Course MAU23203—Michaelmas Term 2022. Worked Solutions.

1. Let n be a positive integer, and let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a bounded infinite sequence of points in \mathbb{R}^n . Suppose that the infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ does not converge to $\mathbf{0}$, where $\mathbf{0} = (0, 0, \ldots, 0)$. Prove that there exists a subsequence $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_3}, \ldots$ of the given infinite sequence which converges to some point \mathbf{p} satisfying the condition $\mathbf{p} \neq \mathbf{0}$.

[The required result may be proved by an application of the standard definition of convergence for infinite sequences in a Euclidean space, used in conjunction with a result, applicable to bounded sequences in Euclidean spaces, that is proved in the course notes.]

The infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ does not converge to **0**. Therefore there exists some positive real number ε with the property that, for all positive integers N, there exists some integer j satisfying $j \ge N$ for which $|\mathbf{x}_j| \ge \varepsilon$. The number of positive integers j for which $|\mathbf{x}_j| \ge \varepsilon$ is therefore infinite. These values of j are then the indices of a subsequence of the given subsequence. This subsequence must then have a convergent subsequence. Let $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_3}, \ldots$ be that convergent subsequence, and the point \mathbf{p} be the limit of that subsequence. Then $\mathbf{x}_{k_i} \in F$ for all positive integers j, where

$$F = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| \ge \varepsilon \}.$$

Now the set F is a closed subset of \mathbb{R}^n . It follows that $\mathbf{p} \in F$, where

$$\mathbf{p} = \lim_{j \to +\infty} \mathbf{x}_{k_j}.$$

But $\mathbf{0} \notin F$. Consequently $\mathbf{p} \neq \mathbf{0}$. The required result has therefore been established.

2. Throughout this question, let $f: \mathbb{R}^2 \to \mathbb{R}$ be the real-valued function on \mathbb{R}^2 defined such that

$$f(x,y) = \begin{cases} \frac{x^2}{y} & \text{whenever } y \neq 0; \\ 0 & \text{whenever } y = 0. \end{cases}$$

(a) Is it the case that, for all $(u, v) \in \mathbb{R}^2$,

$$\lim_{t \to 0} f(tu, tv) = 0?$$

[Your answer should be appropriately justified.]

Yes. If v = 0 then f(tu, tv) = 0 for all real numbers t and therefore $\lim_{t\to 0} f(tu, tv) = 0$. If $v \neq 0$ then $f(tu, tv) = tu^2/v$, and thus f(tu, tv) is a constant multiple of the variable t. Consequently $\lim_{t\to 0} f(tu, tv) = 0$ in the case where $v \neq 0$.

(b) Is it the case that that function f is continuous at (0,0)? [Your answer should be appropriately justified.]

No. To prove that the function f is not continuous at (0,0) let $h: \mathbb{R} \to \mathbb{R}^2$ be the continuous function defined such that $h(t) = (t, t^2)$ for all real numbers t. Then f(h(t)) = 1 whenever $t \neq 0$, but f(h(0)) = 0. Consequently the composition function $f \circ h$ not continuous at 0. If the function f were continuous at (0,0) then the composition function $f \circ h$ would be continuous at 0). But this is not the case. Therefore the function f cannot be continuous at (0,0).

ALTERNATIVE SOLUTION. Choose $\varepsilon > 0$. Then given any $\delta > 0$, we can take $x = \frac{1}{2}\delta$ and then choose y satisfying $0 < y < \frac{1}{2}\delta$ close enough to zero to ensure that $x^2/y > \varepsilon$. Then $|(x, y) - (0, 0)| < \delta$ but $f(x, y) > \varepsilon$. Consequently there cannot exist any positive real number δ that is such as to ensure that $|f(x, y)| < \varepsilon$ for all $(x, y) \in \mathbb{R}^2$ satisfying $|(x, y) - (0, 0)| < \delta$. Consequently the function f is not continuous at (0, 0).