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3 The Disk Model of the Hyperbolic Plane

3.1 Inversion of the Riemann Sphere in the Unit Circle

Let D denote the open unit disk in the complex plane C, and in the Riemann
sphere, defined so that

D = {z ∈ C : |z| < 1}

and let S denote the unit circle in the complex plane C, and in the Riemann
sphere, defined so that

S = {z ∈ C : |z| = 1}

We define the inversion Ω of the Riemann sphere in the circle S bounding the
open unit disk D to be the transformation of the Riemann sphere defined
so that Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z. Then Ω(z) = z for all z ∈ S, and the composition Ω ◦ Ω of the
inversion Ω with itself is the identity transformation of the Riemann sphere.
Moreover Ω maps the open unit disk D into the region of the Riemann sphere
that lies outside the unit circle S.

Lemma 3.1 Let µ be a Möbius transformation of the Riemann sphere, and
let Ω be the inversion of the Riemann sphere in the unit circle, defined so that
Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex numbers z.
Also let a, b, c and d be complex coefficients determined so that

µ(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0. Then Ω ◦ µ ◦ Ω is also a
Möbius transformation, and moreover

Ω(µ(Ω(z))) =
c+ dz

a+ bz

for all complex numbers z ∈ C for which a+ bz 6= 0 and c+ dz 6= 0.

Proof It follows from the definition of Möbius transformations that there
exist complex numbers a, b, c and d such that

µ(z) =
az + b

cz + d
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for all complex numbers z for which cz + d 6= 0. Then

Ω(µ(Ω(z))) = Ω

a1

z
+ b

c
1

z
+ d

 = Ω

(
a+ bz

c+ dz

)
=
c+ dz

a+ bz

for all z ∈ C for which z 6= 0, c+ dz 6= 0 and a+ bz 6= 0. Also

Ω(µ(Ω(0))) = Ω(µ(∞)) = Ω
(a
c

)
=
c

a

provided that a 6= 0 and c 6= 0,

Ω(µ(Ω(0))) = Ω(µ(∞)) = Ω(∞) = 0 when c = 0,

Ω(µ(Ω(0))) = Ω(µ(∞)) = Ω(0) =∞ when a = 0,

Ω

(
µ

(
Ω

(
− c
d

)))
= Ω

(
µ

(
−d
c

))
= Ω(∞) = 0,

provided that c 6= 0 and d 6= 0, and

Ω

(
µ

(
Ω

(
−a
b

)))
= Ω

(
µ

(
− b
a

))
= Ω(0) =∞

provided that a 6= 0 and b 6= 0.
Now the definition of Möbius transformations requires that ad− bc 6= 0.

Consequently c 6= 0 when d = 0, and a 6= 0 when b = 0. We have therefore
determined the image of each element of the Riemann sphere under the
composition map Ω ◦ µ ◦ Ω, and can now conclude that this composition
map Ω◦µ◦Ω is indeed a Möbius transformation, and that it is characterized
by the property that

Ω(µ(Ω(z)) =
c+ dz

a+ bz

for all complex numbers z ∈ C for which a + bz 6= 0 and c + dz 6= 0, as
required.

Proposition 3.2 Let µ be a Möbius transformation of the Riemann sphere,
let D be the open unit disk in the complex plane, where

D = {z ∈ C : |z| < 1}

and let Ω be the inversion of the Riemann sphere in the unit circle that is
defined so that

Ω(0) =∞, Ω(∞) = 0 and Ω(z) =
1

z
for all z ∈ C \ {0}.

Then the Möbius transformation µ maps the unit disk D onto itself if and
only if both of the following two conditions are satisfied:
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(i) Ω ◦ µ = µ ◦ Ω;

(ii) there exists at least one z ∈ D for which µ(z) ∈ D.

Proof First suppose that the Möbius transformation µ maps the unit disk D
onto itself. Let z be a complex number satisfying |z| = 1. Then tz ∈ D
for all real numbers t satisfying 0 ≤ t < 1, and consequently |µ(tz)| <
1 for all real numbers t satisfying 0 ≤ t < 1. The continuity of Möbius
transformations then ensures that |µ(z)| ≤ 1. Now if it were the case that
|µ(z)| < 1 then there would exist w ∈ D for which µ(w) = µ(z), because
the Möbius transformation µ maps the unit disk D onto itself. But this is
not possible, because if it were, then two distinct z and w complex numbers
would be mapped by µ to the same complex number, contradicting the fact
that Möbius transformations are invertible transformations of the Riemann
sphere. Thus the Möbius transformation µ maps the unit circle into itself.

Now let µ̂ = Ω◦µ◦Ω. Then µ̂ is a Möbius transformation of the Riemann
sphere (Lemma 3.1). Moreover Ω(z) = z and |µ(z)| = 1 for all complex num-
bers z satisfying |z| = 1, and therefore µ̂(z) = µ(z) for all complex numbers z
satisfying |z| = 1. Now two distinct Möbius transformations cannot coincide
at three or more points of the Riemann sphere. (see Proposition 1.15). It
follows therefore that µ̂ = µ. Consequently Ω ◦ µ = µ ◦ Ω. It now follows
directly that any Möbius transformation that maps the unit disk D onto
itself must satisfy conditions (i) and (ii) in the statement of the proposition.

Conversely, suppose that Möbius transformation µ of the Riemann sphere
satisfies conditions (i) and (ii) in the statement of the proposition. Then
Ω◦µ = µ◦Ω. Let z be a complex number satisfying |z| 6= 1. Then Ω(z) 6= z.
It follows that µ(Ω(z)) 6= µ(z), because Möbius transformations are invertible
transformations of the Riemann sphere, and therefore Ω(µ(z)) 6= µ(z), from
which it follows that |µ(z)| 6= 1. Consequently no complex number belonging
to the open unit disk D is mapped by the Möbius transformation D to a point
that lies on the unit circle. It follows that if one endpoint of a straight line
segment or circular arc contained in the open disk D is mapped by µ into D,
then the same must be true of the other endpoint of that straight line segment
or circular arc.

Now the complex numbers belonging to the unit disk D can be joined to
one another by straight line segments. Moreover condition (ii) in the state-
ment of the proposition ensures that at least one complex number belonging
to the unit disk D is mapped by the Möbius transformation µ into the unit
disk D. Consequently the unit disk is mapped into itself by the Möbius
transformation µ.

Moreover if the Möbius transformation µ has the property that Ω ◦ µ =
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µ ◦ Ω then

Ω ◦ µ−1 = µ−1 ◦ µ ◦ Ω ◦ µ−1 = µ−1 ◦ Ω ◦ µ ◦ µ−1 = µ−1 ◦ Ω,

and consequently the inverse µ−1 of the Möbius transformation µ also satisfies
(i) and (ii) in the statement of the proposition, and therefore maps the open
unit disk D into itself. It follows that if the Möbius transformation µ satisfies
conditions (i) and (ii) then it must map the open unit disk D onto itself, as
required.

Corollary 3.3 Let µ be a Möbius transformation of the Riemann sphere,
and let S be the unit circle consisting of all complex numbers z for which
|z| = 1. Suppose that µ(S) ⊂ S and that |µ(0)| < 1. Then the Möbius
transformation µ maps the open unit disk onto itself. Moreover Ω◦µ = µ◦Ω,
where Ω is the inversion of the Riemann sphere in the unit circle S, defined
so that Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z.

Proof Let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is a Möbius transformation of the Rie-
mann sphere (Lemma 3.1), and moreover µ̂(z) = µ(z) for all z ∈ S, because
µ(S) ⊂ S and Ω(z) = z for all z ∈ S. Now two distinct Möbius transforma-
tions cannot coincide at three or more points of the Riemann sphere. (see
Proposition 1.15). It follows that µ̂ = µ, and therefore Ω ◦ µ = µ ◦ Ω. The
required result now follows on applying Proposition 3.2.

Lemma 3.4 Given distinct complex numbers z1 and z2, where |z1| = |z2| =
1, there exists a Möbius transformation µ of the Riemann sphere mapping
the unit disk D onto itself for which µ(z1) = −1 and µ(z2) = 1.

Proof Choose a complex number z3 distinct from z1 and z2 for which |z3| =
1. Then there exists a unique Möbius transformation µ1 with the properties
that µ1(z1) = −1, µ1(z2) = 1 and µ1(z3) = i. Möbius transformations map
circles to circles, and, given any three distinct complex numbers that are not
colinear, there exists exactly one circle in the complex plane passing through
all three of these complex numbers. Consequently the Möbius transforma-
tion µ1 must map the unit circle onto itself. If |µ1(0)| < 0 let the Möbius
transformation µ be identical to µ1; if |µ1(0)| > 1 or µ1(0) = ∞ let the
Möbius transformation µ be defined so that µ(z) = 1/µ1(z) for all complex
numbers z for which µ1(z) 6= 0. Then µ maps the unit circle onto itself,
µ(z1) = −1, µ(z2) = 1 and |µ(0)| < 1. Then µ(D) must map the open unit
disk onto itself (see Corollary 3.3). The Möbius transformation µ then has
the required properties.
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Proposition 3.5 Let a and b be complex numbers satisfying |b| < |a|, and
let µ be the Möbius transformation of the Riemann sphere defined so that

µ(z) =
az + b

b z + a
whenever b z + a 6= 0,

µ(−a/b) = ∞ and µ(∞) = a/b in cases where b 6= 0 and µ(∞) = ∞ in
cases where b = 0. Then |µ(z)| < 1 whenever |z| < 1, |µ(z)| = 1 whenever
|z| = 1, and |µ(z)| > 1 whenever |z| > 1 and bz + a 6= 0. Moreover the
Möbius transformation µ maps the open unit disk {z ∈ C : |z| < 1} onto
itself.

Proof Calculating, we find that

|bz + a|2 − |az + b|2 = (bz + a)(bz + a)− (az + b)(a z + b)

= |b|2|z|2 + |a|2 + a bz + ab z

− |a|2|z|2 − |b|2 − a bz − ab z
= (|a|2 − |b|2)(1− |z|2) > 0.

Consequently |µ(z)| < 1 whenever |z| < 1, |µ(z)| = 1 whenever |z| = 1 and
|µ(z) > 1 whenever |z| > 1 and bz + a 6= 0.

Now the inverse µ−1 of the Möbius transformation µ is characterized by
the property that

µ−1(z) =
az − b
−bz + a

for all complex numbers z for which −bz+a 6= 0 (see Corollary 1.5). Because
the coefficients of this Möbius transformation µ−1 have properties analogous
to those of the Möbius transformation µ, we can conclude that µ−1 maps the
open unit disk into itself, and therefore µ maps the open unit disk onto itself,
as required.

Corollary 3.6 Let w be a complex number satisfying |w| < 1, and let µw be
the Möbius transformation of the Riemann sphere defined so that µw(1/w) =
∞, µ(∞) = −1/w and

µw(z) =
z − w

1− w z
for all complex numbers z distinct from 1/w. Then the Möbius transforma-
tion µw maps the open unit disk onto itself. Moreover

µw(tw) =
t− 1

1− |w|2t
w

for all real numbers t distinct from 1/|w|2, and consequently the diameter of
the unit circle passing through 0 and w is mapped onto itself by the Möbius
transformation µw. In particular µw(w) = 0 and µw(0) = −w.
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Proposition 3.7 Let µ be a Möbius transformation of the Riemann sphere
that maps the unit circle {z ∈ C : |z| = 1} into itself, whilst mapping the
unit disk {z ∈ C : |z| < 1} into itself. Then there exist complex numbers a
and b, where |b| < |a|, such that

µ(z) =
az + b

bz + a
for all z ∈ C for which az + b 6= 0.

Proof The Möbius transformation µ maps the unit circle into itself. It
follows from Proposition 3.2 that Ω ◦µ = µ ◦Ω, where Ω(0) =∞, Ω(∞) = 0
and Ω(z) = 1/z for all non-zero complex numbers z. Consequently µ =
Ω ◦ Ω ◦ µ = Ω ◦ µ ◦ Ω because the composition of the inversion Ω with itself
is the identity transformation of the Riemann sphere. Let a1, b1, c1 and d1
be complex coefficients determined so that

µ(z) =
a1z + b1
c1z + d1

whenever c1z + d1 6= 0.

Then the identity µ = Ω ◦ µ ◦ Ω ensures that

a1z + b1
c1z + d1

=
d1z + c1

b1z + a1

for all complex numbers z for which a1z+ b1 6= 0, a1 + b1z 6= 0, c1z+ d1 6= 0,
and c1 + d1z 6= 0 (see Lemma 3.1). Consequently there exists some non-zero
complex number ω with the property that a1 = ωd1, b1 = ωc1, c1 = ωb1 and
d1 = ωa1 (see Proposition 1.8). It then follows that

a1 d1 = ω2a1d1.

But
|a1 d1| = |a1d1|.

It follows that |ω2| = 1, and therefore |ω| = 1. Accordingly a real number θ
can be found so that

ω = cos 2θ +
√
−1 sin 2θ.

Let
η = cos θ +

√
−1 sin θ.

It then follows from De Moivre’s Theorem that η2 = ω. Now η2 η2 = |η|4 = 1.
It follows that η2ω = 1. Let a = ηa1 and b = ηb1, c = ηc1 and d = ηd1. Then

µ(z) =
az + b

cz + d
whenever cz + d 6= 0.
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Also a1 = ηa, b1 = ηb, c1 = ηc and d1 = ηd. Consequently

d = η d1 = ηωa1 = η2ωa = a

and
c = η c1 = ηωb1 = η2ωb = b.

Accordingly

µ(z) =
az + b

b z + a
whenever b z + a 6= 0.

Moreover |µ(0)| < 1, because µ maps the unit disk into itself. consequently
|b| < |a|, as required.

Proposition 3.8 Let µ be a Möbius transformation that maps the open unit
disk D onto itself, where D = {z ∈ C : |z| < 1}. If a path α: [0, 1] → D
in the open unit disk encircles a complex number w in that disk so that, as
the real variable t increases from 0 to 1, α(t) moves continuously in a circle
around w once in the anticlockwise direction, finishing at its starting point,
so that α(0) = α(1), then µ(α(t)) moves continuously around µ(w) once in
the anticlockwise direction.

Proof Let p = |w| and q = |µ(w)|. Let µ1 and µ5 be rotations of the open
unit disk about zero determined so that µ1(w) = p and µ5(q) = µ(w). Also
let Möbius transformations µ2 and µ4 be defined so that

µ2(z) =
z − p
1− pz

and µ4(z) =
z + q

1 + qz

for all z ∈ D, and let µ3 = µ−14 ◦µ−15 ◦µ◦µ−11 ◦µ−12 . Then µ = µ5◦µ4◦µ3◦µ2◦µ1.
Moreover

µ3(0) = µ−14 (µ−15 (µ(µ−11 (µ−12 (0))))) = µ−14 (µ−15 (µ(µ−11 (p))))

= µ−14 (µ−15 (µ(w))) = µ−14 (q) = 0.

Now any Möbius transformation that maps the open unit disk D onto itself
and sends zero to zero must be a rotation of the disk D about zero. (This
follows directly on applying Proposition 3.7). Consequently µ1, µ3 and µ5

are rotations of the unit disk, and therefore map paths traversing circles
once in the anticlockwise direction to paths traversing circles once in the
anticlockwise direction. Also

µ2(z) =
(z − p)(1− p z)

|1− pz|2
=
z + p2z − p(1 + |z2|)

|1− pz|2
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and thus

Im[z] =
1− p2

|1− pz|2
Im[z]

for all z ∈ D, where p2 < 1. It follows that µ2 maps the upper half plane
Im[z] > 0 into the upper half plane and the lower half plane Im[z] < 0 into
the lower half plane, whilst mapping real numbers between p and 1 to pos-
itive real numbers. Consequently µ2 maps paths encircling p once in the
anticlockwise direction to paths encircling zero once in the anticlockwise di-
rection. Similarly µ4 maps paths encircling zero once in the anticlockwise
direction to paths encircling q once in the anticlockwise direction. Con-
sequently each of the Möbius transformations µ1, µ2, µ3, µ4 and µ5 maps
paths traversing circles in the anticlockwise direction to paths traversing cir-
cles in the anticlockwise direction. The same is therefore true of the Möbius
transformation µ. The result is thus established.

3.2 The Poincaré Distance Function on the Unit Disk

Definition Let D be the open unit disk in the complex plane C, defined so
that

D = {z ∈ C : |z| < 1}.

The Poincaré distance function ρ on D is defined so that

ρ(z, w) = log

(
|1− w z|+ |z − w|
|1− w z| − |z − w|

)
for all complex numbers z and w satisfying |z| < 1 and |w| < 1.

Note that
|z − w|
|1− w z|

< 1

for all complex numbers z and w satisfying |z| < 1 and |w| < 1. (This
follows directly from Corollary 3.6). Consequently the Poincaré distance
ρ(z, w) between any two points z and w of the unit disk is a well-defined
positive real-number.

Lemma 3.9 Let s and t be real numbers satisfying −1 < s < t < 1. Then
the Poincaré distance, in the unit disk, between s and t is given by the formula

ρ(s, t) = log

(
1 + t

1− t

)
− log

(
1 + s

1− s

)
.
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Proof Evaluating, and noting that 1− st > 0 (because |s| < 1 and |t| < 1)
and |t− s| = t− s (since s < t by assumption), we find that

ρ(s, t) = log

(
|1− st|+ |t− s|
|1− st| − |t− s|

)
= log

(
1− st+ t− s
1− st+ s− t

)
= log

(
(1− s)(1 + t)

(1 + s)(1− t)

)
= log

(
1 + t

1− t

)
− log

(
1 + s

1− s

)
,

as required.

Proposition 3.10 Let ρ be the Poincaré distance function on the open unit
disk D, and let δ be a positive real number. Then

{z ∈ D : ρ(z, 0) = δ} = {z ∈ D : |z| = R},

where

R =
eδ − 1

eδ + 1
.

Proof It follows from the definition of Poincaré distance function that all
complex numbers z satisfying ρ(z, 0) = δ are equidistant from zero. They
therefore constitute a circle centred on zero. It remains to determine the
radius of that circle. Now it follows, on applying Lemma 3.9, that

δ = log

(
1 +R

1−R

)
.

Consequently

eδ − 1 =
2R

1−R
, eδ + 1 =

2

1−R
,

and therefore

R =
eδ − 1

eδ + 1
,

as required.

The Poincaré distance function ρ on the unit disk D has the property
that ρ(z, w) = ρ(w, z) for all z, w ∈ D. It therefore follows immediately from
Lemma 3.9 that

ρ(s, t) =

∣∣∣∣log

(
1 + t

1− t

)
− log

(
1 + s

1− s

)∣∣∣∣
for all real numbers s and t satisfying −1 < s < 1 and −1 < t < 1.
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Lemma 3.11 Let z and w be complex numbers, where wz 6= 1, and let Ω
be the inversion of the Riemann sphere in the unit circle, defined so that
Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex numbers z.
Then

(z,Ω(z);w,Ω(w)) =

∣∣∣∣ z − w1− wz

∣∣∣∣2
for all complex numbers z and w for which z 6= 0, w 6= 0 and wz 6= 1.

Proof Let z and w be complex numbers, where z 6= 0, w 6= 0 and wz 6= 1.
Evaluating the cross-ratio, we find that

(z,Ω(z);w,Ω(w)) =

(
z,

1

z
; w,

1

w

)
=

(z − w)

(
1

z
− 1

w

)
(
z − 1

w

) (
1

z
− w

)

=

(z − w)

(
w − z
z w

)
(
wz − 1

w

) (
1− zw
z

)
=

(z − w)(w − z)

(wz − 1)(1− zw)

=
z − w
1− wz

× z − w
1− wz

=

∣∣∣∣ z − w1− wz

∣∣∣∣2 ,
as required.

Proposition 3.12 Let z and w be complex numbers satisfying |z| < 1 and
|w| < 1, and let ρ(z, w) denote the Poincaré distance between z and w. Then

ρ(z, w) = log

(
1 +

√
(z,Ω(z);w,Ω(w))

1−
√

(z,Ω(z);w,Ω(w))

)
,

where Ω(0) = ∞, Ω(∞) = 0 and Ω(z) = 1/z for all non-zero complex
numbers z.

Proof Evaluating, and applying the result of Lemma 3.11, we find that

ρ(z, w) = log

(
|1− w z|+ |z − w|
|1− w z| − |z − w|

)
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= log

1 +
|z − w|
|1− w z|

1− |z − w|
|1− w z|


= log

(
1 +

√
(z,Ω(z);w,Ω(w))

1−
√

(z,Ω(z);w,Ω(w))

)
,

as required.

Corollary 3.13 Let z and w be complex numbers satisfying |z| < 1 and
|w| < 1, and let ρ(z, w) denote the Poincaré distance between z and w.
Then the cross-ratio (z,Ω(z);w,Ω(w)) is expressed in terms of the Poincaré
distance according to the formula

(z,Ω(z);w,Ω(w)) =

(
eρ(z,w) − 1

eρ(z,w) + 1

)2

.

Proof Let q = (z,Ω(z);w,Ω(w)) and s = ρ(z, w). It follows from Proposi-
tion 3.12 that

s = log

(
1 +
√
q

1−√q

)
.

Consequently

es − 1 =
2
√
q

1−√q
, es + 1 =

2

1−√q
,

and thus

q =

(
es − 1

es + 1

)2

.

The result follows.

Definition A transformation ϕ that maps the open unit disk D in the com-
plex plane onto itself is said to be an isometry (with respect to Poincaré
distance) if

ρ
(
ϕ(z), ϕ(w)

)
= ρ(z, w)

for all complex numbers z and w in the open unit disk D, where ρ denotes
the Poincaré distance function on D.

Proposition 3.14 Let D be the open unit disk in the complex plane, defined
so that D = {z ∈ C : |z| < 1}. Then every Möbius transformation of the
Riemann sphere that maps the open unit disk D onto itself is an isometry
with respect to the Poincaré distance function on D.

61



Proof The Möbius transformation µ has the property that µ ◦ Ω = Ω ◦ µ,
because it maps the unit disk onto itself (see Proposition 3.2). Moreover the
values of cross-ratios are preserved under the action of Möbius transforma-
tions (Proposition 1.16). Consequently(

µ(z),Ω(µ(z));µ(w),Ω(µ(w))
)

=
(
µ(z), µ(Ω(z));µ(w), µ(Ω(w))

)
=

(
z,Ω(z);w,Ω(w)

)
.

The required result therefore follows immediately from an identity previously
established (Proposition 3.12) expressing the Poincaré distance ρ(z, w) in
terms of the cross-ratio (z,Ω(z);w,Ω(w)).

Proposition 3.15 Let z1, w1, z2 and w2 be elements of the open unit disk
D, where

D = {z ∈ C : |z| < 1}.

Suppose that ρ(z1, w1) = ρ(z2, w2), where ρ denotes the Poincaré distance
function on D. Then there exists a Möbius transformation µ mapping the
open unit disk D onto itself with the property that µ(z1) = z2 and µ(w1) = w2.

Proof The values of the cross-ratios

(z1,Ω(z1);w1,Ω(w1)) and (z2,Ω(z2);w2,Ω(w2))

are determined by the values of the Poincaré distances ρ(z1, w1) and ρ(z2, w2)
respectively (see Corollary 3.13). Now µ(z1) = z2 and µ(w1) = w2. Conse-
quently

(z1,Ω(z1);w1,Ω(w1)) = (z2,Ω(z2);w2,Ω(w2)).

It follows from this that there exists a unique Möbius transformation µ
with the properties that µ(z1) = z2, µ(Ω(z1)) = Ω(z2), µ(w1) = w2 and
µ(Ω(w1)) = Ω(w2), (see Proposition 1.16).

Now let µ̂ = Ω ◦ µ ◦ Ω. Then µ̂ is itself a Möbius transformation
(Lemma 3.1) Then

µ̂(z1) = Ω(µ(Ω(z1))) = Ω(Ω(z2)) = z2,

µ̂(Ω(z1)) = Ω(µ(Ω(Ω(z1)))) = Ω(µ(z1)) = Ω(z2),

µ̂(w1) = Ω(µ(Ω(w1))) = Ω(Ω(w2)) = w2,

µ̂(Ω(w1)) = Ω(µ(Ω(Ω(w1)))) = Ω(µ(w1)) = Ω(w2).

Consequently the Möbius transformations µ and µ̂ both map z1, Ω(z1), w1

and Ω(w1) to z2, Ω(z2), w2 and Ω(w2) respectively. But two distinct Möbius
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transformations cannot coincide at three or more points of the Riemann
sphere. (see Proposition 1.15). Consequently µ̂ = µ, and thus Ω ◦ µ = µ ◦Ω.
Moreover elements z1 and z2 of the open unit disk D are mapped into D.
Applying Proposition 3.2, we conclude that the Möbius transformation µ
maps the open unit disk D onto itself. This completes the proof.

Lemma 3.16 Let ρ be the Poincaré distance function on the open unit
disk D in the complex plane, let t be a real number satisfying 0 < t < 1,
and let z be a complex number distinct from 0 and t for which |z| < 1. Then

ρ(0, z) ≤ ρ(0, t) + ρ(t, z).

Moreover ρ(0, z) = ρ(0, t) + ρ(t, z) if and only if the complex number z is a
positive real number greater than or equal to t and less than 1.

Proof Let

R =

∣∣∣∣ z − t1− tz

∣∣∣∣ ,
and let

η =
z − t

R(1− tz)
.

Then |η| = 1 and
z − t
1− tz

= Rη.

It follows that

t+Rη =
(1− t2)z

1− tz
and 1 + tRη =

1− t2

1− tz
,

and therefore

z =
t+Rη

1 + tRη
.

Now

ρ(t, 0) = log

(
1 + t

1− t

)
and

ρ(0, t) = log

(
|1− tz|+ |z − t|
|1− tz| − |z − t|

)
= log

(
1 +R

1−R

)
.

It follows that

ρ(0, t) + ρ(t, z) = log

(
(1 + t)(1 +R)

(1− t)(1−R)

)
= log

(
1 + S

1− S

)
,
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where

S =
t+R

1 + tR
.

Also

(t+R)2|1 + tRη|2 − (1 + tR)2|t+Rη|2

= (t+R)2(1 + tRη)(1 + tRη)

− (1 + tR)2(t+Rη)(t+Rη)

= (t+R)2(1 + t2R2 + 2tR Re[η])

− (1 + tR)2(t2 +R2 + 2tR Re[η])

= (t+R)2((1 + tR)2 − 2tR (1− Re[η]))

− (1 + tR)2((t+R)2 − 2tR (1− Re[η]))

= 2tR((1 + tR)2 − (t+R)2)(1− Re[η])

= 2tR(1 + t2R2 − t2 −R2)(1− Re[η])

= 2tR(1− t2)(1−R2)(1− Re[η]),

where 0 < t < 1, 0 < R < 1 and |η| = 1. Now 1 − Re[η] ≥ 0, and moreover
1− Re[η] = 0 if and only if η = 1. It follows that

(t+R)2|1 + tRη|2 ≥ (1 + tR)2|t+Rη|2

for all choices of t and z for which 0 < t < 1 and z ∈ D, and moreover

(t+R)2|1 + tRη|2 = (1 + tR)2|t+Rη|2

if and only if η = 1. Consequently

|z| = |t+Rη|
|1 + tRη|

≤ t+R

1 + tR
= S

for all choices of t and z for which 0 < t < 1 and z ∈ D, and moreover
|z| = S if and only if η = 1.

Now

ρ(0, z) = log

(
1 + |z|
1− |z|

)
.

Also
1 + |z|
1− |z|

=
2

1− |z|
− 1 and

1 + S

1− S
=

2

1− S
− 1.

We have shown that |z| ≤ S. It follows that

ρ(0, z) = log

(
1 + |z|
1− |z|

)
≤ log

(
1 + S

1− S

)
= ρ(0, t) + ρ(t, z).
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Moreover we have also shown that |z| < S unless η = 1. It follows that

ρ(0, z) = log

(
1 + |z|
1− |z|

)
< log

(
1 + S

1− S

)
= ρ(0, t) + ρ(t, z)

unless η = 1, in which case

z =
t+R

1 + tR
.

Thus if ρ(0, z) = ρ(0, t) + ρ(t, z) then z must belong to the set consisting
those real numbers whose values lie strictly between t and 1. The required
result has therefore been established.

Proposition 3.17 (Triangle Inequality) The Poincaré distance function
ρ on the open unit disk D has the property that

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3)

for all complex numbers z1, z2 and z3 belonging to the disk D.

Proof The result is immediate in cases where z1, z2 and z3 are not distinct.
Accordingly let us suppose that they are distinct. Let

t =
eδ − 1

eδ + 1
, where δ = ρ(z1, z2).

Then ρ(0, t) = ρ(z1, z2). (see Proposition 3.10). Then there exists a Möbius
transformation µ of the Riemann sphere mapping the open unit disk D onto
itself which has the properties that µ(z1) = 0 and µ(z2) = t. (see Proposi-
tion 3.15).

Let w = µ(z3). It then follows from Lemma 3.16 that

ρ(0, w) ≤ ρ(0, t) + ρ(t, w).

Now the Möbius transformation µ is an isometry with respect to the Poincaré
distance function ρ on the open unit disk D (see Proposition 3.14). Conse-
quently σ(0, w), ρ(0, t) and ρ(t, w) are respectively equal to ρ(z1, z3), ρ(z1, z2)
and ρ(z2, z3) respectively. Consequently

ρ(z1, z3) ≤ ρ(z1, z2) + ρ(z2, z3),

as required.
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3.3 Geodesics in the Open Unit Disk

Definition We say that an (open) straight line segment or circular arc within
the open unit disk {z ∈ C : |z| < 1} is complete if it is the intersection of
the open unit disk with the full circle or straight line in the complex plane
of which it forms part.

A complete straight line segment or circular arc in the open unit disk has
no endpoints in the open unit disk itself. However its closure has endpoints
that lie on the unit circle {z ∈ C : |z| = 1} that constitutes the boundary of
the open unit disk: the complete straight line segment or circular arc may
be said to join the endpoints of its closure in the complex plane.

Definition A straight line segment or circular arc Γ in the open unit disk
{z ∈ C : |z| < 1} is said to be a geodesic if it has the property that

ρ(z1, z3) = ρ(z1, z2) + ρ(z2, z3)

for all complex numbers z1, z2 and z3 positioned on the straight line segment
or circular arc Γ so that z2 occurs between z1 and z3.

Definition A complete geodesic in the open unit disk is a geodesic in that
disk which is the intersection of the open unit disk with a full straight line
or circle in the complex plane.

Definition A geodesic ray in the open unit disk is a geodesic in that disk
which is the intersection of the open unit disk with a closed straight line
segment or circular arc in the complex plane for which one endpoint lies in
the open unit disk and the other lies outside the open unit disk.

Definition A geodesic segment in the open unit disk is a geodesic that is
also a closed straight line segment or circular arc contained in the open unit
disk both of whose endpoints lie in the open unit disk.

Definition Given a point η on the unit circle in the complex plane, the
diameter of the unit disk that joins −η and η is the open straight line
segment consisting of those complex numbers that are of the form tη for
some real number t satisfying the inequalities −1 < t < 1.

Proposition 3.18 Let D be the open unit disk in the complex plane, Then
the diameter of the disk D obtained on intersecting the disk D with the real
axis of the complex plane is a complete geodesic.
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Proof Let I be the set of real numbers t satisfying |t| < 1 and let t1, t2
and t3 be real numbers satisfying −1 < t1 < t2 < t3 < 1. It follows from
Lemma 3.9 that

ρ(t1, t3) = log

(
1 + t3
1− t3

)
− log

(
1 + t1
1− t1

)
= log

(
1 + t3
1− t3

)
− log

(
1 + t2
1− t2

)
+ log

(
1 + t2
1− t2

)
− log

(
1 + t1
1− t1

)
= ρ(t1, t2) + ρ(t2, t3).

Thus I is indeed a geodesic in the open unit disk D.

Proposition 3.19 Given any two real numbers u and v satisfying −1 < u <
v < 1, the unique complete geodesic in the open unit disk that passes through
both u and v is the diameter of the disk obtained on intersecting the disk with
the real axis of the complex plane.

Proof Let Γ be a complete geodesic in the open unit disk D that passes
through u and v, and let z be chosen on Γ so that v lies between u and
z. Then ρ(u, z) = ρ(u, v) + ρ(v, z), where ρ denotes the Poincaré distance
function on D. Applying Lemma 3.16, we see that z must be a real number
between v and 1. Consequently the three points u, v and z on Γ are real
numbers. Now the geodesic Γ must be a the intersection of a straight line
or circle in the complex plane. It follows that Γ must coincide with the
intersection of the open unit disk with the real axis of the complex plane.
The result follows.

Proposition 3.20 Möbius transformations mapping the open unit disk onto
itself map geodesics onto geodesics.

Proof Let Γ be a geodesic in the open unit disk D, where D = {z ∈ C :
|z| < 1}, and let µ be a Möbius transformation that maps the open unit
disk D onto itself. Let w1, w2 and w3 be complex numbers positioned on
the image µ(Γ) of the geodesic Γ so that w2 occurs on µ(Γ) between w1 and
w3. Then there exist complex numbers z1, z2 and z3 in the open unit disk D
lying on the geodesic Γ for which µ(z1) = w1, µ(z2) = w2 and µ(z3) = w3.
Moreover z2 is positioned on Γ between z1 and z3. The definition of geodesics
then ensures that

ρ(z1, z3) = ρ(z1, z2) + ρ(z2, z3)
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Now ρ(w1, w2), ρ(w2, w3) and ρ(w1, w3) are equal to ρ(z1, z2), ρ(z2, z3) and
ρ(z1, z3) respectively, because Möbius transformations that map the open
unit disk onto itself are isometries with respect to Poincaré distance (see
Proposition 3.14) Consequently

ρ(w1, w3) = ρ(w1, w2) + ρ(w2, w3).

Thus the line segment or circular arc µ(Γ) is a geodesic, as required.

Proposition 3.21 Let A be a complete straight line segment or circular arc
in the open unit disk D. Suppose that there are complex numbers z1, z2 and
z3 on A, where z2 lies between z1 and z3, such that

ρ(z1, z3) = ρ(z1, z2) + ρ(z2, z3).

Then A is a complete geodesic in the open unit disk D, and moreover there
exists a Möbius transformation µ with the property that µ(A) is the diameter
of the open unit disk that joins −1 and 1.

Proof Let

t =
eδ − 1

eδ + 1
, where δ = ρ(z1, z2).

Then ρ(0, t) = ρ(z1, z2). (see Proposition 3.10). Then there exists a Möbius
transformation µ of the Riemann sphere mapping the open unit disk D onto
itself which has the properties that µ(z1) = 0 and µ(z2) = t. (see Proposi-
tion 3.15). Let w = µ(z3). Then

ρ(0, w) = ρ(0, t) + ρ(t, w),

because the Möbius transformation µ is an isometry of the Poincaré distance
function ρ. It now follows from Lemma 3.16 that w is a real number and
t ≤ w < 1. The complex numbers z1, z2 and z3 therefore all lie on the straight
line or circle in the complex plane that is the image of the real axis under the
inverse µ−1 of the Möbius transformation µ. But two distinct straight lines
or circles cannot pass through the three points z1, z2 and z3. Consequently
the complete arc A is contained in the image of the real axis under µ−1, and
therefore the Möbius transformation µ must map the complete arc onto the
diameter of the open unit disk that joins −1 and 1. Moreover A must itself be
a geodesic, because Möbius transformations that map the open unit disk D
onto itself map geodesics onto geodesics Proposition 3.20. This completes
the proof.
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Corollary 3.22 A complete straight line segment or circular arc A in the
open unit disk D is a complete geodesic if and only if there exists a Möbius
transformation µ that maps the straight line segment or circular arc onto a
diameter of the unit circle.

Proof If A is a complete geodesic then a direct application of Proposi-
tion 3.21 ensures that existence of a Möbius transformation mapping that
complete geodesic onto the diameter of the disk D that joins −1 and 1.

Conversely if some Möbius transformation maps a complete straight line
segment or circular arc onto a diameter, then that Möbius transformation
can be composed with a rotation of the open unit disk about zero so as to
obtain a Möbius transformation mapping the complete straight line segment
or circular arc onto the diameter of the disk that is the intersection of the
disk with the real axis of the complex plane. That diameter is a geodesic (see
Proposition 3.18), and Möbius transformations map geodesics onto geodesics
(Proposition 3.20). Consequently A must itself be a geodesic, as required.

Proposition 3.23 Given two geodesics in the open unit disk D, there exists
a Möbius transformation of the Riemann sphere that maps the open unit
disk D onto itself and maps one geodesic onto the other.

Proof Let Γ1 and Γ2 be geodesics in the open unit disk D, and let I be
the geodesic joining −1 and 1 that is the intersection of the disk D with the
real axis of the complex plane. It follows from Proposition 3.21 that there
exist Möbius transformations µ1 and µ2 of the Riemann sphere that map the
open unit disk onto itself, where µ1 maps Γ1 onto I and µ2 maps Γ2 onto
I. Then µ−12 ◦ µ1 is a Möbius transformation of the Riemann sphere that
maps the open unit disk D onto itself and also maps the geodesic Γ1 onto
the geodesic Γ2, as required.

Proposition 3.24 Given two distinct complex numbers w1 and w2 belonging
to the open unit disk in the complex plane, there exists a unique complete
geodesic in the open unit disk that passes through both w1 and w2.

Proof Let

t =

∣∣∣∣ w2 − w1

1− w1w2

∣∣∣∣ .
Then there exists a complex number η satisfying |η| = 1 for which t = µ(w2),
where µ is the Möbius transformation of the Riemann sphere that satisfies

µ(z) =
η(z − w1)

1− w1z
.

69



for all complex numbers z satisfying 1−w1z 6= 0. Then µ maps the open unit
disk onto itself and also maps w1 and w2 to 0 and t respectively. Let Γ =
{z ∈ D : µ(z) ∈ I}, where I is the diameter of the open unit disk consisting
of all real numbers lying between −1 and 1. The Möbius transformation µ
maps Γ onto the diameter I of the disk. Consequently Γ must be a geodesic
in the unit disk (Corollary 3.22). This geodesic passes through w1 and w2.

We now show that Γ is the unique complete geodesic in the open unit disk
that passes through w1 and w2. Let Γ′ be a complete geodesic in the open unit
disk that passes through w1 and w2. Then µ(Γ′) is also a complete geodesic
in the open unit disk, because Möbius transformations that map the open
unit disk onto itself map geodesics onto geodesics (Proposition 3.20). But the
distinct real numbers u and v lie on µ(Γ′). It follows from Proposition 3.19
that µ(Γ′) is the diameter I of the open unit disk consisting of all real numbers
between −1 and 1. Consequently Γ′ ⊂ Γ. The completeness of Γ′ then
ensures that Γ′ coincides with Γ. Thus the complete geodesic Γ is indeed
uniquely determined by w1 and w2, as required.

Proposition 3.25 A complete straight line segment or circular arc in the
unit disk is a complete geodesic if and only if the circle in the complex plane
of which it forms part intersects the unit circle at right angles.

Proof A complete straight line segment or circular arc A in the open unit
disk D is a complete geodesic if and only if there exists a Möbius transfor-
mation µ that maps the arc onto a diameter of the unit circle (see Corol-
lary 3.22).

The diameters of a circle intersect the circle at right angles, and angles
between intersecting straight lines and circles are preserved under the action
of Möbius transformations (see Proposition 1.25). Consequently if a complete
circular arc is a geodesic then the circle of which it forms a part must intersect
the unit circle at right angles.

Conversely suppose that a complete circular arc A in the unit circle forms
part of a circle that intersects the unit circle at right angles at z1 and z2,
where |z1| = 1 and |z2| = 1. There then exists a Möbius transformation µ
mapping the unit disk D onto itself for which µ(z1) = −1 and µ(z2) = 1
(see Lemma 3.4). The image µ(A) of the circular arc A under µ then in-
tersects the boundary circle at right angles at −1 and 1, because Möbius
transformations are angle-preserving. But Möbius transformations map cir-
cular arcs to circular arcs or straight lines. It follows that µ(A) must be the
diameter of the unit circle that is the intersection of the open unit disk with
the real axis. Consequently the complete circular arc A must be a geodesic
(Corollary 3.22). The result follows.
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3.4 The Group of Hyperbolic Motions of the Disk

Definition LetX be a subset of the complex plane. A collection of invertible
transformations of the set X is said to be a transformation group acting on
the set X if the following conditions are satisfied:

(i) the identity transformation belongs to the collection;

(ii) any composition of transformations belonging to the collection must
itself belong to the collection;

(iii) the inverse of any transformation belonging to the collection must itself
belong to the collection.

The collection of all Möbius transformations of the Riemann sphere that
map the open unit disk {z ∈ C : |z| < 1} onto itself is a transformation group
acting on the open unit disk. Indeed the identity transformation is a Möbius
transformation mapping the open unit disk onto itself, the composition of
any two Möbius transformations that each map the open unit disk onto itself
must also map the open unit disk onto itself, and the inverse of any Möbius
transformation that maps the open unit disk onto itself must also map the
open unit disk onto itself.

Definition Let D be the open unit disk in the complex plane, defined so
that D = {z ∈ C : |z| < 1}, and let κ:D → D be the transformation of
the open unit disk defined so that κ(z) = z for all z ∈ D, where z denotes
the complex conjugate of the complex number z. A transformation of the
open unit disk is said to be a hyperbolic motion of the unit disk if either
it is a Möbius transformation mapping the unit disk D onto itself or else it
expressible as a composition of transformations of the form µ ◦ κ, where µ is
a Möbius transformation mapping the open unit disk onto itself.

Definition An invertible transformation of the open unit disk D is said to
be orientation-preserving if, for each w ∈ D, paths that encircle w once in
the anticlockwise direction are mapped to paths that encircle the image of w
once in the anticlockwise direction.

Definition An invertible transformation of the open unit disk D is said to
be orientation-reversing if, for each w ∈ D, paths that encircle w once in
the anticlockwise direction are mapped to paths that encircle the image of w
once in the clockwise direction.
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Möbius transformations that map the open unit disk D onto itself are
orientation-preserving.

The transformation κ:D → D that maps each complex number z in D to
its complex conjugate z is orientation-reversing. Consequently a composition
of two transformations in which some Möbius transformation follows the
complex conjugation transformation κ is orientation-reversing.

Orientation-preserving hyperbolic motions are the analogues, in hyper-
bolic geometry, of transformations of the flat Euclidean plane that can be
represented as the composition of a rotation followed by a translation.

Orientation-reversing hyperbolic motions are the analogues, in hyperbolic
geometry, of reflections and glide reflections of the flat Euclidean plane.

Proposition 3.26 Let D be the open unit disk in the complex plane, con-
sisting of those complex numbers z that satisfy |z| < 1. Then, given any
orientation-preserving hyperbolic motion ϕ of the open unit disk D, there
exist complex numbers a and b, where |b| < |a|, such that

ϕ(z) =
az + b

b z + a
for all z ∈ D.

Similarly, given any orientation-reversing hyperbolic motion ϕ of the open
unit disk D, there exist complex numbers a and b, where |b| < |a| such that

ϕ(z) =
a z + b

b z + a
for all z ∈ D.

Proof This result follows directly on applying Proposition 3.7.

Proposition 3.27 The collection of all hyperbolic motions of the open unit
disk is a transformation group acting on the open unit disk.

Proof The identity transformation is a Möbius transformation that maps
the open unit disk onto itself and is thus a hyperbolic motion. Next let µ1

and µ2 be Möbius transformations that map the open unit disk onto itself,
Then κ◦µ2 ◦κ is also a Möbius transformation that maps the open unit disk
onto itself. Indeed there exist complex numbers a2 and b2, where |b2| < |a2|,
such that

µ2(z) =
a2z + b2

b2 z + a2

for all complex numbers z for which b2 z+a2 6= 0 (see Proposition 3.7). Then

κ(µ2(κ(z))) =
a2z + b2
b2 z + a2

,
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and therefore κ ◦ µ ◦ κ is also a Möbius transformation that maps the open
unit disk D onto itself. Now

µ1 ◦ (µ2 ◦ κ) = (µ1 ◦ µ2) ◦ κ, (µ1 ◦ κ) ◦ µ2 = (µ1 ◦ (κ ◦ µ2 ◦ κ)) ◦ κ

and
(µ1 ◦ κ) ◦ (µ2 ◦ κ) = µ1 ◦ (κ ◦ µ2 ◦ κ).

Moreover µ1 ◦ µ2 and µ1 ◦ (κ ◦ µ2 ◦ κ), being compositions of Möbius trans-
formations that map the open unit disk onto itself, are themselves Möbius
transformations that map the open unit disk onto itself. It follows from this
observation that any composition of hyperbolic motions of the open unit disk
is itself a hyperbolic motion of the open unit disk. Also

(µ2 ◦ κ)−1 = κ ◦ µ−12 = (κ ◦ µ−12 ◦ κ) ◦ κ,

and the inverse of any Möbius transformation that maps the open unit disk
onto itself must itself be a Möbius transformation that maps the open unit
disk onto itself. Consequently the inverse of any hyperbolic motion is itself a
hyperbolic motion. It follows that the collection of all hyperbolic motions of
the open unit disk is indeed a transformation group acting on the open unit
disk.

Proposition 3.28 Let Γ be a complete geodesic in the open unit disk D.
Then there exists an orientation-reversing hyperbolic motion ϕ with the prop-
erty that ϕ(z) = z for all complex numbers z that lie on the geodesic Γ and
also those points of the open unit disk D that lie on one side of the geodesic Γ
are mapped by points that lie on the other side of Γ.

Proof Let I be the set of real numbers t that satisfy the inequalities −1 <
t < 1. Then I is a complete geodesic in the open unit disk D. There
then exists a Möbius transformation µ that maps the geodesic I onto the
geodesic Γ. (see Proposition 3.21 or Proposition 3.23). Let ϕ = µ ◦ κ ◦ µ−1,
where κ(z) = z for all z ∈ D. Then the orientation-reversing hyperbolic
motion Γ has the required properties.

Proposition 3.29 Let z1, w1, z2 and w2 be complex numbers belonging to
the open unit disk D. Suppose that ρ(z1, w1) = ρ(z2, w2), and suppose also
that one of the sides of the geodesic Γ1 in D passing through z1 and w1 has
been chosen, and that one of the sides of the geodesic Γ2 in D passing through
z2 and w2 has also been chosen. Then there exists a hyperbolic motion ϕ with
the following properties: ϕ(z1) = z2; ϕ(w1) = w2; ϕ maps complex numbers
on the chosen side of the geodesic Γ1 to complex numbers on the chosen side
of the geodesic Γ2.
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Proof It follows from Proposition 3.15 there exists a Möbius transformation
that maps the open unit disk onto itself and also maps z1 and w1 to z2
and w2 respectively. If this Möbius transformation does not itself map the
chosen side of Γ1 to the chosen side of Γ2, then it may be composed with an
orientation-reversing hyperbolic motion that fixes all complex numbers of the
geodesic Γ2 whilst mapping complex numbers on one side of Γ2 to complex
numbers on the other side. The result follows.

3.5 The Hyperbolic Centre of a Circle in the Disk

Proposition 3.30 Let w be a complex number belonging to the open unit
disk D in the complex plane, and let ρ denote the Poincaré distance function
on D. Let δ be a positive real number. Then

{z ∈ D : ρ(z, w) < δ} =

{
z ∈ D :

∣∣∣∣ z − w1− w z

∣∣∣∣ < R

}
,

where

R =
eδ − 1

eδ + 1
.

Proof Let

µw(z) =
z − w
1− wz

for all complex numbers z. Then µw is a Möbius transformation mapping
the open unit disk onto itself for which µw(w) = 0 (see Corollary 3.6). Now
Möbius transformations mapping the open unit disk onto itself are isome-
tries with regard to the Poincaré distance function (see Proposition 3.14).
Consequently

{z ∈ D : ρ(z, w) < δ} = {z ∈ D : ρ(µw(z), 0) < δ}.

The required result now follows on applying Proposition 3.10.

Definition Let D be the open unit disk in the complex plane that consists
of those complex numbers z satisfying |z| < 1, and let C be a circle in the
complex plane that is contained within D. A complex number w is said to
be the hyperbolic centre of the circle C if the Poincaré distance between z
and w is the same for all points z that lie on the circle C.

Proposition 3.31 Let C be a circle in the complex plane that is contained
within the open unit disk D. Suppose that the circle C intersects the real
axis at real numbers u and v, where −1 < u < v < 1. Suppose also that
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the hyperbolic centre of the circle C lies on the real axis, and is located at t,
where u < t < v. Then (

1 + t

1− t

)2

=
(1 + u)(1 + v)

(1− u)(1− v)
.

Proof Applying Lemma 3.9, we find that t, u and v must satisfy the identity

log

(
1 + v

1− v

)
− log

(
1 + t

1− t

)
= log

(
1 + t

1− t

)
− log

(
1 + u

1− u

)
.

Consequently

2 log

(
1 + t

1− t

)
= log

(
1 + u

1− u

)
+ log

(
1 + v

1− v

)
.

The required result then follows on taking the exponential of both sides of
this identity.
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