) = 0,

provided that c 6= 0 and d 6= 0, and

Ω

(
µ

(
Ω

(
−a
b

)))
= Ω

(
µ

(
− b
a

))
= Ω(0) =∞

provided that a 6= 0 and b 6= 0.
Now the definition of Möbius transformations requires that ad− bc 6= 0.

Consequently c 6= 0 when d = 0, and a 6= 0 when b = 0. We have therefore
determined the image of each element of the Riemann sphere under the
composition map Ω ◦ µ ◦ Ω, and can now conclude that this composition
map Ω◦µ◦Ω is indeed a Möbius transformation, and that it is characterized
by the property that

Ω(µ(Ω(z)) =
c+ dz

a+ bz

for all complex numbers z ∈ C for which a + bz 6= 0 and c + dz 6= 0, as
required.

Proposition 2.2 Let µ be a Möbius transformation of the Riemann sphere,
let D be the open unit disk in the complex plane, where

D = {z ∈ C : |z| < 1}
and let Ω be the inversion of the Riemann sphere in the unit circle that is
defined so that

Ω(0) =∞, Ω(∞) = 0 and Ω(z) =
1

z
for all z ∈ C \ {0}.

Then the Möbius transformation µ maps the unit disk D onto itself if and
only if both of the following two conditions are satisfied:
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(i) Ω ◦ µ = µ ◦ Ω;

(ii) there exists at least one z ∈ D for which µ(z) ∈ D.

Proof First suppose that the Möbius transformation µ maps the unit disk D
onto itself. Let z be a complex number satisfying |z| = 1. Then tz ∈ D
for all real numbers t satisfying 0 ≤ t < 1, and consequently |µ(tz)| <
1 for all real numbers t satisfying 0 ≤ t < 1. The continuity of Möbius
transformations then ensures that |µ(z)| ≤ 1. Now if it were the case that
|µ(z)| < 1 then there would exist w ∈ D for which µ(w) = µ(z), because
the Möbius transformation µ maps the unit disk D onto itself. But this is
not possible, because if it were, then two distinct z and w complex numbers
would be mapped by µ to the same complex number, contradicting the fact
that Möbius transformations are invertible transformations of the Riemann
sphere. Thus the Möbius transformation µ maps the unit circle into itself.

Now let µ̂ = Ω◦µ◦Ω. Then µ̂ is a Möbius transformation of the Riemann
sphere (Lemma 2.1). Moreover Ω(z) = z and |µ(z)| = 1 for all complex num-
bers z satisfying |z| = 1, and therefore µ̂(z) = µ(z) for all complex numbers z
satisfying |z| = 1. Now two distinct Möbius transformations cannot coincide
at three or more points of the Riemann sphere. (see Proposition 1.9). It
follows therefore that µ̂ = µ. Consequently Ω ◦ µ = µ ◦ Ω. It now follows
directly that any Möbius transformation that maps the unit disk D onto
itself must satisfy conditions (i) and (ii) in the statement of the proposition.

Conversely, suppose that Möbius transformation µ of the Riemann sphere
satisfies conditions (i) and (ii) in the statement of the proposition. Then
Ω◦µ = µ◦Ω. Let z be a complex number satisfying |z| 6= 1. Then Ω(z) 6= z.
It follows that µ(Ω(z)) 6= µ(z), because Möbius transformations are invertible
transformations of the Riemann sphere, and therefore Ω(µ(z)) 6= µ(z), from
which it follows that |µ(z)| 6= 1. Consequently no complex number belonging
to the open unit disk D is mapped by the Möbius transformation D to a point
that lies on the unit circle. It follows that if one endpoint of a straight line
segment or circular arc contained in the open disk D is mapped by µ into D,
then the same must be true of the other endpoint of that straight line segment
or circular arc.

Now the complex numbers belonging to the unit disk D can be joined to
one another by straight line segments. Moreover condition (ii) in the state-
ment of the proposition ensures that at least one complex number belonging
to the unit disk D is mapped by the Möbius transformation µ into the unit
disk D. Consequently the unit disk is mapped into itself by the Möbius
transformation µ.

Moreover if the Möbius transformation µ has the property that Ω ◦ µ =

36



µ ◦ Ω then

Ω ◦ µ−1 = µ−1 ◦ µ ◦ Ω ◦ µ−1 = µ−1 ◦ Ω ◦ µ ◦ µ−1 = µ−1 ◦ Ω,

and consequently the inverse µ−1 of the Möbius transformation µ also satisfies
(i) and (ii) in the statement of the proposition, and therefore maps the open
unit disk D into itself. It follows that if the Möbius transformation µ satisfies
conditions (i) and (ii) then it must map the open unit disk D onto itself, as
required.

Corollary 2.3 Let µ be a Möbius transformation of the Riemann sphere,
and let S be the unit circle consisting of all complex numbers z for which
|z| = 1. Suppose that µ(S) ⊂ S and that |µ(0)| < 1. Then the Möbius
transformation µ maps the open unit disk onto itself. Moreover Ω◦µ = µ◦Ω,
where Ω is the inversion of the Riemann sphere in the unit circle S, defined
so that Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z.

Proof Let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is a Möbius transformation of the Rie-
mann sphere (Lemma 2.1), and moreover µ̂(z) = µ(z) for all z ∈ S, because
µ(S) ⊂ S and Ω(z) = z for all z ∈ S. Now two distinct Möbius transforma-
tions cannot coincide at three or more points of the Riemann sphere. (see
Proposition 1.9). It follows that µ̂ = µ, and therefore Ω ◦ µ = µ ◦ Ω. The
required result now follows on applying Proposition 2.2.

Lemma 2.4 Given distinct complex numbers z1 and z2, where |z1| = |z2| =
1, there exists a Möbius transformation µ of the Riemann sphere mapping
the unit disk D onto itself for which µ(z1) = −1 and µ(z2) = 1.

Proof Choose a complex number z3 distinct from z1 and z2 for which |z3| =
1. Then there exists a unique Möbius transformation µ1 with the proper-
ties that µ1(z1) = −1, µ1(z2) = 1 and µ1(z3) = i. Möbius transformations
map circles to circles, and, given any three distinct complex numbers that
are not collinear, there exists exactly one circle in the complex plane pass-
ing through all three of these complex numbers. Consequently the Möbius
transformation µ1 must map the unit circle onto itself. If |µ1(0)| < 0 let
the Möbius transformation µ be identical to µ1; if |µ1(0)| > 1 or µ1(0) =∞
let the Möbius transformation µ be defined so that µ(z) = 1/µ1(z) for all
complex numbers z for which µ1(z) 6= 0. Then µ maps the unit circle onto
itself, µ(z1) = −1, µ(z2) = 1 and |µ(0)| < 1. Then µ(D) must map the open
unit disk onto itself (see Corollary 2.3). The Möbius transformation µ then
has the required properties.
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Proposition 2.5 Let a and b be complex numbers satisfying |b| < |a|, and
let µ be the Möbius transformation of the Riemann sphere defined so that

µ(z) =
az + b

b z + a
whenever b z + a 6= 0,

µ(−a/b) = ∞ and µ(∞) = a/b in cases where b 6= 0 and µ(∞) = ∞ in
cases where b = 0. Then |µ(z)| < 1 whenever |z| < 1, |µ(z)| = 1 whenever
|z| = 1, and |µ(z)| > 1 whenever |z| > 1 and bz + a 6= 0. Moreover the
Möbius transformation µ maps the open unit disk {z ∈ C : |z| < 1} onto
itself.

Proof Calculating, we find that

|bz + a|2 − |az + b|2 = (bz + a)(bz + a)− (az + b)(a z + b)

= |b|2|z|2 + |a|2 + a bz + ab z

− |a|2|z|2 − |b|2 − a bz − ab z
= (|a|2 − |b|2)(1− |z|2) > 0.

Consequently |µ(z)| < 1 whenever |z| < 1, |µ(z)| = 1 whenever |z| = 1 and
|µ(z) > 1 whenever |z| > 1 and bz + a 6= 0.

Now the inverse µ−1 of the Möbius transformation µ is characterized by
the property that

µ−1(z) =
az − b
−bz + a

for all complex numbers z for which −bz+a 6= 0 (see Corollary 1.6). Because
the coefficients of this Möbius transformation µ−1 have properties analogous
to those of the Möbius transformation µ, we can conclude that µ−1 maps the
open unit disk into itself, and therefore µ maps the open unit disk onto itself,
as required.

Corollary 2.6 Let w be a complex number satisfying |w| < 1, and let µw be
the Möbius transformation of the Riemann sphere defined so that µw(1/w) =
∞, µ(∞) = −1/w and

µw(z) =
z − w

1− w z
for all complex numbers z distinct from 1/w. Then the Möbius transforma-
tion µw maps the open unit disk onto itself. Moreover

µw(tw) =
t− 1

1− |w|2t w

for all real numbers t distinct from 1/|w|2, and consequently the diameter of
the unit circle passing through 0 and w is mapped onto itself by the Möbius
transformation µw. In particular µw(w) = 0 and µw(0) = −w.
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Proposition 2.7 Let µ be a Möbius transformation of the Riemann sphere
that maps the unit circle {z ∈ C : |z| = 1} into itself, whilst mapping the
unit disk {z ∈ C : |z| < 1} into itself. Then there exist complex numbers a
and b, where |b| < |a|, such that

µ(z) =
az + b

bz + a
for all z ∈ C for which az + b 6= 0.

Proof The Möbius transformation µ maps the unit circle into itself. It
follows from Proposition 2.2 that Ω ◦µ = µ ◦Ω, where Ω(0) =∞, Ω(∞) = 0
and Ω(z) = 1/z for all non-zero complex numbers z. Consequently µ =
Ω ◦ Ω ◦ µ = Ω ◦ µ ◦ Ω because the composition of the inversion Ω with itself
is the identity transformation of the Riemann sphere. Let a1, b1, c1 and d1
be complex coefficients determined so that

µ(z) =
a1z + b1
c1z + d1

whenever c1z + d1 6= 0.

Then the identity µ = Ω ◦ µ ◦ Ω ensures that

a1z + b1
c1z + d1

=
d1z + c1

b1z + a1

for all complex numbers z for which a1z+ b1 6= 0, a1 + b1z 6= 0, c1z+ d1 6= 0,
and c1 + d1z 6= 0 (see Lemma 2.1). Consequently there exists some non-zero
complex number ω with the property that a1 = ωd1, b1 = ωc1, c1 = ωb1 and
d1 = ωa1 (see Proposition 1.10). It then follows that

a1 d1 = ω2a1d1.

But
|a1 d1| = |a1d1|.

It follows that |ω2| = 1, and therefore |ω| = 1. Accordingly a real number θ
can be found so that

ω = cos 2θ +
√
−1 sin 2θ.

Let
η = cos θ +

√
−1 sin θ.

It then follows from De Moivre’s Theorem that η2 = ω. Now η2 η2 = |η|4 = 1.
It follows that η2ω = 1. Let a = ηa1 and b = ηb1, c = ηc1 and d = ηd1. Then

µ(z) =
az + b

cz + d
whenever cz + d 6= 0.
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Also a1 = ηa, b1 = ηb, c1 = ηc and d1 = ηd. Consequently

d = η d1 = ηωa1 = η2ωa = a

and
c = η c1 = ηωb1 = η2ωb = b.

Accordingly

µ(z) =
az + b

b z + a
whenever b z + a 6= 0.

Moreover |µ(0)| < 1, because µ maps the unit disk into itself. consequently
|b| < |a|, as required.

2.2 The Poincaré Distance Function on the Unit Disk

Definition Let D be the open unit disk in the complex plane C, defined so
that

D = {z ∈ C : |z| < 1}.
The Poincaré distance function ρ on D is defined so that

ρ(z, w) = log

( |1− w z|+ |z − w|
|1− w z| − |z − w|

)
for all complex numbers z and w satisfying |z| < 1 and |w| < 1.

Note that
|z − w|
|1− w z| < 1

for all complex numbers z and w satisfying |z| < 1 and |w| < 1. (This
follows directly from Corollary 2.6). Consequently the Poincaré distance
ρ(z, w) between any two points z and w of the unit disk is a well-defined
positive real-number.

Lemma 2.8 Let s and t be real numbers satisfying −1 < s < t < 1. Then
the Poincaré distance, in the unit disk, between s and t is given by the formula

ρ(s, t) = log

(
1 + t

1− t

)
− log

(
1 + s

1− s

)
.
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Proof Evaluating, and noting that 1− st > 0 (because |s| < 1 and |t| < 1)
and |t− s| = t− s (since s < t by assumption), we find that

ρ(s, t) = log

( |1− st|+ |t− s|
|1− st| − |t− s|

)
= log

(
1− st+ t− s
1− st+ s− t

)
= log

(
(1− s)(1 + t)

(1 + s)(1− t)

)
= log

(
1 + t

1− t

)
− log

(
1 + s

1− s

)
,

as required.

Proposition 2.9 Let ρ be the Poincaré distance function on the open unit
disk D, and let δ be a positive real number. Then

{z ∈ D : ρ(z, 0) = δ} = {z ∈ D : |z| = R},
where

R =
eδ − 1

eδ + 1
.

Proof It follows from the definition of Poincaré distance function that all
complex numbers z satisfying ρ(z, 0) = δ are equidistant from zero. They
therefore constitute a circle centred on zero. It remains to determine the
radius of that circle. Now it follows, on applying Lemma 2.8, that

δ = log

(
1 +R

1−R

)
.

Consequently

eδ − 1 =
2R

1−R, eδ + 1 =
2

1−R,
and therefore

R =
eδ − 1

eδ + 1
,

as required.

The Poincaré distance function ρ on the unit disk D has the property
that ρ(z, w) = ρ(w, z) for all z, w ∈ D. It therefore follows immediately from
Lemma 2.8 that

ρ(s, t) =

∣∣∣∣log

(
1 + t

1− t

)
− log

(
1 + s

1− s

)∣∣∣∣
for all real numbers s and t satisfying −1 < s < 1 and −1 < t < 1.
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Lemma 2.10 Let z and w be complex numbers, and let Ω be the inversion of
the Riemann sphere in the unit circle, defined so that Ω(0) =∞, Ω(∞) = 0
and Ω(z) = 1/z for all non-zero complex numbers z. Then

(z,Ω(z);w,Ω(w)) =

∣∣∣∣ z − w1− wz

∣∣∣∣2
for all complex numbers z and w with the exception of those pairs z, w for
which |z| = 1 and z = w.

Proof Let z and w be complex numbers. Suppose that it is not the case that
|z| = 1 and z = w. Examination of possible cases shows that it is not then
possible for three of the complex numbers z, Ω(z), w and Ω(w) to coincide
with one another. Indeed if |z| 6= 1 and |w| 6= 1 then exactly two of the
points z,Ω(z), w,Ω(w) will lie in the unit disk consisting of those complex
numbers whose modulus is less than one, and therefore it is not possible for
any three of the four points to coincide with one another. If |z| = 1, it would
only be possible for three of the points z,Ω(z), w,Ω(w) to coincide with one
another if it were also the case that w = z. Consequently the cross-ratio
(z,Ω(z), w,Ω(w) is defined in all cases with the exception of those where
|z| = 1 and w = z.

Now let u1 = z, v1 = 1, u2 = 1, v2 = z, u3 = w, v3 = 1, u4 = 1, v4 = w.
Then u1/v1 = z, u2/v2 = Ω(z), u3/v3 = w and u4/v4 = Ω(w). The definition
of cross-ratio then ensures that

(z,Ω(z);w,Ω(w)) =
(u1v3 − u3v1)(u2v4 − u4v2)
(u2v3 − u3v2)(u1v4 − u4v1)

=
(z − w)(w − z)

(1− wz)(zw − 1)

=

∣∣∣∣ z − w1− wz

∣∣∣∣2 ,
as required.

Proposition 2.11 Let z and w be complex numbers satisfying |z| < 1 and
|w| < 1, and let ρ(z, w) denote the Poincaré distance between z and w. Then

ρ(z, w) = log

(
1 +

√
(z,Ω(z);w,Ω(w))

1−
√

(z,Ω(z);w,Ω(w))

)
,

where Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z.
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Proof Evaluating, and applying the result of Lemma 2.10, we find that

ρ(z, w) = log

( |1− w z|+ |z − w|
|1− w z| − |z − w|

)

= log

1 +
|z − w|
|1− w z|

1− |z − w||1− w z|


= log

(
1 +

√
(z,Ω(z);w,Ω(w))

1−
√

(z,Ω(z);w,Ω(w))

)
,

as required.

Corollary 2.12 Let z and w be complex numbers satisfying |z| < 1 and
|w| < 1, and let ρ(z, w) denote the Poincaré distance between z and w.
Then the cross-ratio (z,Ω(z);w,Ω(w)) is expressed in terms of the Poincaré
distance according to the formula

(z,Ω(z);w,Ω(w)) =

(
eρ(z,w) − 1

eρ(z,w) + 1

)2

.

Proof Let q = (z,Ω(z);w,Ω(w)) and s = ρ(z, w). It follows from Proposi-
tion 2.11 that

s = log

(
1 +
√
q

1−√q

)
.

Consequently

es − 1 =
2
√
q

1−√q , es + 1 =
2

1−√q ,

and thus

q =

(
es − 1

es + 1

)2

.

The result follows.

Definition A transformation ϕ that maps the open unit disk D in the com-
plex plane onto itself is said to be an isometry (with respect to Poincaré
distance) if

ρ
(
ϕ(z), ϕ(w)

)
= ρ(z, w)

for all complex numbers z and w in the open unit disk D, where ρ denotes
the Poincaré distance function on D.
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Proposition 2.13 Let D be the open unit disk in the complex plane, defined
so that D = {z ∈ C : |z| < 1}. Then every Möbius transformation of the
Riemann sphere that maps the open unit disk D onto itself is an isometry
with respect to the Poincaré distance function on D.

Proof The Möbius transformation µ has the property that µ ◦ Ω = Ω ◦ µ,
because it maps the unit disk onto itself (see Proposition 2.2). Moreover the
values of cross-ratios are preserved under the action of Möbius transforma-
tions (Proposition 1.18). Consequently(

µ(z),Ω(µ(z));µ(w),Ω(µ(w))
)

=
(
µ(z), µ(Ω(z));µ(w), µ(Ω(w))

)
=

(
z,Ω(z);w,Ω(w)

)
.

The required result therefore follows immediately from an identity previously
established (Proposition 2.11) expressing the Poincaré distance ρ(z, w) in
terms of the cross-ratio (z,Ω(z);w,Ω(w)).

Proposition 2.14 Let z1, w1, z2 and w2 be elements of the open unit disk
D, where

D = {z ∈ C : |z| < 1}.
Suppose that ρ(z1, w1) = ρ(z2, w2), where ρ denotes the Poincaré distance
function on D. Then there exists a Möbius transformation µ mapping the
open unit disk D onto itself with the property that µ(z1) = z2 and µ(w1) = w2.

Proof The values of the cross-ratios

(z1,Ω(z1);w1,Ω(w1)) and (z2,Ω(z2);w2,Ω(w2))

are determined by the values of the Poincaré distances ρ(z1, w1) and ρ(z2, w2)
respectively (see Corollary 2.12). Now µ(z1) = z2 and µ(w1) = w2. Conse-
quently

(z1,Ω(z1);w1,Ω(w1)) = (z2,Ω(z2);w2,Ω(w2)).

It follows from this that there exists a unique Möbius transformation µ
with the properties that µ(z1) = z2, µ(Ω(z1)) = Ω(z2), µ(w1) = w2 and
µ(Ω(w1)) = Ω(w2), (see Proposition 1.18).

Now let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is itself a Möbius transformation
(Lemma 2.1) Then

µ̂(z1) = Ω(µ(Ω(z1))) = Ω(Ω(z2)) = z2,

µ̂(Ω(z1)) = Ω(µ(Ω(Ω(z1)))) = Ω(µ(z1)) = Ω(z2),

µ̂(w1) = Ω(µ(Ω(w1))) = Ω(Ω(w2)) = w2,

µ̂(Ω(w1)) = Ω(µ(Ω(Ω(w1)))) = Ω(µ(w1)) = Ω(w2).
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Consequently the Möbius transformations µ and µ̂ both map z1, Ω(z1), w1

and Ω(w1) to z2, Ω(z2), w2 and Ω(w2) respectively. But two distinct Möbius
transformations cannot coincide at three or more points of the Riemann
sphere. (see Proposition 1.9). Consequently µ̂ = µ, and thus Ω ◦ µ = µ ◦ Ω.
Moreover elements z1 and z2 of the open unit disk D are mapped into D.
Applying Proposition 2.2, we conclude that the Möbius transformation µ
maps the open unit disk D onto itself. This completes the proof.

Lemma 2.15 Let ρ be the Poincaré distance function on the open unit
disk D in the complex plane, let t be a real number satisfying 0 < t < 1,
and let w be a complex number distinct from 0 and t for which |w| < 1. Then

ρ(0, w) ≤ ρ(0, t) + ρ(t, w).

Moreover ρ(0, w) = ρ(0, t) + ρ(t, w) if and only if the complex number w is a
positive real number for which t < w < 1.

Proof We first note that

ρ(0, t) = log

(
1 + t

1− t

)
(see Lemma 2.8).

Given a complex number w in the unit disk that is distinct from 0 and t,
let real numbers s and u between −1 and 1 be determined so that

log

(
1 + t

1− t

)
− log

(
1 + s

1− s

)
= ρ(t, w)

and

log

(
1 + u

1− u

)
− log

(
1 + t

1− t

)
= ρ(t, w).

Then −1 < −u < s < t < u < 1 and

ρ(s, t) = ρ(t, u) = ρ(t, w)

(again applying Lemma 2.8).
Let µ0 be the Möbius transformation of the Riemann sphere defined such

that µ0(−1/t) =∞, µ0(∞) = 1/t and µ0(z) = (z+t)/(1+tz) for all complex
numbers z distinct from −1/t. Then the Möbius transformation µ0 maps the
unit disk onto itself (Corollary 2.6), is an isometry of the Poincaré distance
function (Proposition 2.13), cannot map a circle contained within the unit
disk onto any straight line, and therefore maps circles contained within the
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unit disk onto circles within that disk (Proposition 1.11). Moreover the
Möbius transformation µ0 has the property that µ0(z) = µ0(z) for all complex
numbers z and therefore must map circles within the unit disk that are
centred on points of the real line to circles that are also centred on points of
the real line.

Let
C0 = {z ∈ D : ρ(0, z) = ρ(t, w)}.

Then C0 is a circle contained in the unit disk (Proposition 2.9), and µ0(C0) =
C, where

C = {z ∈ D : ρ(t, z) = ρ(t, w)}.
Consequently the subset C of the unit disk D, being the image of a circle
centred on zero under the Möbius transformation µ0, must be a circle con-
tained within the unit disk and centred on a point of the complex plane that
belongs to the open interval in the real line bounded by −1 and −1.

Now s ∈ C and u ∈ C. It follows that the centre of the circle C is 1
2
(u+s),

and the radius of the circle C is circle C is 1
2
(u− s). Consequently all points

of the circle C other than u lie inside the circle centred on the origin that
passes through the point u. The latter circle is the circle

{z ∈ C : ρ(0, z) = ρ(0, t) + ρ(t, w)}.

Moreover w lies on the circle C. It follows that

ρ(0, w) ≤ ρ(0, t) + ρ(t, w).

Moreover
ρ(0, w) = ρ(0, t) + ρ(t, w)

if and only if w is a real number satisfying t < w < 1, as required.

Proposition 2.16 (Triangle Inequality for Poincaré Distance) The
Poincaré distance function ρ on the open unit disk D has the property that

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3)

for all complex numbers z1, z2 and z3 belonging to the disk D.

Proof This inequality follows directly in cases where any two of z1, z2 and
z3 coincide with one another. Accordingly it remains to prove that the in-
equality holds in cases where these three complex numbers are distinct.

Accordingly let z1, z2 and z3 be any three distinct points of the unit
disk D. Then there exists a Möbius transformation µ that maps the unit
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disk onto itself and satisfies µ(z1) = 0 and µ(z2) = t for some real number t
satisfying the inequalities 0 < t < 1 (see Proposition 2.14). Let w = µ(z3).
We have already shown that

ρ(0, w) ≤ ρ(0, t) + ρ(t, w).

But the Möbius transformation µ is an isometry of the Poincaré distance
function (Proposition 2.13). Consequently

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3).

as required.

2.3 Geodesics in the Open Unit Disk

Definition We say that an (open) straight line segment or circular arc within
the open unit disk {z ∈ C : |z| < 1} is complete if it is the intersection of
the open unit disk with the full circle or straight line in the complex plane
of which it forms part.

A complete straight line segment or circular arc in the open unit disk has
no endpoints in the open unit disk itself. However its closure has endpoints
that lie on the unit circle {z ∈ C : |z| = 1} that constitutes the boundary of
the open unit disk: the complete straight line segment or circular arc may
be said to join the endpoints of its closure in the complex plane.

Definition A straight line segment or circular arc Γ in the open unit disk
{z ∈ C : |z| < 1} is said to be a geodesic if it has the property that

ρ(z1, z3) = ρ(z1, z2) + ρ(z2, z3)

for all complex numbers z1, z2 and z3 positioned on the straight line segment
or circular arc Γ so that z2 occurs between z1 and z3.

Definition A complete geodesic in the open unit disk is a geodesic in that
disk which is the intersection of the open unit disk with a full straight line
or circle in the complex plane.

Definition A geodesic ray in the open unit disk is a geodesic in that disk
which is the intersection of the open unit disk with a closed straight line
segment or circular arc in the complex plane for which one endpoint lies in
the open unit disk and the other lies outside the open unit disk.
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Definition A geodesic segment in the open unit disk is a geodesic that is
also a closed straight line segment or circular arc contained in the open unit
disk both of whose endpoints lie in the open unit disk.

Definition Given a point η on the unit circle in the complex plane, the
diameter of the unit disk that joins −η and η is the open straight line
segment consisting of those complex numbers that are of the form tη for
some real number t satisfying the inequalities −1 < t < 1.

Proposition 2.17 Let D be the open unit disk in the complex plane, Then
the diameter of the disk D obtained on intersecting the disk D with the real
axis of the complex plane is a complete geodesic.

Proof Let I be the set of real numbers t satisfying |t| < 1 and let t1, t2
and t3 be real numbers satisfying −1 < t1 < t2 < t3 < 1. It follows from
Lemma 2.8 that

ρ(t1, t3) = log

(
1 + t3
1− t3

)
− log

(
1 + t1
1− t1

)
= log

(
1 + t3
1− t3

)
− log

(
1 + t2
1− t2

)
+ log

(
1 + t2
1− t2

)
− log

(
1 + t1
1− t1

)
= ρ(t1, t2) + ρ(t2, t3).

Thus I is indeed a geodesic in the open unit disk D.

Proposition 2.18 Given any real number t satisfying 0 < t < 1, the unique
complete geodesic in the open unit disk that passes through both 0 and t is
the diameter of the disk obtained on intersecting the disk with the real axis
of the complex plane.

Proof Let Γ be a complete geodesic in the open unit disk D that passes
through 0 and t, and let z be chosen on Γ so that t lies between 0 and z.
Then ρ(0, z) = ρ(0, t)+ρ(t, z), where ρ denotes the Poincaré distance function
on D. Applying Lemma 2.15, we see that z must be a real number between
t and 1. Consequently the three points 0, t and z on Γ are real numbers.
Now the geodesic Γ must be the intersection of the open unit disk D with a
straight line or circle in the complex plane. It follows that Γ must coincide
with the intersection of the open unit disk with the real axis of the complex
plane. The result follows.
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Proposition 2.19 Möbius transformations mapping the open unit disk onto
itself map geodesics onto geodesics.

Proof Let Γ be a geodesic in the open unit disk D, where D = {z ∈ C :
|z| < 1}, and let µ be a Möbius transformation that maps the open unit
disk D onto itself. Let w1, w2 and w3 be complex numbers positioned on
the image µ(Γ) of the geodesic Γ so that w2 occurs on µ(Γ) between w1 and
w3. Then there exist complex numbers z1, z2 and z3 in the open unit disk D
lying on the geodesic Γ for which µ(z1) = w1, µ(z2) = w2 and µ(z3) = w3.
Moreover z2 is positioned on Γ between z1 and z3. The definition of geodesics
then ensures that

ρ(z1, z3) = ρ(z1, z2) + ρ(z2, z3)

Now ρ(w1, w2), ρ(w2, w3) and ρ(w1, w3) are equal to ρ(z1, z2), ρ(z2, z3) and
ρ(z1, z3) respectively, because Möbius transformations that map the open
unit disk onto itself are isometries with respect to Poincaré distance (see
Proposition 2.13) Consequently

ρ(w1, w3) = ρ(w1, w2) + ρ(w2, w3).

Thus the line segment or circular arc µ(Γ) is a geodesic, as required.

Proposition 2.20 Let A be a complete straight line segment or circular arc
in the open unit disk D. Suppose that there are complex numbers z1, z2 and
z3 on A, where z2 lies between z1 and z3, such that

ρ(z1, z3) = ρ(z1, z2) + ρ(z2, z3).

Then A is a complete geodesic in the open unit disk D, and moreover there
exists a Möbius transformation µ with the property that µ(A) is the diameter
of the open unit disk that joins −1 and 1.

Proof Let

t =
eδ − 1

eδ + 1
, where δ = ρ(z1, z2).

Then ρ(0, t) = ρ(z1, z2). (see Proposition 2.9). Then there exists a Möbius
transformation µ of the Riemann sphere mapping the open unit disk D onto
itself which has the properties that µ(z1) = 0 and µ(z2) = t. (see Proposi-
tion 2.14). Let w = µ(z3). Then

ρ(0, w) = ρ(0, t) + ρ(t, w),

because the Möbius transformation µ is an isometry of the Poincaré distance
function ρ. It now follows from Lemma 2.15 that w is a real number and
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t ≤ w < 1. The complex numbers z1, z2 and z3 therefore all lie on the straight
line or circle in the complex plane that is the image of the real axis under the
inverse µ−1 of the Möbius transformation µ. But two distinct straight lines
or circles cannot pass through the three points z1, z2 and z3. Consequently
the complete arc A is contained in the image of the real axis under µ−1, and
therefore the Möbius transformation µ must map the complete arc onto the
diameter of the open unit disk that joins −1 and 1. Moreover A must itself be
a geodesic, because Möbius transformations that map the open unit disk D
onto itself map geodesics onto geodesics Proposition 2.19. This completes
the proof.

Corollary 2.21 A complete straight line segment or circular arc A in the
open unit disk D is a complete geodesic if and only if there exists a Möbius
transformation µ that maps the straight line segment or circular arc onto a
diameter of the unit circle.

Proof If A is a complete geodesic then a direct application of Proposi-
tion 2.20 ensures that existence of a Möbius transformation mapping that
complete geodesic onto the diameter of the disk D that joins −1 and 1.

Conversely if some Möbius transformation maps a complete straight line
segment or circular arc onto a diameter, then that Möbius transformation
can be composed with a rotation of the open unit disk about zero so as to
obtain a Möbius transformation mapping the complete straight line segment
or circular arc onto the diameter of the disk that is the intersection of the
disk with the real axis of the complex plane. That diameter is a geodesic (see
Proposition 2.17), and Möbius transformations map geodesics onto geodesics
(Proposition 2.19). Consequently A must itself be a geodesic, as required.

Proposition 2.22 Given two complete geodesics in the open unit disk D,
there exists a Möbius transformation of the Riemann sphere that maps the
open unit disk D onto itself and maps one complete geodesic onto the other.

Proof Let Γ1 and Γ2 be complete geodesics in the open unit disk D, and let
I be the geodesic joining −1 and 1 that is the intersection of the disk D with
the real axis of the complex plane. It follows from Proposition 2.20 that there
exist Möbius transformations µ1 and µ2 of the Riemann sphere that map the
open unit disk onto itself, where µ1 maps Γ1 onto I and µ2 maps Γ2 onto I.
Then µ−12 ◦ µ1 is a Möbius transformation of the Riemann sphere that maps
the open unit disk D onto itself and also maps the complete geodesic Γ1 onto
the complete geodesic Γ2, as required.
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Proposition 2.23 Given two distinct complex numbers w1 and w2 belonging
to the open unit disk in the complex plane, there exists a unique complete
geodesic in the open unit disk that passes through both w1 and w2.

Proof Let

t =

∣∣∣∣ w2 − w1

1− w1w2

∣∣∣∣ .
Then there exists a complex number η satisfying |η| = 1 for which t = µ(w2),
where µ is the Möbius transformation of the Riemann sphere that satisfies

µ(z) =
η(z − w1)

1− w1z
.

for all complex numbers z satisfying 1−w1z 6= 0. Then µ maps the open unit
disk onto itself and also maps w1 and w2 to 0 and t respectively. Let Γ =
{z ∈ D : µ(z) ∈ I}, where I is the diameter of the open unit disk consisting
of all real numbers lying between −1 and 1. The Möbius transformation µ
maps Γ onto the diameter I of the disk. Consequently Γ must be a geodesic
in the unit disk (Corollary 2.21). This geodesic passes through w1 and w2.

We now show that Γ is the unique complete geodesic in the open unit disk
that passes through w1 and w2. Let Γ′ be a complete geodesic in the open unit
disk that passes through w1 and w2. Then µ(Γ′) is also a complete geodesic
in the open unit disk, because Möbius transformations that map the open
unit disk onto itself map geodesics onto geodesics (Proposition 2.19). But the
distinct real numbers 0 and t lie on µ(Γ′). It follows from Proposition 2.18
that µ(Γ′) is the diameter I of the open unit disk consisting of all real numbers
between −1 and 1. Consequently Γ′ ⊂ Γ. The completeness of Γ′ then
ensures that Γ′ coincides with Γ. Thus the complete geodesic Γ is indeed
uniquely determined by w1 and w2, as required.

Proposition 2.24 A complete straight line segment or circular arc in the
unit disk is a complete geodesic if and only if the straight line or circle in the
complex plane of which it forms part intersects the unit circle at right angles.

Proof A complete straight line segment or circular arc A in the open unit
disk D is a complete geodesic if and only if there exists a Möbius transfor-
mation µ that maps the arc onto a diameter of the unit circle (see Corol-
lary 2.21).

The diameters of a circle intersect the circle at right angles, and angles
between intersecting straight lines and circles are preserved under the action
of Möbius transformations (see Proposition 1.27). Consequently if a complete
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circular arc is a geodesic then it is part of a circle that intersects the unit
circle at right angles.

Conversely suppose that a complete circular arc A in the unit circle forms
part of a circle that intersects the unit circle at right angles at z1 and z2,
where |z1| = 1 and |z2| = 1. There then exists a Möbius transformation µ
mapping the unit disk D onto itself for which µ(z1) = −1 and µ(z2) = 1
(see Lemma 2.4). The image µ(A) of the circular arc A under µ then in-
tersects the boundary circle at right angles at −1 and 1, because Möbius
transformations are angle-preserving. But Möbius transformations map cir-
cular arcs to circular arcs or straight lines. It follows that µ(A) must be the
diameter of the unit circle that is the intersection of the open unit disk with
the real axis. Consequently the complete circular arc A must be a geodesic
(Corollary 2.21). The result follows.

2.4 The Group of Hyperbolic Motions of the Disk

Definition LetX be a subset of the complex plane. A collection of invertible
transformations of the set X is said to be a transformation group acting on
the set X if the following conditions are satisfied:

(i) the identity transformation belongs to the collection;

(ii) any composition of transformations belonging to the collection must
itself belong to the collection;

(iii) the inverse of any transformation belonging to the collection must itself
belong to the collection.

The collection of all Möbius transformations of the Riemann sphere that
map the open unit disk {z ∈ C : |z| < 1} onto itself is a transformation group
acting on the open unit disk. Indeed the identity transformation is a Möbius
transformation mapping the open unit disk onto itself, the composition of
any two Möbius transformations that each map the open unit disk onto itself
must also map the open unit disk onto itself, and the inverse of any Möbius
transformation that maps the open unit disk onto itself must also map the
open unit disk onto itself.

Definition Let D be the open unit disk in the complex plane, defined so
that D = {z ∈ C : |z| < 1}, and let κ:D → D be the transformation of
the open unit disk defined so that κ(z) = z for all z ∈ D, where z denotes
the complex conjugate of the complex number z. A transformation of the
open unit disk is said to be a hyperbolic motion of the unit disk if either
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it is a Möbius transformation mapping the unit disk D onto itself or else it
expressible as a composition of transformations of the form µ ◦ κ, where µ is
a Möbius transformation mapping the open unit disk onto itself.

Möbius transformations give rise to orientation-preserving transforma-
tions of the complex plane (see Proposition 1.28 and the discussion of orien-
tation-preserving and orientation-reversing transformations of the complex
plane that follows the proof of that proposition). Also the transformation
κ:D → D that maps each complex number z in D to its complex conjugate z
is orientation-reversing. Consequently a composition of two transformations
in which some Möbius transformation follows the complex conjugation trans-
formation κ is orientation-reversing.

Orientation-preserving hyperbolic motions are the analogues, in hyper-
bolic geometry, of transformations of the flat Euclidean plane that can be
represented as the composition of a rotation followed by a translation.

Orientation-reversing hyperbolic motions are the analogues, in hyperbolic
geometry, of reflections and glide reflections of the flat Euclidean plane.

Proposition 2.25 Let D be the open unit disk in the complex plane, con-
sisting of those complex numbers z that satisfy |z| < 1. Then, given any
orientation-preserving hyperbolic motion ϕ of the open unit disk D, there
exist complex numbers a and b, where |b| < |a|, such that

ϕ(z) =
az + b

b z + a
for all z ∈ D.

Similarly, given any orientation-reversing hyperbolic motion ϕ of the open
unit disk D, there exist complex numbers a and b, where |b| < |a| such that

ϕ(z) =
a z + b

b z + a
for all z ∈ D.

Proof This result follows directly on applying Proposition 2.7.

Proposition 2.26 The collection of all hyperbolic motions of the open unit
disk is a transformation group acting on the open unit disk.

Proof The identity transformation is a Möbius transformation that maps
the open unit disk onto itself and is thus a hyperbolic motion. Next let µ1

and µ2 be Möbius transformations that map the open unit disk onto itself,
Then κ◦µ2 ◦κ is also a Möbius transformation that maps the open unit disk
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onto itself. Indeed there exist complex numbers a2 and b2, where |b2| < |a2|,
such that

µ2(z) =
a2z + b2

b2 z + a2

for all complex numbers z for which b2 z+a2 6= 0 (see Proposition 2.7). Then

κ(µ2(κ(z))) =
a2z + b2
b2 z + a2

,

and therefore κ ◦ µ ◦ κ is also a Möbius transformation that maps the open
unit disk D onto itself. Now

µ1 ◦ (µ2 ◦ κ) = (µ1 ◦ µ2) ◦ κ, (µ1 ◦ κ) ◦ µ2 = (µ1 ◦ (κ ◦ µ2 ◦ κ)) ◦ κ

and
(µ1 ◦ κ) ◦ (µ2 ◦ κ) = µ1 ◦ (κ ◦ µ2 ◦ κ).

Moreover µ1 ◦ µ2 and µ1 ◦ (κ ◦ µ2 ◦ κ), being compositions of Möbius trans-
formations that map the open unit disk onto itself, are themselves Möbius
transformations that map the open unit disk onto itself. It follows from this
observation that any composition of hyperbolic motions of the open unit disk
is itself a hyperbolic motion of the open unit disk. Also

(µ2 ◦ κ)−1 = κ ◦ µ−12 = (κ ◦ µ−12 ◦ κ) ◦ κ,

and the inverse of any Möbius transformation that maps the open unit disk
onto itself must itself be a Möbius transformation that maps the open unit
disk onto itself. Consequently the inverse of any hyperbolic motion is itself a
hyperbolic motion. It follows that the collection of all hyperbolic motions of
the open unit disk is indeed a transformation group acting on the open unit
disk.

Proposition 2.27 Let Γ be a complete geodesic in the open unit disk D.
Then there exists an orientation-reversing hyperbolic motion ϕ with the prop-
erty that ϕ(z) = z for all complex numbers z that lie on the geodesic Γ and
also those points of the open unit disk D that lie on one side of the geodesic Γ
are mapped by points that lie on the other side of Γ.

Proof Let I be the set of real numbers t that satisfy the inequalities −1 <
t < 1. Then I is a complete geodesic in the open unit disk D. There
then exists a Möbius transformation µ that maps the geodesic I onto the
geodesic Γ. (see Proposition 2.20 or Proposition 2.22). Let ϕ = µ ◦ κ ◦ µ−1,
where κ(z) = z for all z ∈ D. Then the orientation-reversing hyperbolic
motion Γ has the required properties.
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Proposition 2.28 Let z1, w1, z2 and w2 be complex numbers belonging to
the open unit disk D. Suppose that ρ(z1, w1) = ρ(z2, w2), and suppose also
that one of the sides of the geodesic Γ1 in D passing through z1 and w1 has
been chosen, and that one of the sides of the geodesic Γ2 in D passing through
z2 and w2 has also been chosen. Then there exists a hyperbolic motion ϕ with
the following properties: ϕ(z1) = z2; ϕ(w1) = w2; ϕ maps complex numbers
on the chosen side of the geodesic Γ1 to complex numbers on the chosen side
of the geodesic Γ2.

Proof It follows from Proposition 2.14 there exists a Möbius transformation
that maps the open unit disk onto itself and also maps z1 and w1 to z2
and w2 respectively. If this Möbius transformation does not itself map the
chosen side of Γ1 to the chosen side of Γ2, then it may be composed with an
orientation-reversing hyperbolic motion that fixes all complex numbers of the
geodesic Γ2 whilst mapping complex numbers on one side of Γ2 to complex
numbers on the other side. The result follows.

2.5 The Hyperbolic Centre of a Circle in the Disk

Proposition 2.29 Let w be a complex number belonging to the open unit
disk D in the complex plane, and let ρ denote the Poincaré distance function
on D. Let δ be a positive real number. Then

{z ∈ D : ρ(z, w) < δ} =

{
z ∈ D :

∣∣∣∣ z − w1− w z

∣∣∣∣ < R

}
,

where

R =
eδ − 1

eδ + 1
.

Proof Let

µw(z) =
z − w
1− wz

for all complex numbers z. Then µw is a Möbius transformation mapping
the open unit disk onto itself for which µw(w) = 0 (see Corollary 2.6). Now
Möbius transformations mapping the open unit disk onto itself are isome-
tries with regard to the Poincaré distance function (see Proposition 2.13).
Consequently

{z ∈ D : ρ(z, w) < δ} = {z ∈ D : ρ(µw(z), 0) < δ}.

The required result now follows on applying Proposition 2.9.

55



Definition Let D be the open unit disk in the complex plane that consists
of those complex numbers z satisfying |z| < 1, and let C be a circle in the
complex plane that is contained within D. A complex number w is said to
be the hyperbolic centre of the circle C if the Poincaré distance between z
and w is the same for all points z that lie on the circle C.

Proposition 2.30 Let C be a circle in the complex plane that is contained
within the open unit disk D. Suppose that the circle C intersects the real
axis at real numbers u and v, where −1 < u < v < 1. Suppose also that
the hyperbolic centre of the circle C lies on the real axis, and is located at t,
where u < t < v. Then (

1 + t

1− t

)2

=
(1 + u)(1 + v)

(1− u)(1− v)
.

Proof Applying Lemma 2.8, we find that t, u and v must satisfy the identity

log

(
1 + v

1− v

)
− log

(
1 + t

1− t

)
= log

(
1 + t

1− t

)
− log

(
1 + u

1− u

)
.

Consequently

2 log

(
1 + t

1− t

)
= log

(
1 + u

1− u

)
+ log

(
1 + v

1− v

)
.

The required result then follows on taking the exponential of both sides of
this identity.
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