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3 The Hyperbolic Plane

3.1 Determination of Möbius Transformations

Proposition 3.1 Let ζ1, ζ2 and ζ3 be three distinct points of the Riemann
sphere, and let µ1 and µ2 be Möbius transformations of the Riemann sphere.
Suppose that µ1(ζj) = µ2(ζj) for j = 1, 2, 3. Then the Möbius transformations
µ1 and µ2 coincide.

Proof Let µ3 be the Möbius transformation of the Riemann sphere defined
so that µ3(ζ1) = ∞, µ3(ζ2) = 0 and µ3(ζ3) = 1, and let µ4 = µ3 ◦ µ−12 ◦ µ1

(so that µ4(ζ) = µ3(µ
−1
2 (µ1(ζ))) for all elements ζ of the Riemann sphere).

Then mu4 is a Möbius transformation that sends ζ1, ζ2 and ζ3 to ∞, 0, 1
respectively. It follows that

µ4(ζ) = (ζ1, ζ2; ζ3, ζ) = µ3(ζ)

for all elements ζ of the Riemann sphere (see Proposition 2.10). Thus the
Möbius transformations µ3 and µ2 coincide. It then follows that µ−12 (µ1(z)) =
z for all complex numbers z, and therefore µ2(z) = µ1(z) for all complex num-
bers z. Thus the Möbius transformations µ1 and µ2 coincide, as required.

Given any complex number z, there exist uniquely determined real num-
bers x and y such that z = x+ iy, where i =

√
−1. The complex conjugate z

of any complex number z is then defined such that if z = x+ iy, where x and
y are real numbers, then z = x− iy. The operation of complex conjugation
maps the complex plane onto itself. We can extend this mapping to the whole
of the Riemann sphere in a natural fashion by requiring that the point∞ “at
infinity” map to itself under complex conjugation. Then the set of points in
the Riemann sphere that are fixed under complex conjugation is the subset
R ∪ {∞} of the Riemann sphere obtained by adjoining the point ∞ to the
real line. This fixed point set is the image, under stereographic projection,
of a great circle on the unit sphere in three-dimensional Euclidean space.

The complement, in the Riemann sphere P1, of the fixed point set R∪{∞}
for complex conjugation has two connected components: the open upper half
plane consisting of those complex numbers z for which Im[z] > 0 and the open
lower half plane consisting of those complex numbers z for which Im[z] <
0. Each of these connected components is the image, under stereographic
projection, of an open hemisphere in the unit sphere in three-dimensional
Euclidean space. We discuss below the nature and properties of those Möbius
transformations of the Riemann sphere that map the upper and lower half
planes onto themselves.
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Lemma 3.2 Let a1, b1, c1, d1, a2, b2, c2 and d2 be complex numbers satis-
fying a1d1 6= b1c1 and a2d2 6= b2c2, and let µ1 and µ2 be the Möbius transfor-
mations of the Riemann sphere defined so that

µ1(z) =
a1z + b1
c1z + d1

, µ2(z) =
a2z + b2
c2z + d2

for all complex numbers with c1z+d1 6= 0 and c2z2+d2 6= 0. Then the Möbius
transformations µ1 and µ2 coincide if and only if there exists some non-zero
complex number such that a2 = λa1, b2 = λb1, c2 = λc1 and d2 = λd1.

Proof Clearly if there exists a complex number λ with the stated properties
then the Möbius transformations µ1 and µ2 coincide.

Conversely suppose that there is some Möbius transformation µ of the
Riemann sphere with the property that

µ(z) =
a1z + b1
c1z + d1

=
a2z + b2
c2z + d2

whenever c1z + d1 6= 0 and c2z + d2 6= 0.
First consider the case when c1 = 0. Then no real number is mapped by

µ to the point ∞ of the Riemann sphere “at infinity” and therefore c2 = 0.
But then d1 6= 0, d2 6= 0, b1/d1 = b2/d2 and a1/d1 = a2/d2. Therefore if we
take λ = d2/d1 in this case we find that λ 6= 0, a2 = λa1, b2 = λb1, c2 = λc1
and d2 = λd1. The existence of the required non-zero complex number λ has
therefore been verified in the case when c1 = 0.

Suppose then that c1 6= 0. Then c2 6= 0 and µ(−d2/c2) =∞ = µ(−d1/c1).
Let λ = c2/c1. Then d2/d1 = λ. It then follows that

a2z + b2 = (c2z + d2)µ(z) = λ(c1z + d1)µ(z) = a1z + b

for all complex numbers z distinct from −d1/c1, and therefore a2 = λa1 and
b2 = λb1. The result follows.

3.2 Möbius Transformations of the Upper Half Plane

Proposition 3.3 Let H be the open upper half of the complex plane, bounded
by the real axis, so that

H = {z ∈ C : Im[z] > 0},

and µ:P1 → P1 be a Möbius transformation. Then the Möbius transforma-
tion µ maps the upper half plane H onto itself, so that µ(H) = H, if and
only if there exist real numbers a, b, c and d satisfying ad− bc = 1 such that

µ(z) =
az + b

cz + d
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for all complex numbers z satisfying cz + d 6= 0.

Proof First let a, b, c and d be real numbers satisfying ad − bc = 1, and
let µ be the Möbius transformation of the Riemann sphere defined so that
µ(z) = (az+b)/(cz+d) for all complex numbers z for which cz+d 6= 0. Now
c and d are real numbers and therefore, given any complex number z, the
complex conjugate of cz+d is cz+d, where z denotes the complex conjugate
of z. It follows that (cz + d)(cz + d) = |cz + d|2, and therefore

µ(z) =
(az + b)(cz + d)

|cz + d|2

=
ac|z|2 + bd+ (ac+ bd) Re[z] + i(ac− bd) [Im](z)

|cz + d|2

for all complex numbers z for which cz + d 6= 0. Now the coefficients a, b, c
and d are real numbers for which ad− bc = 1. It follows that

Im[µ(z)] =
(ac− bd) Im[z]

|cz + d|2
=

Im[z]

|cz + d|2

for all complex numbers z for which cz + d 6= 0, and thus Im[µ(z)] > 0 for
all complex number z for which Im[z] > 0. This shows that µ(H) ⊂ H, and
thus the Möbius transformation µ maps the open upper half plane H into
itself.

Also all Möbius transformations are invertible mappings from the Rie-
mann sphere to itself, and moreover the condition ad − bc = 1 satisfied by
the coefficients a, b,c and d ensures that

µ−1(w) =
dw − b
−c+ aw

for all complex numbers w for which aw − c 6= 0 (Corollary 2.3). It follows
that if w is an element of the open upper half plane H then µ−1(w) ∈ H
and w = µ(µ−1(w)), and therefore w ∈ µ(H). We can now conclude that
µ(H) = H.

Now let µ be any Möbius transformation that satisfies µ(H) = H. We
must prove the existence of real numbers a, b, c and d with the property
that µ(z) = (az + b)/(cz + d) for all complex numbers z for which cz + d 6=
0. Now the Möbius transformation µ has an inverse µ−1, and the Möbius
transformations µ and µ−1 map the open upper half plane H onto itself. A
straightforward continuity argument shows that they must map the subset
R ∪ {∞} of the Riemann sphere onto itself, as this subset constitutes the
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boundary of the upper half plane in the Riemann sphere. In cases where
µ(∞) =∞ the Möbius transformation µ satisfies

µ(z) =
z − x0
x1 − x0

for all complex numbers z, where x0 = µ−1(0) and x1 = µ−1(1). In cases
where µ(∞) = 0 the Möbius transformation µ satisfies

µ(z) =
x1 − x∞
z − x∞

,

for all complex numbers z, where x1 = µ−1(1) and x∞ = µ−1(∞). In cases
where µ(∞) = 1 the Möbius transformation µ satisfies

µ(z) =
z − x0
z − x∞

,

for all complex numbers z distinct from x∞, where x0 = µ−1(0) and x∞ =
µ−1(∞). In cases where µ(∞) 6∈ {∞, 0, 1} the Möbius transformation µ
satisfies

µ(z) =
(x1 − x∞)(z − x0)
(x1 − x0)(z − x∞)

for all complex numbers z distinct from x∞, where x∞ = µ−1(∞), x0 =
µ−1(0) and x1 = µ−1(1). Now the numbers x0, x1 and x∞ that occur in each
of the above cases are always real numbers. It follows that, in all cases, there
exist real numbers a0, b0, c0 and d0, where a0d0 6= b0c0, such that

µ(z) =
a0z + b0
c0z + d0

for all complex numbers z for which c0z + d0 6= 0.
Now i ∈ H and µ(H) = H. It follows that Im[µ(i)] > 0. But

µ(i) =
(a0i+ b0)(d0 − c0i)
(c0i+ d0)(d0 − c0i)

=
a0c0 + b0d0 + (a0d0 − b0c0)i

|c0i+ d|2
.

It follows that a0d0 − b0c0 > 0. Let

a =
a0√

a0d0 − b0c0
, b =

b0√
a0d0 − b0c0

,

c =
c0√

a0d0 − b0c0
, d =

d0√
a0d0 − b0c0

.

Then ad− bc = 1 and

µ(z) =
az + b

cz + d

for all complex numbers z for which cz + d 6= 0. The result follows.
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Corollary 3.4 let H = {z ∈ C : Im[z] > 0}. Then a Möbius transforma-
tion µ of the Riemann sphere satisfies µ(H) = H if and only if µ maps at
least one element of H into H and µ(z) = µ(z) for all complex numbers z.

Proof If a Möbius transformation µ maps the upper half plane H onto itself
then there exist real numbers a, b, c and d satisfying ad − bc = 1 such that
µ(z) = (az + b)/(cz + d) for all complex numbers z for which cz + d 6= 0
(Proposition 3.3). It then follows directly from basic properties of complex
conjugation that µ(z) = µ(z) for all complex numbers z.

Conversely let µ be a Möbius transformation with the property that
µ(z) = µ(z) for all complex numbers z. Then there exist complex numbers
a, b, c and d satisfying ad− bc = 1 such that

µ(z) =
az + b

cz + d

for all complex numbers z with cz + d 6= 0. Then

az + b

cz + d
= µ(z) = µ(z) =

a0z + b0

c0z + d0

for all complex numbers z. This ensures the existence of some complex
number λ such that

a = λa, b = λb, c = λc, d = λd

(Lemma 3.2). Moreover

1− a d− b0 d0 = λ2(ad− bc) = λ2,

and thus λ = ±1. In the case where λ = 1 let a0 = a, b0 = b, c0 = c and
d0 = d. In the case where λ = −1 let a0 = −ia, b0 = −ib, c0 = ic and
d0 = id. In both cases let µ0 be the Möbius transformation of the Riemann
sphere defined so that µ0(z) = (a0z+ b)/(c0z+d0) for all complex numbers z
for which c0z + d0 6= 0. Then a0, b0, c0 and d0 are real numbers satisfying
a0d0 − b0c0 = 1. It follows that µ0(H) = H (Proposition 3.3).

Now µ(z) = µ0(z) for all complex numbers z in the case where λ = 1,
and µ(z) = −µ0(z) for all complex numbers z in the case where λ = −1. It
follows that the Möbius transformation µ maps the open upper half plane H
onto itself in the case when λ = 1, but maps the open upper half plane onto
the open lower half plane {z ∈ Z : Im z < 0} in the case when λ = −1. The
result follows.
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3.3 The Poincaré Half Plane Model of the Hyperbolic
Plane

We recall that, in situations where four complex numbers z1, z2, z3 and z4
are distinct, the cross-ratio (z1, z2, z3, z4) of these complex numbers is defined
so that

(z1, z2, z3, z4) =
(z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

.

The cross-ratio is also defined as discussed previously in various situations
where the point ∞ replaces one of the complex numbers, and in situations
when two of the four complex numbers involved in the cross-ratio are equal.
In particular the cross-ratio is given by the above formula in all cases where
z3 6= z2 and z4 6= z1,

Lemma 3.5 Let z1 and z2 be complex numbers with Im[z1] > 0 and Im[z2] >
0. Then |z1 − z2| < |z1 − z2| and

(z1, z1; z2, z2) =
|z1 − z2|2

|z1 − z2|2
,

and therefore
0 ≤ (z1, z1; z2, z2) < 1.

Proof Let z1 = x1 + iy1 and z2 = x2 + iy2, where x1, y1, x2 and y2 are real
numbers and i =

√
−1. Then y1 > 0 and y2 > 0. It follows that

|z1 − z2|2 = (x1 − x2)2 + (y1 − y2)2 < (x1 − x2)2 + (y1 + y2)
2 = |z1 − z2|2,

and thus |z1 − z2| < |z1 − z2|.
Evaluating the cross-ratio, we find that

(z1, z1; z2, z2) =
(z1 − z2)(z1 − z2)
(z1 − z2)(z1 − z2)

=
|z1 − z2|2

|z1 − z2|2
.

This value of this cross-ratio must satisfy 0 ≤ (z1, z1; z2, z2) < 1, as re-
quired.

Proposition 3.6 Let H = {z ∈ C : Im[z] > 0}, and let z1, z2, w1 and w2

be complex numbers belonging to the open upper half plane H. Then there
exists a Möbius transformation µ of the Riemann sphere with the properties
that µ(H) = H, µ(z1) = w1 and µ(z2) = w2 if and only if

(z1, z1; z2, z2) = (w1, w1;w2, w2).
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Proof Suppose that there exists a Möbius transformation µ with the re-
quired properties. Then µ(z) = µ(z) for all complex numbers z (Corol-
lary 3.4). In particular

µ(z1) = µ(z1) = w1 and µ(z2) = µ(z2) = w2

Thus the four complex numbers z1, z1, z2 and z2 are mapped by µ to w1,
w1, w2 and w2. The invariance of cross-ratio under the action of Möbius
transformations therefore ensures that

(z1, z1, z2; z2) = (w1, w1;w2, w2)

(see Proposition 2.12).
Conversely suppose that relevant cross-ratios determined by the complex

numbers z1, z2, w1 and w2 and their complex conjugates satisfy

(z1, z1; z2, z2) = (w1, w1;w2, w2).

Then there exists a Möbius transformation µ of the Riemann sphere that
sends z1, z2, z1 and z2 to w1, w2, w1 and w2 respectively. Let µ0:P1 →
P1 be the mapping from the Riemann sphere to itself determined so that
µ0(z) = µ(z) for all complex numbers z. Then µ0:P1 → P1 is also a Möbius
transformation of the Riemann sphere. Indeed if

µ(z) =
az + b

cz + d

for all complex numbers z satisfying cz + d 6= 0, where a, b, c and d are
complex constants satisfying ad− bc = 1, then

µ0(z) =
a z + b

cz + d

for all complex numbers z satisfying cz + d 6= 0. Moreover the distinct
complex numbers z1, z2, z1 and z2 get mapped to w1, w2, w1 and w2 respec-
tively under each of the Möbius transformations µ and µ0. Thus there are
at least three complex numbers z for which µ(z) = µ0(z). It follows that
the Möbius transformations µ and µ0 must coincide (Proposition 3.1), and
therefore µ(z) = µ(z) for all complex numbers z. It follows that µ(H) = H
(see Corollary 3.4). Thus the Möbius transfomation µ maps the open upper
half plane H onto itself and maps z1 and z2 to w1 and w2 respectively, as
required.
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Definition Let H = {z ∈ C : Im[z] > 0}, and let z1 and z2 be complex
numbers belonging to the open upper half plane H. We define the Poincaré
distance dH(z1, z2) from z1 to z2 by the formula

dH(z1, z2) = log

(
|z1 − z2|+ |z1 − z2|
|z1 − z2| − |z1 − z2|

)
.

Remark The formula given above is but one of many that might be em-
ployed to specify the value of the Poincaré distance between two complex
numbers lying in the upper half plane H. In particular, in the context of
differential geometry, one can specify, through an appropriate line integral,
a hyperbolic length assigned to any continuous and piecewise continuously
differentiable curve in the upper half plane. Specifically let γ: [a, b] → H be
a continuous and piecewise continuously differentiable curve in H parame-
terized by a closed interval [a, b], so that γ(t) is defined for all real numbers t
satisfying a ≤ t ≤ b. Then the hyperbolic length of γ is given by the formula∫ b

a

1

Im[γ(t)]
|γ′(t)| dt.

The Poincaré distance between two complex numbers z1 and z2 in the upper
half plane is then the greatest lower bound of the hyperbolic lengths of all
continuous and piecewise continuously differentiable curves γ: [a, b] → H in
the upper half plane H for which γ(a) = z1 and γ(b) = z2.

Lemma 3.7 Let H = {z ∈ C : Im[z] > 0}, and let z1 and z2 be com-
plex numbers belonging to the open upper half plane H. Then the Poincaré
distance dH(z1, z2) from z1 and z2 has the properties that dH(z1, z2) ≥ 0 and

dH(z1, z2) = dH(z2, z1).

Moreover dH(z1, z2) = 0 if and only if z1 = z2.

Proof The inequality dH(z1, z2) ≥ 0 follows from the inequality

|z1 − z2|+ |z1 − z2| ≥ |z1 − z2| − |z1 − z2|

which results from the basic inequality |z1−z2| ≥ 0. Moreover dH(z1, z2) = 0
if and only if the left hand side of the above inequality is equal to the right
hand side. This is the case if and only if z1 = z2. The identity dH(z1, z2) =
dH(z2, z1) follows from the fact that z1−z2 and z2−z1 are complex conjugates
of one another and therefore |z1 − z2| = |z2 − z1|.
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Lemma 3.8 Let H = {z ∈ C : Im[z] > 0}, and let z1 and z2 be com-
plex numbers belonging to the open upper half plane H. Then the Poincaré
distance dH(z1, z2) from z1 and z2 satisfies

dH(z1, z2) = log

(
1 +

√
(z1, z1; z2, z2)

1−
√

(z1, z1; z2, z2)

)
.

Proof The definition of the cross-ratio ensures that

(z1, z1; z2, z2) =
|z1 − z2|2

|z1 − z2|2

(Lemma 3.5). It follows that

dH(z1, z2) = log

(
|z1 − z2|+ |z1 − z2|
|z1 − z2| − |z1 − z2|

)

= log

1 +
|z1 − z2|
|z1 − z2|

1− |z1 − z2|
|z1 − z2|


= log

(
1 +

√
(z1, z1; z2, z2)

1−
√

(z1, z1; z2, z2)

)
,

as required.

Proposition 3.9 Let H = {z ∈ C : Im[z] > 0}, and let z1, z2, w1 and w2 be
complex numbers belonging to the open upper half plane H. Then there exists
a Möbius transformation µ of the Riemann sphere with the properties that
µ(H) = H, µ(z1) = w1 and µ(z2) = w2 if and only if dH(z1, z2) = dH(w1, w2),
where dH(z1, z2) denotes the Poincaré distance from z1 and z2 and dH(w1, w2)
denotes the Poincaré distance from w1 and w2.

Proof This result follows directly on taking into account the formula of
Lemma 3.8, expressing the Poincaré distance between two points z1, z2 of
the upper half plane H in terms of the cross-ratio (z1, z1; z2, z2), and applying
the result of Proposition 3.6.

Lemma 3.10 Let y1 and y2 be positive real numbers, and let i =
√
−1. Then

the Poincaré distance dH(iy1, iy2) from iy1 to iy2 is given by the formula

dH(iy1, iy2) = | log y1 − log y2|.
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Proof We may suppose, without loss of generality, that y1 > y2. Then

dH(iy1, iy2) = log

(
|iy1 + iy2|+ |iy1 − iy2|
|iy1 + iy2| − |iy1 − iy2|

)
= log

(
(y1 + y2) + (y1 − y2)
(y1 + y2)− (y1 − y2)

)
= log

(
y1
y2

)
= log y1 − log y2.

The result follows.

Proposition 3.11 Let x1, y1, x2 and y2 be real numbers where y1 > 0 and
y2 > 0, and let Let z1 and z2 be complex numbers belonging to the upper half
plane H, where

H = {z ∈ C : Im[z] > 0}.
Then the Poincaré distance dH(z1, z2) from z1 to z2 satisfies the inequality

dH(z1, z2) ≥ | log Im[z1]− log Im[z2]|.

Moreover
dH(z1, z2) = | log Im[z1]− log Im[z2]|.

if and only if Re[z1] = Re[z2].

Proof Let x1 = Re[z1], x2 = Re[z2], y1 = Im[z1] and y2 = Im[z2], and let

ρ =
|z1 − z2|
|z1 − z2|

.

Then y1 > 0, y2 > 0 and

ρ2 =
|z1 − z2|2

|z1 − z2|2

=
(x1 − x2)2 + (y1 − y2)2

(x1 − x2)2 + (y1 + y2)2

=
(x1 − x2)2 + y21 + y22 − 2y1y2
(x1 − x2)2 + y21 + y22 + 2y1y2

= 1− 4y1y2
(x1 − x2)2 + y21 + y22 + 2y1y2

≥ 1− 4y1y2
y21 + y22 + 2y1y2

=
(y1 − y2)2

(y1 + y2)2
.
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It follows that ρ ≥ ρ0, where

ρ0 =
|y1 − y2|
y1 + y2

,

Also ρ < 1. Consequently

|z1 − z2|+ |z1 − z2|
|z1 − z2| − |z1 − z2|

=
1 + ρ

1− ρ
=

2

1− ρ
− 1

≥ 2

1− ρ0
− 1 =

1 + ρ0
1− ρ0

=
y1 + y2 + |y1 − y2|
y1 + y2 − |y1 − y2|

.

Considering separately the cases when y1 ≥ y2 and y2 ≥ y1, we conclude that

dH(z1, z2) ≥ | log y1 − log y2| = | log Im[z1]− log Im[z2]|.

Moreover if x1 6= x2 then

1− 4y1y2
(x1 − x2)2 + y21 + y22 + 2y1y2

> 1− 4y1y2
y21 + y22 + 2y1y2

.

But then ρ > ρ0, and consequently

dH(z1, z2) > | log Im[z1]− log Im[z2]|.

The result follows.

Corollary 3.12 Let z1, z2 and z3 be complex numbers belonging to the upper
half plane H, where

H = {z ∈ C : Im[z] > 0},
and let dH(z1, z3), dH(z1, z2) and dH(z2, z3) denote the Poincaré distances
between the respective pairs of points. Suppose that Re[z1] = Re[z3]. Then

dH(z1, z3) ≤ dH(z1, z2) + dH(z2, z3).

Moreover dH(z1, z3) = dH(z1, z2) + dH(z2, z3) if and only if z2 lies on the line
segment in the upper half plane H with endpoints represented by the complex
numbers z1 and z2.

Proof Let xj = Re[zj] and yj = Im[zj] for j = 1, 2, 3. Then x1 = x3. Now it
follows from Proposition 3.11 that

dH(z1, z2) ≥ | log y1 − log y2| and dH(z2, z3) ≥ | log y2 − log y3|.
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Moreover the above inequalities are strict unless x1 = x2 = x3. Applying
these inequalities, we find that

dH(z1, z3) = | log y1 − log y3|
≤ | log y1 − log y2|+ | log y2 − log y3|
≤ dH(z1, z2) + dH(z2, z3).

Moreover dH(z1, z3) < dH(z1, z2) + dH(z2, z3) unless x1 = x2 = x3 and either
y1 ≤ y2 ≤ y3 or else y1 ≥ y2 ≥ y3. It follows that dH(z1, z3) = dH(z1, z2) +
dH(z2, z3) if and only if unless z2 lies on the line in the upper half plane whose
endpoints are represented by z1 and z3, as required.

Proposition 3.13 (Triangle Inequality for Poincaré Distance)
Let z1, z2 and z3 be complex numbers belonging to the upper half plane H,
where

H = {z ∈ C : Im[z] > 0},

and let dH(z1, z3), dH(z1, z2) and dH(z2, z3) denote the Poincaré distances
between the respective pairs of points. Then

dH(z1, z3) ≤ dH(z1, z2) + dH(z2, z3).

Proof Positive real numbers v1 and v3 can be found such that

dH(z1, z3) = | log v1 − log v3| = dH(iv1, iv3).

A Möbius transformation µ:P1 → P1 can then be found for which µ(H) = H,
µ(z1) = iv1 and µ(z3) = iv3 (Proposition 3.9). Let w2 = µ(z2). Möbius
transformations preserve Poincaré distance (Proposition 3.9). Therefore

dH(z1, z3) = dH(iv1, iv3), dH(z1, z2) = dH(iv1, w2)

and
dH(z2, z3) = dH(w2, iv3).

Applying Corollary 3.12, it follows that

dH(z1, z3) = dH(iv1, iv3) = | log v3 − log v1|
≤ dH(iv1, w2) + dH(w2, iv3)

= dH(z1, z2) + dH(z2, z3),

as required.
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3.4 Geodesics in the Poincaré Half Plane Model

Definition Let H = {z ∈ C : Im[z] > 0}, and, for all complex numbers z1
and z2 belonging to the upper half plane H let dH(z1, z2) denote the Poincaré
distance from z1 to z2. A (connected) continuous curve in H is said to be a
(length-minimizing) geodesic s with respect to the Poincaré distance function
if

dH(z1, z2, z3) = dH(z1, z2) + dH(z2, z3)

for all triples z1, z2, z3 of points on the curve for which z2 is located on the
curve between z1 and z3.

Remark In the context of differential geometry, and specifically Rieman-
nian geometry, geodesics arise as solutions of appropriate systems of second
order ordinary differential equations determined by the geometry of the space
to which they belong. Each continuous and piecewise continuously differen-
tiable curve in a connected Riemannian manifold has a length determined by
the geometry of that manifold, and the distance between two points of that
manifold is defined to be the greatest lower bound of the lengths of all curves
in the manifold that join those two points. A sufficiently short geodesic seg-
ment in a Riemannian manifold minimizes distance amongst all continuous
and continuously piecewise differentiable curves joining the endpoints of the
geodesic segment, and the length of such a geodesic segment is therefore
equal to the distance between the endpoints of the segment. It follows that
if points P1 and P3 are the endpoints of a sufficiently short geodesic segment
in a Riemannian manifold, and if P2 is a point on that geodesic segment
lying between the endpoints P1 and P3 of the segment, then the distance
from P1 to P3 is the sum of the distances from P1 to P2 and from P2 to P3.
Moreover this property characterizes length-minimizing geodesics in Rieman-
nian manifolds. When the hyperbolic plane is studied using the methods of
Riemannian geometry it can be shown that all geodesics (when defined in
accordance with usual conventions within Riemannian geometry) minimize
length between their endpoints. Accordingly the definition of geodesics for
the Poincaré distance function given above, specifically in the context of the
geometry of the hyperbolic plane, is consistent with the usage of the term
geodesic in the context of differential geometry.

Lemma 3.14 Let H = {z ∈ C : Im[z] > 0}. Given any real number u, the
half-line in the upper half plane consisting of those z ∈ H for which Re[z] = u
is a geodesic with respect to the Poincaré distance function.

Proof In the case when u = 0, the result follows directly on applying Corol-
lary 3.12.
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In the case where u is a non-zero real number the function sending each
complex number z to z− u is a Möbius transformation that maps the upper
half plane H onto itself. This Möbius transformation and its inverse both
preserve Poincaré distance and therefore map geodesics to geodesics. The
result follows.

Lemma 3.15 Let H = {z ∈ C : Im[z] > 0}, Then any circular arc in the
upper half plane H that forms part of the circle centred on a real number is
a geodesic with respect to the Poincaré distance function.

Proof let u be a real number, let R be a positive real number, and let µ be
the Möbius transformation that maps the real numbers u−R, u and u+R
to 0, 1 and ∞ respectively. Then

µ(z) = (u+R, u−R;u, z) =
z − u+R

u+R− z
for all complex numbers z distinct from u+R. Then

µ(u+R(cos θ + i sin θ))

=
1 + cos θ + i sin θ

1− cos θ − i sin θ

=
(1 + cos θ + i sin θ)(1− cos θ + i sin θ)

(1− cos θ − i sin θ)(1− cos θ + i sin θ)

=
(1 + i sin θ)2 − cos2 θ

(1− cos θ)2 + sin2 θ

=
1 + 2i sin θ − sin2 θ − cos2 θ

1− 2 cos θ + cos2 θ + sin2 θ

=
i sin θ

1− cos θ

for all real numbers θ. This calculation shows that Re[µ(z)] = 0 for all
complex numbers z for which |z − u| = R.

Now it follows from Corollary 3.12. any half-line or line segment in the
upper half plane that is contained in the imaginary axis is a geodesic. Also
Möbius transformations and their inverses preserve the Poincaré distance
function and therefore map geodesics to geodesics. It follows that any circular
arc in the upper half plane forming part of the circle of radiusR centred on the
real number u is mapped under the Möbius transformation µ to a geodesic,
and must therefore itself be a geodesic. The result follows.

Remark Let H be the open upper half of the complex plane, defined so
that H = {z ∈ C : Im[z] > 0}. The calculations undertaken in the proof of
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Lemma 3.15 can be used to obtain an expression for the Poincaré distance
between points on a semicircle in the upper half plane H centred on a point
lying on the real axis. Indeed let u be a real number, let R be a positive
real number, and let µ:P1 → P1 of the Riemann sphere that maps each
complex number z distinct from u − R to (z − u + R)/(u + R − z) Then µ
maps points on the semicircle in the upper half plane of radius R centred
on the real number y to points on the imaginary axis. Now µ(H) = H,
and therefore the Möbius transformation µ preserves Poincaré distance dH .
(Proposition 3.9). Also Poincaré distance along the imaginary axis is given
by the logarithm function (Lemma 3.10). In the proof of Lemma 3.15 it was
shown that

µ(u+R(cos θ + i sin θ)) =
i sin θ

1− cos θ
.

Putting these results together, and noting that µ(u+Ri) = i, we find that

dH(u+R(cos θ + i sin θ), u+ iR) = log

(
sin θ

1− cos θ

)
=

1

2
log

(
sin2 θ

(1− cos θ)2

)
=

1

2
log

(
1 + cos θ

1− cos θ

)
for all real numbers θ satisfying 0 < θ < π.

Proposition 3.16 Let H = {z ∈ C : Im[z] > 0}. Then a continuous curve
between two points of the upper half plane H is a geodesic with respect to the
Poincaré distance function if and only if either it is a line segment whose
direction is perpendicular to the real axis or else it is a circular arc whose
centre lies on the real axis.

Proof Let z1 and z2 be complex numbers in the upper half plane H. Then
there exist real numbers v1 and v2 and a Möbius transformation µ of the
Riemann sphere such that µ(H) = H, µ(z1) = iv1 and µ(z2) = iv2. Now the
Möbius transformation µ preserves Poincaré distance (Proposition 3.9), and
therefore maps geodesics to geodesics. It follows that a continuous curve A
joining z1 to z2 is a geodesic from z1 to z2 if and only if µ(A) is a geodesic
from iv1 to iv2. It follows from Corollary 3.12 that the curve A is a geodesic
for the Poincaré distance function if and only if µ(A) is the line segment
joining iv1 to iv2.

Now Möbius transformations map lines and circles in the complex plane
to lines and circles. (Thus the image of a line under a Möbius transformation
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must be a line or a circle, and the same is true of inverse images because all
Möbius transformations are invertible. It follows that the geodesic A must
be either a line segment or a circular arc.

Suppose that the the curve A is both a geodesic and a segment of a line L.
Then a complex number z lies on the line L if and only if either µ(z) =∞ or
Re[z] = 0. Also µ(z) = µ(z) for all complex numbers z, because µ(H) = H
(Corollary 3.4). It follows that z ∈ L for all z ∈ L. The line L is thus
perpendicular to the real axis, and thus A is, in this case, a line segment
whose direction is perpendicular to the real axis. Conversely any such line
segment is a geodesic (Lemma 3.14).

If A is a geodesic but is not a line segment then it must be a circular
arc. Let Z be the whole circle of which it forms part. The circle Z then
consists of those complex numbers z for which either either µ(z) =∞ or else
Re[µ(z)] = 0. Also Also µ(z) = µ(z) for all complex numbers z, because
µ(H) = H. It follows that z ∈ Z for all z ∈ Z, and therefore the centre of
the circle Z must lie on the real axis. Conversely if the arc A forms part of a
circle Z whose centre lies on the real axis then it is a geodesic (Lemma 3.15).
The result follows.
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