MAU23203: Analysis in Several Real Variables Michaelmas Term 2021 Disquisition I: Convergent Subsequence Examples

David R. Wilkins
(C) Trinity College Dublin 2016-2021

An Example concerning Convergent Subsequences of a Bounded Infinite Sequence

We recall that an infinite sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots$ of points in n-dimensional Euclidean space \mathbb{R}^{n} is said to be bounded if there exists some constant K such that $\left|\mathbf{x}_{j}\right| \leq K$ for all j.

The multidimensional Bolzano-Weierstrass Theorem asserts that every bounded infinite sequence of points in a Euclidean space has a convergent subsequence.

The basis strategy for proving this theorem is exemplified in the following 3-dimensional example.

Example Let

$$
\left(x_{j}, y_{j}, z_{j}\right)=\left(\sin (\pi \sqrt{j}),(-1)^{j}, \cos \left(\frac{2 \pi \log j}{\log 2}\right)\right)
$$

for $j=1,2,3, \ldots$. This infinite sequence of points in \mathbb{R}^{3} is bounded, because the components of its members all take values between -1 and 1 . Moreover $x_{j}=0$ whenever j is the square of a positive integer, $y_{j}=1$ whenever j is even and $z_{j}=1$ whenever j is a power of two.

The infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ has a convergent subsequence

$$
x_{1}, x_{4}, x_{9}, x_{16}, x_{25}, \ldots
$$

which includes those x_{j} for which j is the square of a positive integer. The corresponding subsequence $y_{1}, y_{4}, y_{9}, \ldots$ of $y_{1}, y_{2}, y_{3}, \ldots$ is not convergent, because its values alternate between 1 and -1 . However this subsequence is bounded, and we can extract from this sequence a convergent subsequence

$$
y_{4}, y_{16}, y_{36}, y_{64}, y_{100}, \ldots
$$

which includes those x_{j} for which j is the square of an even positive integer. The subsequence

$$
x_{4}, x_{16}, x_{36}, y_{64}, y_{100}, \ldots
$$

is also convergent, because it is a subsequence of a convergent subsequence. However the corresponding subsequence

$$
z_{4}, z_{16}, z_{36}, z_{64}, z_{100}, \ldots
$$

does not converge. (Indeed $z_{j}=1$ when j is an even power of 2 , but $z_{j}=\cos (2 \pi \log (9) / \log (2))$ when $j=9 \times 2^{2 p}$ for some positive integer p.) However this subsequence is bounded, and we can extract from it a convergent subsequence

$$
z_{4}, z_{16}, z_{64}, z_{256}, z_{1024}, \ldots
$$

which includes those x_{j} for which j is equal to two raised to the power of an even positive integer. Then the first, second and third components of the following subsequence

$$
\left(x_{4}, y_{4}, z_{4}\right), \quad\left(x_{16}, y_{16}, z_{16}\right), \quad\left(x_{64}, y_{64}, z_{64}\right), \quad\left(x_{256}, y_{256}, z_{256}\right), \ldots
$$

of the original sequence of points in \mathbb{R}^{3} converge, and consequently this sequence is a convergent subsequence of the given infinite sequence of points in \mathbb{R}^{3}.

Example Let

$$
x_{j}= \begin{cases}1 & \text { if } j=4 k \text { for some integer } k \\ 0 & \text { if } j=4 k+1 \text { for some integer } k \\ -1 & \text { if } j=4 k+2 \text { for some integer } k \\ 0 & \text { if } j=4 k+3 \text { for some integer } k\end{cases}
$$

and

$$
y_{j}= \begin{cases}0 & \text { if } j=4 k \text { for some integer } k, \\ 1 & \text { if } j=4 k+1 \text { for some integer } k, \\ 0 & \text { if } j=4 k+2 \text { for some integer } k, \\ -1 & \text { if } j=4 k+3 \text { for some integer } k,\end{cases}
$$

and let $\mathbf{u}_{j}=\left(x_{j}, y_{j}\right)$ for $j=1,2,3,4, \ldots$. Then the first components x_{j} for which the index j is odd constitute a convergent sequence $x_{1}, x_{3}, x_{5}, x_{7}, \ldots$ of real numbers, and the second components y_{j} for which the index j is even also constitute a convergent sequence $y_{2}, y_{4}, y_{6}, y_{8}, \ldots$ of real numbers.

However one would not obtain a convergent subsequence of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots$ simply by selecting those indices j for which x_{j} is in the convergent subsequence $x_{1}, x_{3}, x_{5}, \ldots$ and y_{j} is in the convergent subsequence $y_{2}, y_{4}, y_{6}, \ldots$, because there no values of the index j for which x_{j} and y_{j} both belong to the respective subsequences. However the one-dimensional Bolzano-Weierstrass Theorem (Theorem ??) guarantees that there is a convergent subsequence of $y_{1}, y_{3}, y_{5}, y_{7}, \ldots$, and indeed $y_{1}, y_{5}, y_{9}, y_{13}, \ldots$ is such a convergent subsequence. This yields a convergent subsequence $\mathbf{u}_{1}, \mathbf{u}_{5}, \mathbf{u}_{9}, \mathbf{u}_{13}, \ldots$ of the given bounded infinite sequence of points in \mathbb{R}^{2}.

