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1 Stereographic Projection

1.1 The Basic Equations of Stereographic Projection

Let a sphere in three-dimensional spaces be given, let C be the centre of that
sphere, let AB be a diameter of that sphere with endpoints A and B, and let
P be the plane through the centre of the sphere that is perpendicular to the
diameter AB. Given a point D of the sphere distinct from the point A, the
image of D under stereographic projection from the point A is defined to be
the point E at which the line passing through the points A and D intersects
the plane P .

A

B

C
P

D

E

Proposition 1.1 Let S2 be the unit sphere in R3, consisting of those points
(u, v, w) of R3 that satisfy the equation u2 + v2 + w2 = 1, and let P be the
plane consisting of those points (u, v, w) of R3 for which w = 0. Then, for
each point (u, v, w) of S2 distinct from the point (0, 0,−1), the straight line
passing through the points (u, v, w) and (0, 0,−1) intersects the plane P at
the point (x, y, 0) at which

x =
u

w + 1
and y =

v

w + 1
.

Proof Let A = (0, 0,−1), D = (u, v, w) and E = (x, y, 0). Then the dis-
placements of the points D and E from the point A are represented by the
vectors (u, v, w + 1) and (x, y, 1) respectively. These vectors are parallel be-
cause the points A, D and E are collinear. Consequently

x

u
=

y

v
=

1

w + 1
.

The result follows.
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(0, 0,−1)

(0, 0, 1)

P

(u, v, w)

(x, y, 0)

(0, 0, w)

Corollary 1.2 Let S be a sphere with centre C, let A and B be the endpoints
of a diameter of that sphere, let P be the plane through the centre C of the
sphere that is the perpendicular bisector of the diameter AB, let D be a
point on the sphere distinct from the point A, and let E be the point where
the infinite straight line passing through the points A and D intersects the
plane P . Then

|AD| |AE| = 2|AC|2.
Proof We may assume, without loss of generality, that |AC| is the unit of
length and that the sphere S is the unit sphere centred on the origin of
Cartesian coordinates, so that C = (0, 0, 0) and |AC| = 1. We may also
assume that the Cartesian coordinates of the points A and B are (0, 0,−1)
and (0, 0, 1) respectively. Let the points D and E have Cartesian coordinates
(u, v, w) and (x, y, 0). Then w 6= −1 and u2 + v2 + w2 = 1. Also

x =
u

w + 1
and y =

v

w + 1

(see Proposition 1.1). It follows that |AD| = (w + 1)|AE|. Moreover |AE| is
the length of the line segment joining the points (0, 0,−1) and (x, y, 0), and
therefore

|AE|2 = x2 + y2 + 1.

It follows that

|AD| |AE| = (w + 1)|AE|2 = (w + 1)(x2 + y2 + 1)

=
u2 + v2 + (w + 1)2

w + 1
=

u2 + v2 + w2 + 2w + 1

w + 1
.

But u2 + v2 + w2 = 1. It follows that

|AD| |AE| = 2 = 2 |AC|2,
as required.
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Alternative Proof The angle ADB, being the angle in a semicircle, is a
right angle (Euclid, Elements, iii, 31). The angle ACE is also a right an-
gle. Thus the triangles ADB and ACE are similar (or equiangular), and
consequently corresponding sides of those triangles are proportional (Euclid,
Elements, vi, 4).

A

B

C
P

D

E

Accordingly AD is to AC as AB is to AE, and thus

|AD|
|AC| =

|AB|
|AE| .

Cross-multiplying, it follows that

|AD| |AE| = |AB| |AC| = 2 |AC|2,

as required.

Definition Let (u, v, w) be a point on the unit sphere distinct from the
point (0, 0,−1), where u2 + v2 + w2 = 1, and let (x, y) be a point of the
plane R2. We say that the point (x, y) is the image of the point (u, v, w)
under stereographic projection from the point (0, 0,−1) if

x =
u

w + 1
and y =

v

w + 1
.

Proposition 1.3 Each point (x, y) of R2 is the image, under stereographic
projection from the point (0, 0,−1), of the point (u, v, w) of the unit sphere
for which

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

This point (u, v, w) is distinct from the point (0, 0,−1).
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Proof Given a point (x, y) of R2, the straight line passing through the points
(0, 0,−1) and (x, y, 0) is not tangent to the unit sphere, and therefore inter-
sects the unit sphere at some point distinct from (0, 0,−1). It follows that
every point of R2 is the image, under stereographic projection from (0, 0,−1),
of some point of the unit sphere distinct from the point (0, 0,−1).

Let (x, y) be the image, under stereographical projection from the point
(0, 0,−1), of a point (u, v, w), where u2 + v2 + w2 = 1 and w 6= −1. Then

x =
u

w + 1
, y =

v

w + 1
.

It follows that

x2 + y2 =
u2 + v2

(w + 1)2
=

1− w2

(w + 1)2
=

1− w

w + 1
.

It follows that
w(x2 + y2) + x2 + y2 = 1− w,

and therefore

w =
1− x2 − y2

1 + x2 + y2
.

But then

1 + w = 1 +
1− x2 − y2

1 + x2 + y2
=

2

1 + x2 + y2
,

and therefore

u = (1 + w)x =
2x

1 + x2 + y2
,

v = (1 + w)y =
2y

1 + x2 + y2
.

Conversely if

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

then

u2 + v2 + w2 =
4(x2 + y2) + (1− x2 − y2)2

(1 + x2 + y2)2
= 1,

because

4(x2 + y2) + (1− x2 − y2)2

= 4(x2 + y2) + 1− 2(x2 + y2) + (x2 + y2)2

= 1 + 2(x2 + y2) + (x2 + y2)2

= (1 + x2 + y2)2.
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Also w > −1 and
x =

u

w + 1
and y =

v

w + 1
.

The result follows.

Alternative Proof Let A = (0, 0,−1), B = (0, 0, 1), C = (0, 0, 0) and
E = (x, y, 0). Then E is the image, under stereographic projection from A,
of the unique point D distinct from A at which the line passing through A
and E intersects the unit sphere. Let D = (u, v, w).

A

B

C
P

D

E

Now the displacement vectors
−→
AD and

−→
AE representing the displacements

of the points D and E respectively from the point A point in the same
direction. Moreover |AD| |AE| = 2|AC|2 (Corollary 1.2). It follows that

−→
AD =

|AD|
|AE|

−→
AE =

|AD| |AE|
|AE|2

−→
AE =

2|AC|2
|AE|2

−→
AE.

Now
−→
AD = (u, v, w + 1) and

−→
AE = (x, y, 1). Also |AC| = 1 and |AE|2 =

1 + x2 + y2. It follows that

(u, v, w + 1) =
2

1 + x2 + y2
(x, y, 1),

and thus

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2

and

w =
2

1 + x2 + y2
− 1 =

1− x2 − y2

1 + x2 + y2
,

as required.
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Proposition 1.4 Let S be a sphere with centre C, let A and B be the end-
points of a diameter of that sphere, let P be the plane through the centre C
of the sphere that is the perpendicular bisector of the diameter AB, let D be
a point on the sphere distinct from the point A, and let E be the point where
the infinite straight line passing through the points A and D intersects the
plane P (so that E is the image of D under stereographic projection from the
point A). Then the points C, B, D and E lie on a circle.

Proof We show that the point D lies on the circle that passes through
the points C, B and E. Now we can assume, without loss of generality,
that the sphere is the unit sphere centred on the origin of coordinates, that
A = (0, 0,−1) and B = (0, 0, 1). Let E = (x, y, 0), and let Z be the circle
through the points C, B and E.

A

B

C
P

D

E

Z

The centre of the circle Z lies on the perpendicular bisector of the line
segment CE. This perpendicular bisector consists of those points of three-
dimensional space whose Cartesian coordinates are of the form (1

2
x, 1

2
y, w) for

some real number w. The centre of the circle also lies on the perpendicular
bisector of the line segment CB, where C = (0, 0, 0) and B = (0, 0, 1). It
follows that w = 1

2
, and thus the centre of the circle Z is located at the point

(1
2
x, 1

2
y, 1

2
). The radius of the circle Z is the distance from the origin (0, 0, 0)

to the centre of the circle. The square of the radius of the circle Z is therefore
equal to 1

4
(x2 + y2 + 1), and thus the circle Z itself consists of those points

in the plane of this circle whose Cartesian coordinates (u, v, w) satisfy the
equation

(u− 1
2
x)2 + (v − 1

2
y)2 + (w − 1

2
)2 = 1

4
(x2 + y2 + 1).

Expanding out and cancelling terms, this equation reduces to the equation

u2 + v2 + w2 − xu− yv − w = 0.

Now let (u, v, w) be the Cartesian coordinates of the point D. Then

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
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(see Proposition 1.3). It follows that

xu + yv + w =
2x2 + 2y2 + 1− x2 − y2

1 + x2 + y2
= 1.

Also u2 + v2 +w2 = 1, because the point D lies on the unit sphere. It follows
that the Cartesian coordnates (u, v, w) of the point D satisfy the equation

u2 + v2 + w2 − xu− yv − w = 0.

The point D also lies on the plane of the circle Z. It follows that the point D
lies on the circle Z. The result follows.

Alternative Proof The configuration is as depicted in the figure below.
In particular the angle BDE is a right angle, because it is the angle in a
semicircle (Euclid, Elements, iii, 31) and the angle BCD is also a right angle.
It follows (as an immediate corollary of the results stated in Euclid, Elements,

A

B

C
P

D

E

Z

iii, 31) that the region bounded by the straight line BE and the circular arc
BDE is a semicircle. Similarly the region bounded by the straight line BE
and the circular arc BCE is a semicircle, and thus BCED is a circle. The
result follows.

1.2 Small Circles on the Unit Sphere

If a plane in three-dimensional space contains points lying inside some given
sphere then the intersection of the plane and the given sphere takes the form
of a circle on that sphere. Every circle on a sphere is the intersection of
that sphere with some plane in three-dimensional space. If the centre of the
sphere lies on that plane then the circle is said to be a great circle on the
sphere. On the other hand, if the centre of the sphere does not lie on the
plane then the circle is said to be a small circle on the sphere.
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Proposition 1.5 Let S be the unit sphere in three-dimensional Euclidean
space, consisting of those points whose Cartesian coordinates (u, v, w) satisfy
the equation u2 +v2 +w2 = 1, and let Q be a plane in that space consisting of
those points of space whose Cartesian coordinates (u, v, w) satisfy an equation
of the form

pu + qv + rw + s = 0,

where p, q, r and s are real constants and p, q and r are not all equal to zero.
Then the plane Q intersects the sphere S along a circle if and only if

s2 < p2 + q2 + r2.

Proof The vector with components (p, q, r) is orthogonal to the plane Q, and
therefore the perpendicular dropped from the origin of Cartesian coordinates
to the given plane meets that plane at a point whose Cartesian coordinates
are of the form (kp, kq, kr) for some real number k. That intersection point
lies on the plane Q, and therefore

k(p2 + q2 + r2) + s = 0.

It follows that the point with Cartesian coordinates( −sp
p2 + q2 + r2

,
−sq

p2 + q2 + r2
,

−sr
p2 + q2 + r2

)
is the point on the plane Q that lies closest to the origin.

Now the plane Q intersects the unit sphere S in a circle if and only if the
point on the plane Q closest to the origin lies inside the unit sphere. This is
the case if and only if( −sp

p2 + q2 + r2

)2

+

( −sq
p2 + q2 + r2

)2

+

( −sr
p2 + q2 + r2

)2

< 1,

and the latter inequality holds if and only if

s2 < p2 + q2 + r2.

The result follows.

Corollary 1.6 Let S be the unit sphere consisting of those points of three-
dimensional Euclidean space whose Cartesian coordinates (u, v, w) with re-
spect to a chosen Cartesian coordinate system satisfy the equation u2 + v2 +
w2 = 1, and let Z be a small circle on the unit sphere S. Then there exist real
constants p, q and r, where p2 +q2 +r2 > 1, such that the circle Z consists of
those points of the unit sphere S whose Cartesian coordinates (u, v, w) satisfy
the equations

u2 + v2 + w2 = 1 and pu + qv + rw = 1.
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Proof Let Q be the plane that contains the circle Z. Then the plane Q does
not contain the centre of the sphere, because the circle Z is a small circle.
But the centre of the unit sphere is the origin (0, 0, 0) of the chosen Cartesian
coordinate system. Now the points of the plane Q are those points of space
whose Cartesian coordinates (u, v, w) satisfy an equation of the form

p′u + q′v + r′w + s′ = 0,

where p′, q′, r′ and s′ are real constants and p′, q′ and r′ are not all zero.
Moreover s′ 6= 0, because the origin (0, 0, 0) does not lie in the plane Q. Let

p = −p′

s′
, q = −q′

s′
, r = −r′

s′
.

Then the points of the plane Q are those points whose Cartesian coordinates
satisfy the equation

pu + qv + rw = 1.

Moreover it follows from Proposition 1.5 that p2 + q2 + r2 > 1. The result
follows.

1.3 Images of Circles under Stereographic Projection

We consider the images of circles on the unit sphere under stereographic
projection. This sphere is the sphere of unit radius centred on the origin
of Cartesian coordinates, and consists of those points of three-dimensional
space whose Cartesian coordinates (u, v, w) satisfy the equation

u2 + v2 + w2 = 1.

Let some plane in three-dimensional space be given. Then the given plane
consists of those points of three-dimensional Euclidean space whose Cartesian
coordinates (u, v, w) satisfy an equation of the form

pu + qv + rw + s = 0,

where p, q, r and s are real constants and p, q and r are not all equal to zero.
Given real constants p′, q′, r′ and s′, where p′, q′ and r′ are not all zero, the
plane consisting of those points that satisfy the equation

p′u + q′v + r′w + s′ = 0

coincides with the given plane if and only if p′, q′, r′ and s′ are respectively
proportional to p, q, r and s, in which case there exists some non-zero real
number k such that p′ = kp, q′ = kq, r′ = kr and s′ = ks.
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Proposition 1.7 Let p, q, r and s be real constants, where p, q and r are
not all equal to zero and s2 < p2 + q2 + r2, and let Pp,q,r,s be the plane in
three-dimensional space consisting of those points whose Cartesian coordi-
nates (u, v, w) satisfy the equation

pu + qv + rw + s = 0.

A point (x, y) of R2 belongs to the image, under stereographic projection from
the point (0, 0,−1), of the circle on the unit sphere along which that sphere
interects the plane Pp,q,r,s if and only if

(r − s)(x2 + y2) = 2px + 2qy + r + s.

Proof Given a point (x, y) of R2 there is a unique point (u, v, w) of the
unit sphere in R3 distinct from (0, 0,−1) that maps to the point (x, y) under
stereographic projection from the point (0, 0,−1). Moreover

u =
2x

1 + x2 + y2
, v =

2y

1 + x2 + y2
and w =

1− x2 − y2

1 + x2 + y2
.

It follows that (x, y) is the image, under stereographic projection from the
point (0, 0,−1) of a point on the circle along which the plane Pp,q,r,s intersects
the unit sphere if and only if

2px + 2qy + r − r(x2 + y2)

1 + x2 + y2
+ s = 0.

This equation is satisfied if and only if

2px + 2qy + r − r(x2 + y2) + s + s(x2 + y2) = 0.

Thus (x, y) is on the image, under stereographic projection, of the specified
circle if and only if

(r − s)(x2 + y2) = 2px + 2qy + r + s.

The result follows.

Corollary 1.8 Circles on the unit sphere in three-dimensional Euclidean
space correspond, under stereographic projection, to lines and circles in the
Euclidean plane. A circle on the unit sphere is projected to a line in the
Euclidean plane, under stereographic projection from the point (0, 0,−1), if
and only if that circle on the unit sphere passes through the point (0, 0,−1).
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Proof If r 6= s then the equation

(r − s)(x2 + y2) = 2px + 2qy + r + s

is the equation of a circle in the Euclidean plane. If r = s then the above
equation reduces to

2px + 2qy + r + s = 0,

and the latter equation is the equation of a line in the Euclidean plane. The
circle along which the plane pu + qv + rw + s = 0 intersects the unit sphere
passes through the point (0, 0,−1) if and only if r = s. The result follows.

Corollary 1.9 Let (p, q) be a point of the Euclidean plane R2, and let R be
a positive real number. Then the circle of radius R centred on the point (p, q)
is the image, under stereographic projection from the point (0, 0,−1), of the
circle on the unit sphere in which that sphere intersects the plane consisting
of those points (u, v, w) of R3 that satisfy the equation

pu + qv + 1
2
(R2 − p2 − q2 + 1)(w + 1) = 1.

Proof The points (x, y) lying on the circle of radius R about the point (p, q)
in R2 are those points of R2 that satisfy the equation

(x− p)2 + (y − q)2 = R2.

This equation is satisfied by (x, y) if and only if

x2 + y2 = 2px + 2qy + R2 − p2 − q2.

This equation is of the form (r − s)(x2 + y2) = 2px + 2qy + r + s provided
that r = s + 1 and R2 − p2 − q2 = 2s + 1, in which case

R2 = p2 + q2 + r2 − s2,

and therefore s2 < p2 + q2 + r2. Applying the result of Proposition 1.7, we
conclude that the circle of radius R about the point (p, q) is the image, under
stereographic projection from (0, 0,−1), of the circle on the unit sphere along
which that unit sphere intersects the plane consisting of those points (u, v, w)
that satisfy the equation

pu + qv + 1
2
(R2 − p2 − q2 + 1)(w + 1) = 1.

The result follows.
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1.4 Pole and Polar

Let S be the unit sphere in three-dimensional space centred on the origin of a
Cartesian coordinate system (u, v, w), so that the sphere S consists of those
points of space whose Cartesian coordinates (u, v, w) satisfy the equation
u2 + v2 + w2 = 1, and let Q be a plane in three-dimensional space that
does not contain the origin of a Cartesian coordinate system (u, v, w). Then
there exist real constants p, q and r such that the points of space that lie
on the plane Q are those whose Cartesian coordinates satisfy the equation
pu + qv + rw = 1. Let F be the point of three-dimensional Euclidean space
whose Cartesian coordinates are (p, q, r). The point F is then said to be the
pole of the plane Q, and the plane Q is said to be the polar plane (or polar) of
the point F with respect to the unit sphere S. The terminology of pole and
polar can be extended to define poles of planes and polar planes of points
with respect to spheres of arbitrary radius and centre, as in the definitions
that follow.

Definition Let S be a sphere in three-dimensional Euclidean space, and let
Q be a plane in that space that does not contain the centre of the sphere S.
The sphere S consists of those points (x, y, z) of space for which

(x− a)2 + (y − b)2 + (z − c)2 = R2
0,

where R0 is the radius of the sphere and (a, b, c) is the centre of the sphere.
Real numbers p, q and r may then be determined so that the plane Q consists
of those points (x, y, z) of space that satisfy the equation

(p− a)(x− a) + (q − b)(y − b) + (r − c)(z − c) = R2
0.

The pole of the plane Q with respect to the sphere S is then the point of
space whose Cartesian coordinates are (p, q, r).

Definition Let S be a sphere in three-dimensional Euclidean space, and let
F be a point in that space that is distinct from centre of the sphere S. The
sphere S consists of those points (x, y, z) of space for which

(x− a)2 + (y − b)2 + (z − c)2 = R2
0,

where R0 is the radius of the sphere and (a, b, c) is the centre of the sphere.
Let the point F have Cartesian coordinates (p, q, r). The polar plane (or
polar) of the point F with respect to the sphere S consists of those points
(x, y, z) of space for which

(p− a)(x− a) + (q − b)(y − b) + (r − c)(z − c) = R2
0.
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Lemma 1.10 Let S be a sphere in three-dimensional Euclidean space, let
Q be a plane that does not contain the centre of the sphere S, and let F be
a point of space that is distinct from the centre of the sphere S. Then the
point F is the pole of plane Q with respect to the sphere S if and only if the
plane Q is the polar plane of the point F with respect to the sphere S.

Proof This result follows directly from the relevant definitions.

Proposition 1.11 Let S be a sphere in three-dimensional Euclidean space,
and let Q be a plane that intersects the sphere S along a circle Z but does
not pass through the centre of the sphere. Let F be the pole of the plane Q
with respect to the sphere S. Then the line DF joining any point D of the
circle Z to the point F is contained in the tangent plane to the sphere S at
the point D.

Proof We may choose the unit of length and the origin of the Cartesian
coordinate system (u, v, w) so that the sphere S has unit radius and is cen-
tred on the origin of the Cartesian coordinate system. The centre C of the
sphere S then has Cartesian coordinates (0, 0, 0). Let F be the pole of the
plane Q. Then F = (p, q, r), where p2 + q2 + r2 > 1, and the plane Q con-
sists of those points of space whose Cartesian coordinates (u, v, w) satisfy the
equation pu + qv + rw = 1.

Let D be a point that lies on the circle Z along which the plane Q
intersects the sphere S, and let D = (u, v, w), where u2 + v2 + w2 = 1 and
pu + qv + rw = 1. Then

|DF |2 = (u− p)2 + (v − q)2 + (w − r)2

= u2 + v2 + w2 − 2(pu + qv + rw) + p2 + q2 + r2

= p2 + q2 + r2 − 1.

Also |CD| = 1 and |CF |2 = p2 + q2 + r2. It follows that |CF |2 = |CD|2 +
|DF |2, and thus the angle of the triangle CDF at the vertex D is a right
angle (see for example Euclid, Elements, i, 48). Now a line passing through
the point D is tangent to the unit sphere S at D if and only if it is makes a
right angle with the line DC joining D to the centre C of the unit sphere.
We conclude therefore that the line DF is indeed tangent to the sphere S at
D.

Corollary 1.12 Let S be a sphere in three-dimensional Euclidean space, and
let Q be a plane that intersects the sphere S in a circle Z but does not contain
the centre C of the sphere, and let F be the pole of the plane Q with respect
to the sphere S. Let D be a point lying on the circle Z. Then |DF |2 =
|CF |2 −R2

0, where R0 is the radius of the sphere S.
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Proof Let D be a point lying on the circle Z. Then the angle CDF is a
right angle, because the line DF lies in the tangent plane to the sphere S
at the point D and is therefore perpendicular to the line CD joining the
centre C of the sphere to the point D. It follows from Pythagoras’s Theorem
(Euclid, Elements, i, 47) that |CF |2 = |CD|2 + |DF |2 = R2

0 + |DF |2. The
result follows.

Definition Given a circle in three-dimensional Euclidean space, the axis of
the circle is the line, perpendicular to the plane containing the given circle,
that passes through the centre of that circle.

The axis of a circle in three-dimensional Euclidean space consists of those
points of Euclidean space that are equidistant from all points of the circle.
(This result follows easily using the definition of the centre of a circle together
with Pythagoras’s Theorem.)

Lemma 1.13 Let S be a sphere in three-dimensional Euclidean space, and
let Q be a plane that intersects the sphere S in a circle Z but does not contain
the centre C of the sphere, and let F be the pole of the plane Q with respect
to the sphere S. Then the axis of the circle Z is the line that passes through
the points C and F .

Proof All points of the circle Z are equidistant from the centre C of the
sphere S. There are also equidistant from the pole F of the plane Q, because
|DF |2 = |CF |2 − R2

0 for all points D of the circle Z, where R0 is the radius
of the sphere S (see Corollary 1.12). Therefore the points C and F must lie
on the axis of the circle Z, and therefore determine the axis of this circle.
The result follows.

1.5 Stereographic Projection of Vertical Circles

Let S be a sphere in three-dimensional space, let A and B be the endpoints
of a diameter AB of that sphere, let C be the centre of the sphere S, and
let P be the plane containing C that is perpendicular to the diameter AB.
In studying stereographic projection of the sphere S from the point A onto
the plane P it is convenient to think of the point A as being located at the
bottom of the sphere S. The point B will then be located at the top of the
sphere. We may regard any line or plane parallel to the plane P as being
horizontal and any line parallel to the diameter AB as being vertical. We
may regard a plane Q as being vertical if the diameter AB joining the bottom
to the top of the sphere is parallel to the plane Q. We regard a circle as being
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horizontal if it is contained in a horizontal plane, and as being vertical if it
is contained in a vertical plane.

If we introduce a Cartesian coordinate system (u, v, w) so as to ensure
that the sphere S has unit radius and is centred on the origin of those Carte-
sian coordinate system, and if we take the point A to be that point whose
Cartesian coordinates are (0, 0,−1), then the u-axis and the v-axis are hor-
izontal and the w-axis is vertical. One can regard the plane P through the
centre of the sphere that is perpendicular to the diameter AB as being the
equatorial plane. This plane P is the unique horizontal plane passing through
the centre C of the sphere.

If a point F with Cartesian coordinates (p, q, 0) lies on the plane P and is
distinct from the centre of the sphere S then its polar plane Q with respect
to the sphere S consists of those points of space whose Cartesian coordinates
(u, v, w) satisfy the equation pu+qv = 1. The polar plane Q is then a vertical
plane, and the small circle Z along which the polar plane cuts the sphere S
is a vertical circle.

Proposition 1.14 Let S be the unit sphere in three-dimensional Euclidean
space, let A and B be endpoints of a diameter of that sphere, and let P be
the plane passing through the centre C of the sphere S that is perpendicular
to the diameter AB. Let F be a point on the plane P located outside the
sphere S, let Q be the polar plane of F with respect to the sphere S, and let
Z be the vertical circle along which the plane Q intersects the sphere S. Also
let W be the circle, contained in the plane P and centred on the point F ,
that passes through those points where the circle Z intersects the plane P .
Then stereographic projection from the point A maps the circle Z onto the
circle W .

Proof Without loss of generality, we can take S to be the unit sphere centred
on the origin of the Cartesian coordinate system (u, v, w), and also assign
coordinates so that A = (0, 0,−1), B = (0, 0, 1), C = (0, 0, 0). The plane P
then consists of those points of space whose Cartesian coordinates (u, v, w)
satisfy the equation w = 0. It follows that F = (p, q, 0), where p and q are
real numbers satisfying p2 + q2 > 1. The plane Q then consists of those
points (u, v, w) of space for which pu + qv = 1, and the circle Z, being the
intersection of the sphere S and the plane Q consists of those points (u, v, w)
of space for which u2 + v2 + w2 = 1 and pu + qv = 1.

Now the distance of all points of the circle Z from the point F is equal to√
p2 + q2 − 1 (see Corollary 1.12). Accordingly the radius R of the circle W is

determined by the equation R2 = p2+q2−1. It follows from Corollary 1.9 that
the circle W is the image, under stereographic projection from the point A, of
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the circle Z at which the polar plane Q of the point F intersects the sphere S,
as required.

Proposition 1.15 Let S be a sphere, let A and B be endpoints of a diameter
of that sphere, and let P be the plane perpendicular to the diameter AB that
passes through the centre C of the sphere S. Let F1 and F2 be points of the
plane P that lie outside the sphere S, let Q1 and Q2 be the polar planes of
F1 and F2 respectively with respect to the sphere S, and let Z1 and Z2 be the
vertical circles along which the polar planes Q1 and Q2 intersect the sphere S.
Let W1 and W2 be the circles in the plane P that are the images of the circles
Z1 and Z2 under stereographic projection from the point A. Suppose that the
circles Z1 and Z2 intersect at a point D of the sphere, and let E be the image
of the point D under stereographic projection from the point A. Then the
angle between the tangent lines to the circles Z1 and Z2 at the point D is
equal to the corresponding angle between the tangent lines to the circles W1

and W2 at the point E.

Proof It follows from Proposition 1.14 that stereographic projection from
the point A maps the circles Z1 and Z2 onto circles W1 and W2 with centres
F1 and F2 respectively.

Now the angle between the tangent lines to the circles W1 and W2 at the
point E is equal to the angle F1EF2 between the lines joining the point E to
the centres F1 and F2 of those circles, because the tangent lines are perpen-
dicular to the lines joining E to the centres of the circles W1 and W2.

We next show that the lines DF1 and DF2 are perpendicular to the tan-
gent lines of the circles Z1 and Z2 at the point D. Let G1 be the centre of the
circle Z1. Then DG1 is perpendicular to the tangent line to the circle Z1 at
D. Also the point G1 lies on the axis of the circle, and that axis also passes
through the point F1. It follows that the line G1F1 is perpendicular to the
plane Q1 and is therefore perpendicular to the direction of the tangent line
to the circle Z1 at D. Two sides DG1 and G1F1 of the triangle DG1F1 are
therefore perpendicular to the direction of the tangent line to the circle Z1 at
the point D. The same is therefore true of the third side DF1. Similarly the
line DF2 is perpendicular to the tangent line to the circle Z2 at the point D.

Next we note that the tangent lines to the circles Z1 and Z2 at the point D
and the lines DF1 and DF2 are all contained in the tangent plane to the
sphere S at the point D. Moreover the line DF1 is perpendicular to the
tangent line to the circle Z1 at D and the line DF2 is perpendicular to the
tangent line to the circle Z2 at D. It follows that the angle between the
tangent lines to the circles Z1 and Z2 at the point D is equal to the angle
F1DF2.

16



Now the points of the circle Z1 are equidistant from the point F1, and
so are the points of the circle W1. Moreover the circles Z1 and W1 intersect
at the points at which the circle Z1 intersects the plane P . It follows that
|DF1| = |EF1| and |DF2| = |EF2|. The three sides of the triangle F1DF2

are thus equal to the corresponding three sides of the triangle F1EF2. It
then follows from the SSS Congruence Rule (Euclid, Elements, i, 8) that the
angles F1DF2 and F2EF2 are equal. But we have shown that the first of
these two angles is the angle between the tangent lines to the circles Z1 and
Z2 at the point D and the second is the angle between the tangent lines to
the circles W1 and W2 at the point E. The result follows.

17


