MAU23302 Euclidean and Non-Euclidean Geometry Hilary Term 2021 Worked Solutions to some Sample Problems relating to the Hyperbolic Plane

1. Let μ be a Möbius transformation of the Riemann sphere, and let $\hat{\mu}$ be the transformation of the Riemann sphere defined so that $\hat{\mu}(\infty) = \Omega(\mu(\infty))$ and

$$\hat{\mu}(z) = \Omega(\mu(\overline{z}))$$

for all complex z, where Ω is the transformation of the Riemann sphere defined so that $\Omega(0) = \infty$, $\Omega(\infty) = 0$ and $\Omega(z) = 1/\overline{z}$ for all non-zero complex number z. Also let the coefficients a, b, c and d of the Möbius transformation be complex constants satisfying $ad - bc \neq 0$ that are chosen so that

$$u(z) = \frac{az+b}{cz+d}$$

for all complex numbers z for which $cz + d \neq 0$.

Problem.

(a) Show that $\hat{\mu}$ is also a Möbius transformation of the Riemann sphere by finding complex constants \hat{a} , \hat{b} , \hat{c} and \hat{d} that ensure that

$$\hat{u}(z) = \frac{\hat{a}z + \hat{b}}{\hat{c}z + \hat{d}}$$

for all complex numbers z for which $\hat{c}z + \hat{d} \neq 0$.

Solution.

$$\hat{\mu}z = \Omega\left(\frac{a\,\overline{z}+b}{c\,\overline{z}+d}\right) = \frac{\overline{c}\,z+\overline{d}}{\overline{a}\,z+\overline{b}}.$$

Consequently we can take $\hat{a} = \overline{c}$, $\hat{b} = \overline{d}$, $\hat{c} = \overline{a}$, $\hat{d} = \overline{b}$.

Problem.

(b) Now let the coefficients a, b, c and d of the Möbius transformation μ be chosen so that c = 1, and let $w = -\overline{d}$. Suppose also that $\mu(\infty) = \Omega(\mu(\infty))$ and $\mu(\overline{z}) = \Omega(\mu(z))$ for all complex numbers z. Explain why $\text{Im}[w] \neq 0$, and show that there exists some complex constant η satisfying $|\eta| = 1$ that is determined so that $\mu(\overline{w}) = \infty$, $\mu(\infty) = 1$ and

$$\mu(z) = \eta \, \frac{z - w}{z - \overline{w}}$$

for all complex numbers z distinct from \overline{w} .

Solution.

Using the result of (a), and applying Proposition 1.8 we see that there must exist some non-zero complex number η such that $a = \eta \hat{a}, b = \eta \hat{b}, c = \eta \hat{c}$ and $d = \eta \hat{d}$. Accordingly

$$a = \eta \overline{c}, \quad b = \eta \overline{d}, \quad c = \eta \overline{a}, \quad d = \eta \overline{b}.$$

Now we have chosen coefficients so that c = 1. Then $\overline{c} = 1$. It follows that $a = \eta$ and

$$1 = \eta \overline{a} = \eta \overline{\eta} = |\eta|^2.$$

Consequently $|\eta| = 1$. Also $d = -\overline{w}$ and $b = -\eta w$. Consequently

$$\mu(z) = \eta \, \frac{z - w}{z - \overline{w}}$$

whenever $z \neq \overline{w}$. Standard properties of Möbius transformations then ensure that $\mu(\overline{w})$ and $\mu(\infty)$ have the values stated. Now if wwere a real number then it would follow that ad - bc = 0. But the coefficients a, b, c and d of a Möbius transformation are required to satisfy the condition $ad - bc \neq 0$. Consequently it must be the case that $\text{Im}[w] \neq 0$. 2. Let w be a complex number satisfying Im[w] > 0, let K be a real number satisfying 0 < K < 1, and let

$$Q = \{ z \in \mathbb{C} : |z - w| = K |z - \overline{w}| \}.$$

Problem.

Show that the set Q is a circle in the complex plane of radius $\frac{2K \operatorname{Im}[w]}{1-K^2}$ centred on $\frac{w-K^2 \overline{w}}{1-K^2}$.

Solution.

Let z be a complex number. Then z lies on the curve Q if and only if

$$(z-w)(\overline{z}-\overline{w}) = K^2(z-\overline{w})(\overline{z}-w).$$

Now

$$(z - w)(\overline{z} - \overline{w}) - K^{2}(z - \overline{w})(\overline{z} - w)$$

= $(1 - K^{2})(|z|^{2} + |w|^{2}) - \overline{w}z - w\overline{z} - K^{2}(wz + \overline{w}\overline{z})$
= $(1 - K^{2})(|z|^{2} + |w|^{2}) - 2\operatorname{Re}[\overline{w}z] + 2K^{2}\operatorname{Re}[wz]$
= $(1 - K^{2})(|z|^{2} + |w|^{2}) - 2\operatorname{Re}[(\overline{w} - K^{2}w)z]$

It follows that $z \in Q$ if and only if

$$0 = |z|^{2} - 2 \operatorname{Re} \left[\frac{\overline{w} - K^{2} w}{1 - K^{2}} z \right] + |w|^{2}$$

= $\left(z - \frac{w - K^{2} \overline{w}}{1 - K^{2}} \right) \left(\overline{z} - \frac{\overline{w} - K^{2} w}{1 - K^{2}} \right) + |w|^{2} - \left| \frac{w - K^{2} \overline{w}}{1 - K^{2}} \right|^{2}$
= $\left| z - \frac{w - K^{2} \overline{w}}{1 - K^{2}} \right|^{2} + |w|^{2} - \left| \frac{w - K^{2} \overline{w}}{1 - K^{2}} \right|^{2}$.

Now

$$\begin{split} |w - K^2 \overline{w}|^2 &- (1 - K^2)^2 |w|^2 \\ &= (w - K^2 \overline{w})(\overline{w} - K^2 w) \\ &- (1 - 2K^2 + K^4) |w|^2 \\ &= (1 + K^4) |w|^2 - K^2 (w^2 + \overline{w}^2) \\ &- (1 - 2K^2 + K^4) |w|^2 \\ &= 2K^2 (|w|^2 - \operatorname{Re}[w^2]) \\ &= 2K^2 (|w|^2 - \operatorname{Re}[w]^2 + \operatorname{Im}[w]^2) \\ &= 4K^2 \operatorname{Im}[w]^2). \end{split}$$

Consequently $z \in Q$ if and only if

$$\left|z - \frac{w - K^2 \overline{w}}{1 - K^2}\right|^2 = \frac{4K^2 \operatorname{Im}[w]^2}{(1 - K^2)^2}.$$

Consequently the curve Q is a circle of radius $\frac{2K \operatorname{Im}[w]}{1-K^2}$ centred on $\frac{w-K^2 \overline{w}}{1-K^2}$.

3. Let H be the upper half-plane within the complex plane, defined so that

$$H = \{ z \in \mathbb{C} : \operatorname{Im}[z] > 0 \}.$$

Hyperbolic motions of the upper half-plane, in the context of the halfplane model of hyperbolic geometry, are transformations of the upper half plane that are angle-preserving and are isometries of the Poincaré metric σ on the upper half-plane, where

$$\sigma(z,w) = \log \frac{|z - \overline{w}| + |z - w|}{|z - \overline{w}| - |z - w|}$$

for all complex numbers z and w belonging to the upper half-plane H. The orientation-preserving hyperbolic motions of the upper half-plane Hare the restrictions to H of Möbius transformations of the Riemann sphere that map the upper half-plane H onto itself. A Möbius transformations μ of the Riemann sphere maps the upper half plane onto itself if and only if there exist real numbers a, b, c and d satisfying ad - bc = 1 such that

$$\mu(z) = \frac{az+b}{cz+d}$$

for all complex numbers z for which $cz + d \neq 0$. Then $\mu(\infty) = \infty$ in cases where c = 0. Also $\mu(\infty) = a/c$ and $\mu(-d/c) = \infty$ in cases where $c \neq 0$.

There are also orientation-reversing hyperbolic motions of the upper half plane. These can be expressed as the restriction to the upper halfplane H of compositions of transformations of the Riemann sphere of the form $\mu \circ \hat{\kappa}$, where μ is some Möbius transformation that maps the upper half-plane onto itself and where τ is the transformation of the Riemann sphere defined so that $\tau(\infty) = \infty$ and $\tau(z) = -\overline{z}$ for all complex numbers z. Accordingly, given an orientation-reversing hyperbolic motion φ of the upper half-plane H, there exist real numbers a, b, c and d satisfying ad - bc = 1 such that

$$\varphi(z) = \frac{b - a\overline{z}}{d - c\overline{z}}.$$

Problem.

Let φ be an orientation-preserving hyperbolic motion φ of the upper half-plane H, where φ is determined by real coefficients a, b, c and das described above, and let

$$\Gamma = \{ z \in H : \varphi(z) = z \}.$$

Suppose that $c \neq 0$, a = d, and accordingly $a^2 - bc = 1$. Show that Γ is a geodesic in the upper half-plane H and determine the centre and the radius of the circle in the complex plane whose intersection with the upper half-plane H is the geodesic Γ .

Solution.

In the case where a = d, the curve Γ is the intersection of the upper half-plane H with the set

$$\{z \in \mathbb{C} : (a - c\overline{z})z = b - a\overline{z}\}.$$

Consequently a complex number z in the upper half-plane lies on the curve Γ if and only if

$$c|z|^2 - a\overline{z} - az + b = 0.$$

Now $\overline{z} + z = 2 \operatorname{Re}[z]$. Thus a complex number z lies on the curve Γ if and only if

$$0 = c|z|^2 - a\overline{z} - az + b$$

= $c|z|^2 - 2a \operatorname{Re}[z] + b$
= $c\left(\left(z - \frac{a}{c}\right)\left(\overline{z} - \frac{a}{c}\right) + \frac{bc - a^2}{c}\right)$
= $c\left(\left|z - \frac{a}{c}\right|^2 - \frac{1}{c^2}\right)$

Consequently

$$\Gamma = \left\{ z \in H : \left| z - \frac{a}{c} \right| = \frac{1}{c} \right\}.$$

It follows that Γ is a geodesic, being the intersection of the upper halfplane with a circle in the complex plane centred on the real number a/c and with radius equal to 1/c.