MAU23203: Analysis in Several Real Variables Michaelmas Term 2021 Disquisition VIII: A Version of Taylor's Theorem with Integral Remainder

David R. Wilkins
(C) Trinity College Dublin 2014-2021

We state and prove a version of Taylor's Theorem, applicable to functions that are k times differentiable and whose derivatives of order up to and including k are continuous functions, where the remainder term expressing the difference between the sum of the first k terms of the Taylor expansion of the function and the function itself is expressed in the form of an integral.

Theorem A (Taylor's Theorem with Integral Remainder) Let s and h be real numbers, and let f be a function whose first k derivatives are continuous on an open interval containing s and $s+h$. Then

$$
f(s+h)=f(s)+\sum_{n=1}^{k-1} \frac{h^{n}}{n!} f^{(n)}(s)+\frac{h^{k}}{(k-1)!} \int_{0}^{1}(1-t)^{k-1} f^{(k)}(s+t h) d t
$$

Proof Let

$$
r_{m}(s, h)=\frac{h^{m}}{(m-1)!} \int_{0}^{1}(1-t)^{m-1} f^{(m)}(s+t h) d t
$$

for $m=1,2, \ldots, k-1$. Then

$$
r_{1}(s, h)=h \int_{0}^{1} f^{\prime}(s+t h) d t=\int_{0}^{1} \frac{d}{d t} f(s+t h) d t=f(s+h)-f(s) .
$$

Let m be an integer between 1 and $k-2$. It follows from the rule for Integration by Parts (Corollary 7.24) that

$$
r_{m+1}(s, h)=\frac{h^{m+1}}{m!} \int_{0}^{1}(1-t)^{m} f^{(m+1)}(s+t h) d t
$$

$$
\begin{aligned}
= & \frac{h^{m}}{m!} \int_{0}^{1}(1-t)^{m} \frac{d}{d t}\left(f^{(m)}(s+t h)\right) d t \\
= & \frac{h^{m}}{m!}\left[(1-t)^{m} f^{(m)}(s+t h)\right]_{0}^{1} \\
& \quad-\frac{h^{m}}{m!} \int_{0}^{1} \frac{d}{d t}\left((1-t)^{m}\right) f^{(m)}(s+t h) d t \\
= & -\frac{h^{m}}{m!} f^{(m)}(s)+\frac{h^{m}}{(m-1)!} \int_{0}^{1}(1-t)^{m-1} f^{(m)}(s+t h) d t \\
= & r_{m}(s, h)-\frac{h^{m}}{m!} f^{(m)}(s) .
\end{aligned}
$$

Thus

$$
r_{m}(s, h)=\frac{h^{m}}{m!} f^{(m)}(s)+r_{m+1}(s, h)
$$

for $m=1,2, \ldots, k-1$. It follows by induction on k that

$$
\begin{aligned}
f(s+h) & =f(s)+\sum_{n=1}^{k-1} \frac{h^{n}}{n!} f^{(n)}(s)+r_{k}(s, h) \\
& =f(s)+\sum_{n=1}^{k-1} \frac{h^{n}}{n!} f^{(n)}(s)+\frac{h^{k}}{(k-1)!} \int_{0}^{1}(1-t)^{k-1} f^{(k)}(s+t h) d t
\end{aligned}
$$

as required.

