MAU23203: Analysis in Several Real Variables Michaelmas Term 2021
 Disquisition XI: Examples of Differentiability and Non-Differentiability

David R. Wilkins
(C) Trinity College Dublin 2020-21

Example Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that is defined such that $f(x, y)=$ $\min (|x|,|y|)$ for all $(x, y) \in \mathbb{R}^{2}$.

The function f is continuous at $(0,0)$. Inded $|f(x, y)| \leq \sqrt{x^{2}+y^{2}}$ for all $(x, y) \in \mathbb{R}^{2}$. Let some positive real number ε be given. If $|(x, y)|<\varepsilon$ then $|f(x, y)|<\varepsilon$. Thus the definition of continuity is satisfied at $(x, y)=0$.

The function f is not differentiable at $(0,0)$. Note that

$$
\left.\frac{\partial f}{\partial x}\right|_{(0,0)}=0 \quad \text { and }\left.\quad \frac{\partial f}{\partial y}\right|_{(0,0)}=0
$$

If it were the case that the function were differentiable at zero, then the derivative of the function at $(0,0)$ would be determined by the above partial derivatives, and would therefore be zero. It would then follow that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)}{\sqrt{x^{2}+y^{2}}}=0
$$

Suppose that $x=y=t$. Then $f(x, y)=|t|$ and $\sqrt{x^{2}+y^{2}}=\sqrt{2} t$. It follows that

$$
\lim _{t \rightarrow 0+} \frac{f(t, t)}{\sqrt{t^{2}+t^{2}}}=\frac{1}{\sqrt{2}} .
$$

Thus it cannot be the case that $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)}{\sqrt{x^{2}+y^{2}}}=0$. Therefore the function f is not differentiable at $(0,0)$.

Example Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that is defined such that $f(x, y)=$ $\min \left(x^{2}, y^{2}\right)$ for all $(x, y) \in \mathbb{R}^{2}$.

This function is continuous and differentiable at $(0,0)$. Note that $f(x, y) \leq$ $x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$, and therefore

$$
\frac{|f(x, y)|}{\sqrt{x^{2}+y^{2}}} \leq \sqrt{x^{2}+y^{2}}
$$

for all $(x, y) \in \mathbb{R}^{2}$. It follows that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{|f(x, y)|}{\sqrt{x^{2}+y^{2}}}=0
$$

It then follows from the definition of differentiability that that function f is differentiable at $(0,0)$, and its derivative at $(0,0)$ is zero. Differentiability implies continuity. The function f is thus continuous at $(0,0)$.

Example Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined so that

$$
f(x, y)= \begin{cases}\frac{x^{3}+y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

It follows from straightforward applications of the Product and Chain Rules for functions of several real variables that the function f is differentiable at each point of $\mathbb{R}^{2} \backslash\{(0,0)\}$. This result also follows from the fact that the first order partial derivatives of the function f are defined and continuous throughout the set $\mathbb{R}^{2} \backslash\{(0,0)\}$. Indeed calculating the first order partial derivatives of the function f away from the origin, we find that

$$
\frac{\partial f}{\partial x}=\frac{x^{4}+3 x^{2} y^{2}-2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \frac{\partial f}{\partial y}=\frac{y^{4}+3 x^{2} y^{2}-2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}
$$

when $(x, y) \neq(0,0)$. Thus, away from the origin $(0,0)$, the first order partial derivatives of f are quotients of continuous functions, and must therefore themselves be continuous functions.

The function f itself is continuous at $(0,0)$. Indeed $\left|x^{3}\right| \leq\left(\sqrt{x^{2}+y^{2}}\right)^{3}$ and $\left|y^{3}\right| \leq\left(\sqrt{x^{2}+y^{2}}\right)^{3}$ for all $(x, y) \in \mathbb{R}^{2}$, and therefore $|f(x, y)| \leq 2 \sqrt{x^{2}+y^{2}}$ for all $(x, y) \in \mathbb{R}^{2}$. Thus, given any positive real number ε, the inequality $|f(x, y)|<\varepsilon$ is satisfied whenever the point (x, y) lies within a distance $\frac{1}{2} \varepsilon$ of the origin $(0,0)$.

Also

$$
\left.\frac{\partial f}{\partial x}\right|_{(x, y)=(0,0)}=1 \quad \text { and }\left.\quad \frac{\partial f}{\partial y}\right|_{(x, y)=(0,0)}=1
$$

Now let b and c be real numbers, not both zero, and let $u_{b, c}(t)=f(b t, c t)$ for all real numbers t. Then

$$
u_{b, c}(t)=\frac{b^{3}+c^{3}}{b^{2}+c^{2}} t
$$

for all real numbers t, and therefore

$$
\frac{d}{d t}\left(u_{b, c}(t)\right)=\frac{b^{3}+c^{3}}{b^{2}+c^{2}}
$$

for all real numbers t. Now if it were the case that the function f was differentiable at $(0,0)$, it would follow on applying the Chain Rule for differentiable functions of several real variables that

$$
\begin{aligned}
\left.\frac{d}{d t}\left(u_{b, c}(t)\right)\right|_{t=0} & =\left.b \frac{\partial f}{\partial x}\right|_{(x, y)=(0,0)}+\left.c \frac{\partial f}{\partial y}\right|_{(x, y)=(0,0)} \\
& =b+c
\end{aligned}
$$

for all real numbers b and c that were not both zero. However the equation

$$
\frac{b^{3}+c^{3}}{b^{2}+c^{2}}=b+c
$$

is satisfied if and only if $b c(b+c)=0$. It follows that the function f is not differentiable at $(0,0)$.

Note also that

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=\frac{1}{2} \quad \text { whenever } \quad x=y \text { and }(x, y) \neq(0,0) .
$$

But thes partial derivatives have the value 1 when $(x, y)=(0,0)$. Thus the first order partial derivatives of the function f are not continuous at the origin $(0,0)$.

Example Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined so that

$$
f(x, y)= \begin{cases}\frac{x y}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Note that this function is not continuous at $(0,0)$. Indeed $f(t, t)=1 /\left(4 t^{2}\right)$ if $t \neq 0$ so that $f(t, t) \rightarrow+\infty$ as $t \rightarrow 0$, yet $f(x, 0)=f(0, y)=0$ for all $x, y \in \mathbb{R}$, thus showing that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

cannot possibly exist. Because f is not continuous at $(0,0)$ we conclude from Lemma 8.11 that f cannot be differentiable at $(0,0)$. However it is easy to show that the partial derivatives

$$
\frac{\partial f(x, y)}{\partial x} \text { and } \frac{\partial f(x, y)}{\partial y}
$$

exist everywhere on \mathbb{R}^{2}, even at $(0,0)$. Indeed

$$
\left.\frac{\partial f(x, y)}{\partial x}\right|_{(x, y)=(0,0)}=0,\left.\quad \frac{\partial f(x, y)}{\partial y}\right|_{(x, y)=(0,0)}=0
$$

on account of the fact that $f(x, 0)=f(0, y)=0$ for all $x, y \in \mathbb{R}$.
Example Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined so that

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) ; \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Given real numbers b and c, let $u_{b, c}: \mathbb{R} \rightarrow \mathbb{R}$ be defined so that $u_{b, c}(t)=$ $f(b t, c t)$ for all $t \in \mathbb{R}$. If $b=0$ or $c=0$ then $u_{b, c}(t)=0$ for all $t \in \mathbb{R}$. If $b \neq 0$ and $c \neq 0$ then

$$
u_{b, c}(t)=\frac{b c^{2} t^{3}}{b^{2} t^{2}+c^{4} t^{4}}=\frac{b c^{2} t}{b^{2}+c^{2} t^{2}}
$$

We now show that the function $u_{b, c}: \mathbb{R} \rightarrow \mathbb{R}$ has derivatives of all orders. This is obvious when $b=0$, and when $c=0$. If b and c are both non-zero, and if the function $u_{b, c}$ has a derivative $u_{b, c}^{(k)}(t)$ of order k that can be represented in the form

$$
u_{b, c}^{(k)}(t)=p_{k}(t)\left(b^{2}+c^{2} t^{2}\right)^{-k-1}
$$

where $p_{k}(t)$ is a polynomial of degree at most $k+1$, then it follows from standard single-variable calculus that the function $u_{b, c}$ has a derivative $u_{b, c}^{(k+1)}(t)$ of order $k+1$ that can be represented in the form

$$
u_{b, c}^{(k+1)}(t)=p_{k+1}(t)\left(b^{2}+c^{2} t^{2}\right)^{-k-2},
$$

where $p_{k+1}(t)$ is the polynomial of degree at most $k+2$ determined by the formula

$$
p_{k+1}(t)=p_{k}^{\prime}(t)\left(b^{2}+c^{2} t^{2}\right)-2(k+1) c^{2} t p_{k}(t) .
$$

Thus the function $u_{b, c}: \mathbb{R} \rightarrow \mathbb{R}$ has derivatives of all orders.

Moreover the first derivative $u_{b, c}^{\prime}(0)$ of $u_{b, c}(t)$ at $t=0$ is given by the formula

$$
u_{b, c}^{\prime}(0)= \begin{cases}\frac{c^{2}}{b} & \text { if } b \neq 0 \\ 0 & \text { if } b=0\end{cases}
$$

We have shown that the restriction of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ to any line passing through the origin determines a function that may be differentiated any number of times with respect to distance along the line. Analogous arguments show that the restriction of the function g to any other line in the plane also determines a function that may be differentiated any number of times with respect to distance along the line.

Now $f(x, y)=\frac{1}{2}$ for all $(x, y) \in \mathbb{R}^{2}$ satisfying $x>0$ and $y= \pm \sqrt{x}$, and similarly $f(x, y)=-\frac{1}{2}$ for all $(x, y) \in \mathbb{R}^{2}$ satisfying $x<0$ and $y= \pm \sqrt{-x}$. It follows that every open disk about the origin $(0,0)$ contains some points at which the function f takes the value $\frac{1}{2}$, and other points at which the function takes the value $-\frac{1}{2}$, and indeed the function f will take on all real values between $-\frac{1}{2}$ and $\frac{1}{2}$ on any open disk about the origin, no matter how small the disk. Therefore the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is not continuous at zero, even though the partial derivatives of the function f with respect to x and y exist at each point of \mathbb{R}^{2}.

Remark Examination of some of the examples discussed above establishes that even if all the partial derivatives of a function exist at some point, this does not necessarily imply that the function is differentiable at that point. However it is a standard result in the theory of differentiability for functions of several real variables that if the first order partial derivatives of the components of a function exist and are continuous throughout some neighbourhood of a given point then the function is differentiable at that point (see Proposition 8.12).

