The First Twenty-Eight Propositions of Euclid (Euclidean and Non-Euclidean Geometry)

D. R. Wilkins
Copyright © David R. Wilkins 2021

Contents

Euclidean Proposition 1 1
Euclidean Proposition 2 2
Euclidean Proposition 3 3
Euclidean Proposition 4 4
Euclidean Proposition 5 5
Euclidean Proposition 6 6
Euclidean Proposition 7 7
Euclidean Proposition 8 11
Euclidean Proposition 9 12
Euclidean Proposition 10 13
Euclidean Proposition 11 14
Euclidean Proposition 12 15
Euclidean Proposition 13 16
Euclidean Proposition 14 17
Euclidean Proposition 15 18
Euclidean Proposition 16 19
Euclidean Proposition 17 20
Euclidean Proposition 18 21
Euclidean Proposition 19 22
Euclidean Proposition 20 23
Euclidean Proposition 21 24
Euclidean Proposition 22 25
Euclidean Proposition 23 26
Euclidean Proposition 24 27
Euclidean Proposition 25 28
Euclidean Proposition 26 30
Euclidean Proposition 27 32
Euclidean Proposition 28 33

Euclidean Proposition 1 (Construction) On a straight line segment $A B$ in the Euclidean plane, to construct an equilateral triangle $A B C$.

Construction To construct the equilateral triangle, first draw a circle in the Euclidean plane passing though the point B with centre at the point A. Also draw a circle in the Euclidean plane passing through the point A with centre at the point B. Now the second circle passes though the centre of the first circle, but also passes through points that lie outside the first circle. Consequently there are points at which those two circles intersect. Let C be a point at which the two circles intersect, and construct the triangle with vertices at A, B and C. Then the straight line segments $A B$ and $A C$ are equal in length because the points B and C lie on a circle whose centre is located at the point A. Similarly the straight line segments $A B$ and $B C$ are equal in length, because the points A and C lie on a circle whose centre is located at the point B. Consequently the triangle $A B C$ is the required equilateral triangle.

Euclidean Proposition 2 (Construction) To place at a point A of the Euclidean plane a straight line segment equal in length to a given straight line segment $B C$.

Construction First construct an equilateral triangle $A B D$ on the straight line segment $A B$ (Proposition 1). Then draw a circle in the Euclidean plane passing though the point C whose centre is located at the point B. Let the straight line segment $D B$ be produced beyond B to intersect that circle just constructed at the point G. Then draw a circle in the Euclidean plane passing through the point G whose centre is located at the point D. Then let the straight line segment $D A$ be produced beyond A to meet this new circle at the point L. Then the straight line segments $D G$ and $D L$ are equal with respect to length. Also the parts $D B$ and $D A$ of those straight line segments are equal with respect to length. Consequently the remainders $B G$ and $A L$ are equal with respect to length. But the straight line segment $B C$ is also equal in length to the straight line segment $B G$, because the points C and G are located on a circle in the Euclidean plane whose centre is located at the point B. Consequently the straight line segments $B C, B G$ and $A L$ are all equal to one another with respect to length, and thus $A L$ is the required straight line segment.

Euclidean Proposition 3 (Construction) Given two unequal straight line segments $A B$ and C in the Euclidean plane, to cut off from the longer straight line segment $A B$ a straight line segment equal in length to the shorter straight line segment C.

Construction First construct a straight line segment $A D$, with one endpoint at the point A, so that $A D$ is equal to C with respect to length. Then draw a circle through the point D whose centre is located at the point A, and let that circle intersect the straight line segment $A B$ at the point E. Then $A E$ is the required straight line segment cut off from the segment $A B$.

Euclidean Proposition 4 (SAS Congruence Rule) If two triangles $A B C$ and $D E F$ in the Euclidean plane have the two sides $A B, A C$ equal in length to the two sides $D E, D F$ respectively, and have the contained angles $B A C$ and $E D F$ equal to one another, then the triangles $A B C$ and $D E F$ are congruent, and thus the sides $B C$ and $E F$ are equal to one another in length, and the angles of the triangle $A B C$ at B and C are equal to the angles of the triangle $D E F$ at E and F respectively.

Proof The sides $A B$ and $D E$ of the respective triangles $A B C$ and $D E F$ are equal in length. Consequently there exists a Euclidean motion φ of the Euclidean plane, preserving both the Euclidean distance between pairs of points and the angles between straight line segments at the points at which they intersect, where this Euclidean motion φ maps the points A and B of the Euclidean plane onto the points D and E of that plane, and also maps any point of the Euclidean plane that lies on the same side of the straight line $A B$ as the point C to some point that lies on the same side of the straight line $D E$ as the point F. The equality of the angles $B A C$ and $E D F$ then ensures that points on the straight ray starting from the point A and passing through the point C are mapped to points of the straight ray starting from the point D and passing through the point F. But the straight line segments $A C$ and $D F$ are also equal in length. It follows that the Euclidean motion φ must map the point C to the point F. Thus

$$
\varphi(A)=D, \quad \varphi(B)=E \quad \text { and } \quad \varphi(C)=F .
$$

Now the distance-preserving property of the Euclidean motion φ ensures that $B A, A C$ and $B C$ are equal to $E D, D F$ and $E F$ respectively with regard to length. Also the angle-preserving property of the Euclidean motion φ ensures that the angles $B A C, A B C$ and $B C A$ are equal to angles $E D F, D E F$ and $E F D$ respectively. The result follows.

Euclidean Proposition 5 (Isosceles Geodesic Triangles) Let $A B C$ be an isosceles triangle in the Euclidean plane, and let the equal sides $A B$ and $A C$ be produced to points D and E. Then the angles $C B D$ and $B C E$ under the base $B C$ are equal to one another, as are the angles $A B C$ and $A C B$ of the isosceles triangle $A B C$ at the endpoints B and C of the base.

Proof Let points F and G be constructed on the straight lines $A D$ and $A E$ so that B lies between A and F, C lies between A and G and $B F$ is equal to $C G$ wih respect to length (Proposition 3). Now the straight line segments $A B$ and $A C$ are equal in length. Consequently the straight line segments $A F$ and $A C$ are equal in length to the finite straight lines $A G$ and $A B$ respectively. It therefore follows from the SAS Congruence Rule (Proposition 4) that the triangles $A F C$ and $A G B$ are congruent, and consequently the sides $F C$ and $G B$ are equal to one another in length. Moreover the angles $B F C$ and $C G B$, being identical to the angles $A F C$ and $A G B$ respectively, are equal to one another. Consequently the triangles $B F C$ and $C G B$ are congruent. It then follows that the angles $C B D$ and $B C E$, being identical to the angles $C B F$ and $B C G$ respectively, are equal to one another. Thus the angles under the base of the isosceles triangle $A B C$ are equal to one another. Now the congruence of the triangles $B F C$ and $C G B$ also ensures that the angles $B C F$ and $C B G$ are equal to one another. We previously showed that the triangles $A F C$ and $A G B$ are congruent, from which it follows that the angles $A C F$ and $A B G$ are equal to one another. Subtracting the equal angles $B C F$ and $C B G$ from the equal angles $A C F$ and $A B G$, we conclude that the angles $A B C$ and $A C B$ are equal to one another. Thus the angles of the isosceles triangle $A B C$ at the endpoints B and C of the base are equal to one another, as required.

Euclidean Proposition 6 (Converse of Proposition 5) If in a triangle $A B C$ in the Euclidean plane two angles B and C be equal to one another, the sides $A C$ and $A B$ which subtend the equal angles will also be equal to one another.

Proof Suppose that the two sides $A C$ and $A B$ were not equal to one another with respect to length. Then one would be longer than the other. Suppose therefore that the side $A B$ were longer than the side $A C$. We would then be able to cut off from $A B$ a straight line segment $B D$ equal in length to the side $A C$ of the triangle. Applying the SAS Congruence Rule (Proposition 4), we would then conclude that the triangles $A B C$ and $D C B$ would be congruent, and therefore the angles $A B C$ and $A C D$ would be equal to one another. But the angles $A B C$ and $A C B$ are equal to one another. Thus, under the assumption that the straight line segment $B D$ is equal to $A C$, we would have to conclude that the angles $A C B$ and $D C B$ would be equal to one another. But this is impossible since $D C B$ would also be a proper part of the angle $A C B$. Consequently neither of the sides $A B$ and $A C$ can be longer than the other, and therefore these two sides are equal in length, as claimed.

Euclidean Proposition 7 Given a straight line segment $A B$ in the Euclidean plane, there cannot be constructed two distinct triangles $A B C$ and $A B D$ on the same side of the straight line $A B$ with the properties that the sides $A C$ and $A D$ are equal to one another in length and the sides $B C$ and $B D$ are also equal to one another in length.

Proof Let C be a point of the Euclidean plane that does not lie on the complete straight line that passes through the points A and B, where A and B are distinct. Now it is not possible to find any point D distinct from the point C but lying on the straight ray starting at the point A and passing through the point C so as to make the straight line segments $A C$ and $A D$ equal to one another in length and also make the straight line segments $B C$ and $B D$ equal in length. Similarly it is not possible to find any point D distinct from the point C but lying on the straight ray starting at the point A and passing through the point C so as to make the straight line segments $A C$ and $A D$ equal to one another in length and also make the straight line segments $B C$ and $B D$ equal in length. We may therefore restrict our attention to cases in which the point D does not lie on the straight rays starting at the points A and B that pass through the point C.

Now the removal of these two straight rays divides the side of the Euclidean plane to which the point C belongs into four regions. A complete investigation of all relevant cases therefore needs to consider the following four cases:-

Case (i): this is the case where the point D lies inside the angle $B A C$ but outside the angle $A B C$;

Case (ii): this is the case where the point D lies inside the angle $B A C$ and also inside the angle $A B C$;

Case (iii): this is the case where the point D lies outside the angle $B A C$ but inside the angle $A B C$;

Case (iv): this is the case where the point D lies outside the angle $B A C$ and also outside the angle $A B C$.

Now it should be noted that the point D lies outside the angle $B A C$ if and only if the point C lies inside the angle $B A D$, and the point D lies inside the angle $B A C$ if and only if the point C lies outside the angle $B A D$. Consequently the four cases to consider are the following:

Case (i): this is the case where the point D lies inside the angle $B A C$ but outside the angle $A B C$;

Case (ii): this is the case where the point D lies inside the angle $B A C$ and also inside the angle $A B C$;

Case (iii): this is the case where the point C lies inside the angle $B A D$ but outside the angle $A B D$;

Case (iv): this is the case where the point C lies inside the angle $B A D$ and also inside the angle $A B D$.

A comparison of these characterizations of the cases shows that the result in cases (iii) and (iv) follows from the corresponding result in cases (i) and (ii) on interchanging the roles of the points C and D. Thus to prove the proposition in full generality, it only remains to prove the result in cases (i) and (ii).

Accordingly we first prove the result in case (i). Accordingly suppose that the straight line segments $A C$ and $A D$ are equal in length and that the point D lies in the angle $B A C$ but outside the triangle $A B C$. This is the configuration depicted in the following figure:

Join the points C and D by a straight line segment. Then $A C D$ is an isosceles triangle with equal sides $A C$ and $A D$, and consequently the angles $A C D$ and $A D C$ at the base of the triangle are equal. Now the points A

and D lie on the opposite sides of the straight line that passes through the points B and C, and consequently the point B lies in the interior of the angle $A C D$. The angle $B C D$ between the straight line segments $C B$ and $C D$ at the point C is therefore less than the angle $A C D$ between the straight line segments $C A$ and $C D$ at that point.

Also, considering angles at the point D, it can be seen that the points A and C lie on the same side of the straight line passing through D and B, and the points A and B lie on the same side of the straight line passing through D and C. Consequently the point A lies in the interior of the angle $B D C$ between the straight line segments $D B$ and $D C$, and therefore the angle $A D C$ is less than $B C D$.

We have now demonstrated the following: the angle $B C D$ is less than the angle $A C D$; the angle $A C D$ is equal to the angle $A D C$; the angle $A D C$ is less than the angle $B D C$. It follows that the angle $B C D$ is less than the angle $B D C$. Consequently the triangle $B C D$ is not an isosceles triangle with equal sides $B C$ and $B D$, for it it were, we would have arrived at a result contradicting Proposition 5. We have thus shown that, in case (i), if the straight line segments $A C$ and $A D$ are equal to one another in length, then the straight line segments $B C$ and $B D$ must by unequal in length.

We now turn our attention to case (ii). In this case the configuration is as depicted in the following diagram:

In this case the point D lies in the interior of the triangle $A B C$.
We produce the straight line segements $A C$ and $A D$ to points E and F of the Euclidean plane, so that the points E and F are joined to the point A
by straight lines passing through the points C and D respectively.
Suppose that the straight line segments $A C$ and $A D$ are equal in length. It then follows from Proposition 5 that the angles $E C D$ and $F D C$ are equal, because they are the angles under the base of an isosceles triangle. Now, in this case, the points D and E of the Euclidean plane lie on opposite sides of the straight line passing through the points B and C and therefore the angle $E C D$ between the finite straight lines $C E$ and $C D$ is greater than the angle $E C B$ between the straight line segments $C E$ and $C B$. Also the point F lies in the interior of the angle $C D B$ between the straight line segments $A D$ and $D B$, and therefore the angle $C D F$ between the straight line segments $D C$ and $D F$ is less than the angle $C D B$ between the straight line segments $D C$ and $D B$.

We have now demonstrated the following: the angle $B C D$ is less than the angle $E C D$; the angle $E C D$ is equal to the angle $F D C$; the angle $F D C$ is less than the angle $B D C$. It follows that the angle $B C D$ is less than the angle $B D C$. Consequently the triangle $B C D$ is not an isosceles triangle with equal sides $B C$ and $B D$, for it it were, we would have arrived at a result contradicting Proposition 5. We have thus shown that, in case (ii), if the straight line segments $A C$ and $A D$ are equal to one another in length, then the straight line segments $B C$ and $B D$ must by unequal in length.

As explained previously, the required result in cases (iii) and (iv) follows from the results proved in cases (i) and (ii) on interchanging the roles of the points C and D. Consequently the result of Proposition 7 has been proved in full generality, as required.

Euclidean Proposition 8 (SSS Congruence Rule) If, in triangles $A B C$ and $D E F$ in the Euclidean plane, the sides $A B, B C, C A$ of the triangle $A B C$ are respectively equal to the sides $D E, E F$ and $F D$ in length, then the triangles are congruent, and consequently the angles between the sides of of the triangle $A B C$ at the vertices A, B and C are respectively equal to the angles between the sides of the triangle $D E F$ at the vertices D, E and F.

Proof The straight line segments $B C$ and $E F$ are equal in length, and therefore there exists a Euclidean motion φ of the Euclidean plane that maps the points B and C onto the points E and F respectively, where this Euclidean motion φ preserves both the lengths of straight line segments and that angles between straight line segments at their points of intersection. Moreover the Euclidean motion φ may be chosen so that it maps the point A onto a point G of the Euclidean plane that lies on the same side of the straight line through the points E and F as the point D. The sides $G E, E F$ and $F G$ of the triangle $G E F$ are respectively equal to the sides $A B, B C$ and $C A$ of the triangle $A B C$, because

$$
\varphi(A)=G, \quad \varphi(B)=E \quad \text { and } \quad \varphi(C)=F .
$$

But the sides $A B, B C$ and $C A$ of the triangle $A B C$ are respectively equal in length to the sides $D E, E F, F D$ of the triangle $D E F$. Consequently the sides $G E, E F$ and $F G$ of the triangle $G E F$ are respectively equal in length to the sides $D E, D F$ and $F A$ of the tringle $D E F$. It now follows immediately from Proposition 7 that the points D and G coincide. Consequently the triangles $A B C$ and $D E F$ are congruent, as required.

Euclidean Proposition 9 (Construction) To bisect the angle between two straight lines in the Euclidean plane at a point at which they intersect.

Construction We seek to bisect the angle between two straight line segments $A B$ and $A C$ that intersect at a point A of the Euclidean plane. Take points D and E on the straight line segments $A B$ and $A C$ respectively, chosen so that $A D$ and $A E$ are equal in length. (The possibility of finding such points D and E is guaranteed by Proposition 3, and can be achieved in practice by choosing a point D and E to be the points where a circle of sufficiently small radius in the Euclidean plane with centre A intersects the straight line segments $A B$ and $A C$.) Then construct the equilateral triangle $D E F$ on the straight line segment $D E$ so that the points A and F of the Euclidean plane lie on opposite sides of the straight line that passes through the points D and F. Then join the points A and F be a straight line segment. It can be shown that this straight line segment bisects the angle $B A C$.

To prove this, note that the sides $A D, D F$ and $A F$ of the triangle $A D F$ are equal in length to the sides $A E, E F$ and $A F$ respectively of the sides of the triangle $A E F$. Applying the SSS Congruence Rule (Proposition 8), we conclude that those two triangles are congruent to one another, and therefore the angles $D A F$ and $E A F$ of those triangles at the vertex A are equal to one another. The angle $B A C$ between the straight line segments $A B$ and $A C$ is thus bisected by the straight line segment $A F$.

Euclidean Proposition 10 (Construction) To bisect a straight line segment in the Euclidean plane.

Construction Let A and B be points in the Euclidean plane. It is required to bisect the straight line segment $A B$ by locating a point D on that straight line segment for which the straight line segments $A D$ and $D B$ are equal to one another in length. To achieve this, construct an equilateral triangle $A B C$ on the straight line segment $A B$ (Proposition 1), and bisect the angle $A C B$ between the sides $C A$ and $C B$ of this triangle by a straight ray which intersects the straight line segment $A B$ at the point D (Proposition 9). The sides $A C$ and $C D$ of the triangle $A C D$ are respectively equal in length to the sides $B C$ and $C D$ of the triangle $B C D$, and the included angles $A C D$ and $B C D$ are equal. It follows on applying the SAS Congruence Rule (Proposition 4) that the triangles $A C D$ and $B C D$ are congruent. Consequently the sides $A D$ and $B D$ of those triangles are equal in length, and thus the straight line segment $A B$ has been bisected at the point D.

Euclidean Proposition 11 (Construction) At a point C on a straight line in the Euclidean plane that passes through distinct points A and B, to draw a straight line segment $C F$ that intersects the straight line $A B$ at right angles at the point C.

Construction Take points D and E on the straight line $A B$, lying on either side of the chosen point C so that the straight line segments $D C$ and $C E$ are equal in length. (This can be achieved by letting D and E be the points at which a circle with centre C intersects the straight line $A B$.) Then construct an equilateral triangle $D F E$ on the straight line segment $D E$ (Proposition 1), and join the points C and F by a straight line segment. Now the sides $D F$, $F C$ and $D C$ of the triangle $D F C$ are respectively equal in length to the sides $E F, F C$ and $E C$ of the triangle $E F C$. It follows on applying the SSS Congruence Rule (Proposition 8) that the angles $D C F$ and $E C F$ are equal to one another. Consequently the straight line segment $C F$ meets the straight line $A B$ at right angles at the chosen point C of the straight line C, and thus the requirements of the construction have been achieved.

Euclidean Proposition 12 (Construction) To draw a straight line segment from a given point C of the Euclidean plane to a point H lying on a given straight line $A B$ in the Euclidean plane that does not pass though the given point C, where the straight line segment $C H$ intersects the given straight line $A B$ at right angles at the point H.

Construction Take a point D in the Euclidean plane so that the points C and D lie on opposite sides of the straight line $A B$. Then the circle in the Euclidean plane with centre C intersects the straight line $A B$ at two points G and E. Let the straight line segment $G E$ be bisected at the point H (Proposition 10), and join the points G and E and H to the point C by straight line segments. Now the sides $G C, C H$ are $G H$ of the triangle $G C H$ are respectively equal in length to the sides $E C, C H$ and $H E$ of the triangle $E C H$. Applying the SSS Congruence Rule (Proposition 8), it follows that the triangles $G C H$ and $E C H$ are congruent, and consequently the angles $G H C$ and $E H C$ are equal to one another. Thus the straight line segment $C H$ meets the straight line $A B$ at right angles at the point H, as required.

Euclidean Proposition 13 (Supplementary Angles) If a straight line segment $B A$ be taken intersecting a straight line $D C$ at a point B between C and D, then the sum of the angle $A B C$ with its supplementary angle $A B D$ is equal to two right angles.

Proof Let the straight line segment $B E$ be taken with an endpoint at the point B so as to intersect the straight line $C D$ at right angles at the point B, ensuring that the points A and E lie on the same side of the straight line $C D$. Suppose that the point A lies in the interior of the angle $C B E$. Then the sum of the two angles $D B A$ and $A B C$ is equal to the sum of the three angles $D B E, E B A$ and $A B C$, and is thus equal to sum of the two right angles $D B E$ and $E B C$. A similar argument applies when the point A lies in the interior of the angle $D B E$, and the result is immediate when the point A lies on the straight ray $A E$. Thus the required result can be established in all relevant cases.

Euclidean Proposition 14 (Adjacent angles summing to two right angles) If straight line segments $D B$ and $B C$ in the Euclidean plane make angles at the point B with a straight line segment $A B$ that sum to two right angles, where the points C and D lie on opposite sides of $A B$, then some straight line passes though the three points D, B and C.

Proof Suppose that the straight line segments $D B$ and $B C$ were not both parts of a single straight line in the Euclidean plane passing through the points C and D. Then the straight line segment $D B$ could be produced to a point E that does not lie on the straight line passing through the points B and C. Suppose that the point E were located on the same side of the straight line segment $B C$ as the point A. Then the angle $A B E$ would be less than the angle $A B C$. But the angles $D B A$ and $A B E$ must sum to two right angles. Consequently the angles $D B A$ and $A B C$ would sum to more than two right angles, contradicting the conditions of the proposition. A similar argument shows that the points A and E cannot lie on opposite sides of the straight line $B C$. Consequently the straight line segments $D B$ and $B C$ must be parts of a single straight line that passes though the points D, B and C, as required.

Euclidean Proposition 15 (Vertically-opposite angles) If straight lines $A B$ and $C D$ intersect at some point E then the vertically opposite angles $A E D$ and $B E C$ are equal to one another, as are the vertically opposite angles $C E A$ and $D E B$.

Proof If the angle $C A E$ is added to either of the angles $A E D$ or $B E C$, then the sum of the relevant angles is equal to two right angles. But where the same angle is subtracted from equal angle sums, the remaining angles or angle sums are equal. Consequently the angles $E A D$ and $B E C$ are equal to one another. Similarly the angles $C E A$ and $D E B$ are equal to one another, as required.

Euclidean Proposition 16 (Exterior angle greater than interior and opposite angles) Let a side $B C$ of a triangle $A B C$ in the Euclidean plane be produced past B to a point C. Then the external angle $A C D$ of the triangle at C is greater than the internal and opposite angles of the triangle $A B C$ at the vertices A and B.

Proof Bisect the side $A C$ of the triangle $A B C$ at E, and produce the straight line segment $B E$ past E to a point F so that the segments $B E$ and $E F$ of the straight line $B F$ are equal in length. Then the straight line segments $E A$ and $E B$ are respectively equal in length to the finite straight lines $E C$ and $E F$, and moreover the included angles $A E B$ and $C E F$ are vertically-opposite angles, and are therefore equal to one another (Proposition 15). Applying the SAS Congruence Rule (Proposition 4), we see that the triangles $E A B$ and $E C F$ are congruent, and therefore the angle $E C F$ is equal to the angle $E A B$. But the points A and F all lie on the same side of the straight line in the Euclidean plane that passes through the points B, C and D. Consequently the angle $E C F$ is less than the angle $E C D$. It follows that the internal angle $C A B$ of the triangle $A B C$ at A is less than the external angle $A C D$ of the triangle $A B C$ at C. Similarly the angle $A B C$ of the given triangle at the point B is less than the external angle $B C G$ of that triangle. But the external angles $A C D$ and $B C G$ of the triangle $A B C$ at the vertex C are equal to one another, because they are vertically-opposite angles (Proposition 15). Thus the internal angles of the triangle $A B C$ are the vertices A and B are both less than the external angles of that triangle at the vertex C. The result follows.

Euclidean Proposition 17 In any triangle in the Euclidean plane, two angles taken together in any manner are less than two right angles.

Proof Let $A B C$ be a triangle in the Euclidean plane. We must show that two angles of the triangle $A B C$ taken together are less than two right angles.

To show this let the straight line $B C$ be produced beyond C to D, ensuring that $B D$ is a straight line. Then the interior angle $A B C$ of the triangle at the vertex B is less than the exterior angle $A C D$ of that triangle at C. It follows, on adding the angle $A C B$ to each of $A B C$ and $A C D$, that the sum of the angles $A B C$ and $A C B$ is less than the sum of the angles $A C D$ and $A C B$, and is therefore less than two right angles (Proposition 13). Consequently the sum of the interior angles $A B C$ and $A C B$ of the triangle $A B C$ at vertices B and C is less than two right angles. Similarly the sum of the interior angles of the triangle at vertices A and B is less than two right angles, as is the sum of the interior angles of that triangle at A and C. This completes the proof.

Euclidean Proposition 18 In a triangle $A B C$ in the Euclidean plane, if the side $A C$ is greater in length than the side $A B$, then the angle $A B C$ that is subtended by the greater side is greater than the angle $A C B$ that is subtended by the lesser side.

Proof Let a straight line segment $A D$ be cut off from the greater side $A C$ so that $A D$ is equal in length to the lesser side $A B$ (Proposition 3), and let the points B and D be joined by a straight line segment. Then $A B D$ is an isoceles triangle, and therefore the angles $A B D$ and $A D B$ are equal to one another (Proposition 5). Now $A D B$ is an external angle of the triangle $B C D$. It follows that the angle $A D B$ is greater than the internal angle $B C D$ of that triangle at the vertex C (Proposition 16). Morever the angles $B C D$ and $B C A$ are identical. Also the angle $A B D$ is less than the angle $A B C$. Consequently the angle $A C B$, being less than $A D B$, and thus less than $A B D$, must be less than $A B C$, as required.

Euclidean Proposition 19 In a triangle $A B C$ in the Euclidean plane, if the angle $A B C$ is greater than the angle $A C B$, then the side $A C$ that subtends the greater angle is greater in length than the side $A B$ that subtends the lesser angle.

Proof Suppose that, in the triangle $A B C$, the angle $A B C$ is greater than the side $A C B$. If the side $A C$ were equal in length to the side $A B$ then the angle $A B C$ would be equal to the angle $A C B$ (Proposition 5). But it is not. If the side $A C$ were less than the side $A B$ in length then the angle $A B C$ would be less than $A C B$ (Proposition 18). But it is not. Therefore the side $A C$ must be greater in length than the side $A B$, as claimed.

Euclidean Proposition 20 In a triangle in the Euclidean plane, two sides taken together in any manner are greater in length than the remaining one.

Proof Let $A B C$ be a triangle in the Euclidean plane. Produce the side $B A$ of the triangle beyond A to D so as to ensure that the part $A D$ of the straight line $B D$ is equal in length to the side $A C$ of the triangle (Proposition 3). Then $A C D$ is an isosceles triangle in which the sides $A C$ and $A D$ are equal in length. It then follows that the angles $A C D$ and $A D C$ are equal (Proposition 5). Consequently the angle $B C D$ is greater than the angle $B D C$, and therefore the straight line segment $B D$ is greater in length than the straight line segment $B C$. But the sides $A B$ and $A C$ of the triangle $A B C$ taken together are equal to $B D$. Consequently the sides $A B$ and $A C$ taken together are greater in length than the side $A B$. Similarly any other two sides of the triangle taken together are greater than the remaining side.

Euclidean Proposition 21 If $A B C$ is a triangle in the Euclidean plane, and if D is a point in the interior of the triangle, then the sum of the sides $B D$ and $D C$ of the triangle $D B C$ in length less than the sum of the sides $B A$ and $A C$ of the triangle $A B C$, and the angle $B D C$ is greater than the angle $B A C$.

Proof The side $D C$ of the triangle $D E C$ is in length less than the sum of the sides $D E$ and $E C$. Conseqently the sum of $B D$ and $D C$ is in length less than the sum of $B E$ and $E C$, which in turn, and for similar reasons, is in length less than the sum of $B A$ and $A C$. Also the angle $B D C$, being an exterior angle of the triangle $E D C$, is greater than the interior angle $D E C$ of that triangle. But $D E C$, being an exterior angle of the triangle $B A E$, is greater than the interior angle $B A E$ of that triangle. Consequently the angle $B D C$ is greater than the angle $B A C$, as required.

Euclidean Proposition 22 (Construction) Given straight line segments A, B and C in the Euclidean plane, where the sum of any two of these straight line segments is greater in length than the remaining one, to construct a triangle $F G K$ whose sides $K F, F G, G K$ are respectively equal in length to A, B and C.

Construction On a straight ray $D E$ in the Euclidean plane starting at the point D, mark off segments $D F, F G, G H$, equal in length to the straight line segments A, B and C respectively. Then draw two circles in the Euclidean plane where the first circle has centre located at the point F and passes through the point D and the second circle has centre located at the point G and passes through the point H. The condition that A be less than the sum of B and C ensures that second circle is not contained in the first circle. The condition that C be less than the sum of A and B ensures that the second circle does not contain the the first circle. Then condition that B be less than the sum of A and C ensures that the two circles are not separated. Accordingly the two circles intersect. Let K be the point of intersection. Then the sides $K F, F G$ and $G K$ of the triangle $K F G$ are respectively equal in length to the straight line segments A, B and C, as required.

Euclidean Proposition 23 (Construction) On a given straight line $A B$ in the Euclidean plane, and at a point A on it, to construct a straight line segment $A F$ starting at the point A which makes an an angle with $A B$ equal to a given angle.

Proof Let the given angle be that between straight line segments $C D$ and $C E$ at a point C of the Euclidean plane. Join points D and E taken on those straight line segments by a straight line segment $D E$. Then take the point G on the straight ray $A B$ so as to ensure that $A G$ and $C E$ are equal in length (Proposition 3). Then construct a triangle $A F G$ on $A G$ so that $C D$ and $D E$ are equal in length to $C D$ and $D E$ respectively (Proposition 22). It then follows, on applying the SSS Congruence Rule (Proposition 8) that the angles of the triangle $A F G$ at vertices A, F and G are respectively equal to the angles of the triangle $C D E$ at C, D and E respectively. Thus the straight line segments $A F$ and $A B$ makes an angle with one another at A equal the given angle, which is the angle between the straight line segments $C D$ and $C E$. The required construction has therefore been achieved.

Euclidean Proposition 24 If two triangles $A B C$ and $D E F$ in the Euclidean plane have the two sides $A B$ and $A C$ respectively equal in length to the two sides $D E$ and $D F$, and if the angle $C A B$ is greater than the angle $F D E$, then then the side $B C$ of the triangle $A B C$ is in length greater than the side EF of the triangle DEF.

Proof A straight line segment $D G$ can be constructed so that the angles $C A B$ and $G D E$ are equal and the straight line segments $A C$ and $D G$ are equal in length (Proposition 23 and Proposition 3). It then follows, on applying the SAS Congruence Rule (Proposition 4) that the straight line segments $B C$ and $E G$ are equal in length.

Now the point F lies in the interior of the angle $E D G$, because the angle $F D E$ is less than the angle $C A B$ and thus less than $G D E$. There are three cases to be considered:
(i) this is the case when the points D and F lie on opposite sides of the straight line that passes through the points E and G;
(i) this is the case when the point F lies on the straight line that passes through the points E and G;
(iii) this is the case when the points D and F lie on the same side of the straight line that passes through the points E and G.

We first prove the result in case (i). In this case the points D and F lie on opposite sides of the straight line that passes through the points E and G, and, because the point F lies in the interior of the angle $E D G$, the straight line segment $D F$ must cross the straight line segment $E G$.

The straight line segments $D G$ and $D F$ are equal in length, because both are equal in length to $A C$. Consequently $D G F$ is a isosceles triangle, and therefore the angles $D G F$ and $D F G$ opposite the equal sides are equal to one another (Proposition 5). The angle $E G F$ is less than $D G F$, because the points D and F lie on opposite sides of the straight line through G and E. Also F lies in the interior of the angle $G D E$ and consequently the points G
and E lie on opposite sides of the straight line through D and F. It follows that The angle $E F G$ is greater than $D F G$. Consequently the angle $E F G$ is greater than the angle $E G F$, and therefore the side $E G$ of the triangle $E G F$ is in length greater than the side $E F$ of that triangle. But $E G$ and $B C$ are equal in length. Consequently $B C$ is greater in length than $E F$, as required in this case.

In case (ii) the point F lies in on the straight line segment $E G$ between E and G, and moreover the straight line segments $B C$ and $E G$ are equal in length. Consequently the straight line segment $B C$ is greater than the straight line segment $E F$ in this case also.

In case (iii), the final case to consider, the point F lies in the interior of the triangle $D G E$. Consequently $E F$ and $F D$ are together less than $E G$ and $G D$ in length (Proposition 21). But $F D$ and $G D$ are equal in length, because both are equal to $C A$. Consequently $E G$ is in length greater than $E F$. Now $B C$ and $E G$ are equal in length. It follows that $B C$ is in length greater than $E F$ in this case also. This completes the proof.

Euclidean Proposition 25 If two triangles $A B C$ and $D E F$ in the Euclidean plane have the two sides $A B$ and $A C$ respectively equal in length to the two sides $D E$ and $D F$, and if the side $C B$ is in length greater than the side $F E$, then then the angle $B A C$ of the triangle $A B C$ is greater than the angle $E D F$ of the triangle $D E F$.

Proof If the angle $B A C$ were less than the angle $E D F$, then the side $B C$ would be in length less than the side $E F$ (Proposition 24). But it is not. If the angle $B A C$ were equal to the angle $E D F$ then it would follow from the SAS Congruence Rule (Proposition 4) that the triangles $A B C$ and $D E F$ would be congruent, and therefore $B C$ would be equal in length to $E F$. But it is not. Consquently the angle $B A C$ must be greater than the angle $E F G$, as required.

Euclidean Proposition 26 (ASA and SAA Congruence Rules) Let ABC and $D E F$ be triangles in the Euclidean plane.
(ASA Congruence Rule). If angles $A B C$ and $D E F$ are equal to one another, angles $A C B$ and $D F E$ are equal to one another, and sides $B C$ and $E F$ equal to one another in length then the triangles $A B C$ and $D E F$ are congruent to one another.
(SAA Congruence Rule). If angles $A B C$ and $D E F$ are equal to one another, angles $A C B$ and $D F E$ are equal to one another, and sides $A B$ and $D E$ equal to one another in length then the triangles $A B C$ and $D E F$ are congruent to one another.

Accordingly, when the hypotheses of either congruence rule are satisfied, the sides and angles of the triangle $A B C$ are equal to the corresponding sides and angles of the triangle $D E F$.

Proof First suppose that the conditions of the ASA Congruence Rule are satisfied. If the sides $A B$ and $D E$ of the respective triangles were unequal then one would exceed the other in length. Suppose that $A B$ were greater than $D E$ in length. Then a point G could be found on $B A$ so as to make the straight line segment $B G$ equal in length to the straight line segment $D E$. Then the sides $G B$ and $B C$ of the triangle $G B C$ would be equal in length to the respective sides of the triangle $D E F$, and the included angle $G B C$ would be equal to the included angle $D E F$. The SAS Congruence Rule (Proposition 4) would then ensure the congruence of the triangles $G B C$ and $D E F$. The angles $G C B$ and $D F E$ would therefore be equal to one another.

But the angle $D F E$ is equal to the angle $A C B$, and therefore could not be equal to the angle $G C B$. We conclude therefore that the side $A B$ cannot exceed the side $D E$ in length. Nor can the side $D E$ exceed the side $A B$ in length. The sides $A B$ and $D E$ of the triangles $A B C$ and $D E F$ are therefore equal in length. An application of the ASA Congruence Rule (Proposition 4) now shows that the triangles $A B C$ and $D E F$ are congruent.

Now suppose that the conditions of the SAA Congruence Rule are satisfied. If the sides $B C$ and $E F$ of the respective triangles were unequal then
one would exceed the other in length. Suppose that $B C$ were greater than $E F$ in length. Then a point H could be found on $B C$ so as to make the straight line segment $B H$ equal in length to the straight line segment $E F$. Then the sides $B C$ and $B H$ of the triangle $A B H$ would be equal in length to the respective sides of the triangle $D E F$, and the included angle $A B H$ would be equal to the included angle $D E F$. The SAS Congruence Rule (Proposition 4) would then ensure the congruence of the triangles $A B H$ and $D E F$. The angles $A H B$ and $D F E$ would therefore be equal to one another.

But the angle $D F E$ is equal to the angle $A C B$, and the exterior angle $A H B$ of the triangle $A C H$ is greater than the internal and opposite angle $A C B$. Therefore the angle $A H B$ could not be equal to the angle $D F E$. We conclude therefore that the side $B C$ cannot exceed the side $E F$ in length. Nor can the side $E F$ exceed the side $B C$ in length. The sides $B C$ and $E F$ of the triangles $A B C$ and $D E F$ are therefore equal in length. An application of the ASA Congruence Rule (Proposition 4) now shows that the triangles $A B C$ and $D E F$ are congruent.

Thus under the hypotheses of the ASA Congruence Rule, or of the SAA Congruence Rule, the triangles $A B C$ and $D E F$ are congruent, and the sides and angles of the triangle $A B C$ are respectively equal to the sides and angles of the triangle $D E F$, as required.

Euclidean Proposition 27 If a straight line EF in the Euclidean plane falling on two straight lines $A B$ and $C D$ make the alternative angles $A E F$ and $E F D$ equal to one another then the complete straight line passing through the points A and B does not intersect the complete straight line passing through the points C and D.

Proof Suppose that the straight lines $A B$ and $C D$ could be produced beyond B and D respectively so as to intersect at a point G of the Euclidean plane. Then, in the triangle $G E F$, the exterior angle $A E F$ would be greater than the interior and opposite angle $E F D$ (Proposition 16), contrary to hypothesis. Therefore the complete straight line passing through the points A and B cannot intersect the complete straight line passing through the points C and D at any point of the Euclidean plane that lies on the same side of the straight line $E F$ as the point B and D. A similar argument shows that the complete straight line passing through the points A and B cannot intersect the complete straight line passing through the points C and D at any point of the Euclidean plane that lies on the opposite side of the straight line $E F$ as the point B and D. The result follows.

Euclidean Proposition 28 If a straight line EF in the Euclidean plane falling on two straight lines $A B$ and $C D$ make the exterior angle $E G B$ equal to the interior and opposite angle GHD, or make the sum of the interior angles $B G H$, $G H D$ equal to two right angles, then the complete straight line passing through the points A and B does not intersect the complete straight line passing through the points C and D.

Proof Suppose $E G B$ and $G H D$ are equal. Now the angles $E G B$ and $A G H$ are equal (Proposition 15). It follows that the alternate angles $A G H$ and $G H D$ are equal, and therefore the complete straight line passing through the points A and B does not intersect the complete straight line passing through the points C and D (Proposition 27). Similarly if the angles $B G H$ and $G H D$ sum to two right angles then the alternating angles $A G H$ and $G G D$ are equal, because the angles $A G H$ and $B G H$ also sum to two right angles, and consequently the complete straight line passing through the points A and B does not intersect the complete straight line passing through the points C and D.

