MAU23203: Analysis in Several Real Variables Michaelmas Term 2021
 Disquisition XII: An Example Concerning Second Order Partial Derivatives

David R. Wilkins
(C) Trinity College Dublin 2020-2021

Let $f: X \rightarrow \mathbb{R}$ be a real-valued function on X. defined over an open subset X of \mathbb{R}^{n}. We consider the second order partial derivatives of the function f defined by

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right) .
$$

An important theorem establishes that if the first and second order partial derivatives

$$
\frac{\partial f}{\partial x_{i}}, \quad \frac{\partial f}{\partial x_{j}}, \quad \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \text { and } \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

all exist and are continuous then

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} .
$$

In this disquisition, a counterexample is presented exhibiting a function f with the property that

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \neq \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

at a particular point of the domain of the function at which the second order partial derivatives of the function fail to be continuous.

Example Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

For convenience of notation, let us write

$$
\begin{aligned}
f_{x}(x, y) & =\frac{\partial f(x, y)}{\partial x} \\
f_{y}(x, y) & =\frac{\partial f(x, y)}{\partial y} \\
f_{x y}(x, y) & =\frac{\partial^{2} f(x, y)}{\partial x \partial y} \\
f_{y x}(x, y) & =\frac{\partial^{2} f(x, y)}{\partial y \partial x}
\end{aligned}
$$

If $(x, y) \neq(0,0)$ then

$$
\begin{aligned}
f_{x} & =\frac{\partial}{\partial x}\left(\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}\right) \\
& =\frac{\left(3 x^{2} y-y^{3}\right)\left(x^{2}+y^{2}\right)-2 x^{2} y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{3 x^{4} y+3 x^{2} y^{3}-x^{2} y^{3}-y^{5}-2 x^{4} y+2 x^{2} y^{3}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} .
\end{aligned}
$$

Thus

$$
f_{x}=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

Similarly

$$
f_{y}=\frac{-x y^{4}-4 x^{3} y^{2}+x^{5}}{\left(x^{2}+y^{2}\right)^{2}}
$$

(This can be deduced from the formula for f_{x} on noticing that $f(x, y)$ changes sign on interchanging the variables x and y.)

Differentiating again, when $(x, y) \neq(0,0)$, we find that

$$
\begin{aligned}
f_{x y}(x, y) & =\frac{\partial f_{y}}{\partial x}=\frac{\partial}{\partial x}\left(\frac{-x y^{4}-4 x^{3} y^{2}+x^{5}}{\left(x^{2}+y^{2}\right)^{2}}\right) \\
& =\frac{\left(-y^{4}-12 x^{2} y^{2}+5 x^{4}\right)\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}+\frac{-4 x\left(-x y^{4}-4 x^{3} y^{2}+x^{5}\right)}{\left(x^{2}+y^{2}\right)^{3}} \\
& =\frac{-x^{2} y^{4}-12 x^{4} y^{2}+5 x^{6}-y^{6}-12 x^{2} y^{4}+5 x^{4} y^{2}}{\left(x^{2}+y^{2}\right)^{3}}
\end{aligned}
$$

$$
\begin{array}{r}
+\frac{4 x^{2} y^{4}+16 x^{4} y^{2}-4 x^{6}}{\left(x^{2}+y^{2}\right)^{3}} \\
=\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}}
\end{array}
$$

Now the expression just obtained for $f_{x y}$ when $(x, y) \neq(0,0)$ changes sign when the variables x and y are interchanged. The same is true of the expression defining $f(x, y)$. It follows that $f_{y x}$. We conclude therefore that if $(x, y) \neq(0,0)$ then

$$
f_{x y}=f_{y x}=\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}}
$$

Now if $(x, y) \neq(0,0)$ and if $r=\sqrt{x^{2}+y^{2}}$ then

$$
\begin{aligned}
\left|f_{x}(x, y)\right| & =\left|\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}\right| \\
& =\frac{\left|x^{4} y+4 x^{2} y^{3}-y^{5}\right|}{r^{4}} \leq \frac{6 r^{5}}{r^{4}}=6 r .
\end{aligned}
$$

It follows that

$$
\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y)=0
$$

Similarly

$$
\lim _{(x, y) \rightarrow(0,0)} f_{y}(x, y)=0
$$

However

$$
\lim _{(x, y) \rightarrow(0,0)} f_{x y}(x, y)
$$

does not exist. Now we have shown that

$$
f_{x y}=f_{y x}=\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}}
$$

when $(x, y) \neq(0,0)$. Consequently

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f_{x y}(x, 0)=\lim _{x \rightarrow 0} f_{y x}(x, 0)=\lim _{x \rightarrow 0} \frac{x^{6}}{x^{6}}=1 \\
& \lim _{y \rightarrow 0} f_{x y}(0, y)=\lim _{y \rightarrow 0} f_{y x}(0, y)=\lim _{y \rightarrow 0} \frac{-y^{6}}{y^{6}}=-1
\end{aligned}
$$

Next we show that $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ all exist at $(0,0)$, and thus exist everywhere on \mathbb{R}^{2}. Now the factor $x y$ occurs in the numerator of the expression
defining the value of $f(x, y)$ when $(x, y) \neq(0,0)$. Consequently $f(x, 0)=0$ for all real numbers x and $f(0, y)=0$ for all real numbers y, and therefore $f_{x}(0,0)=0$ and $f_{y}(0,0)=0$. Also we previously found that

$$
f_{x}=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad f_{y}=\frac{-x y^{4}-4 x^{3} y^{2}+x^{5}}{\left(x^{2}+y^{2}\right)^{2}}
$$

when x and y are not both equal to zero. Substituting $y=0$ in the formula for f_{y}, and $x=0$ for the formula for f_{x}, we find that

$$
f_{y}(x, 0)=x, \quad f_{x}(0, y)=-y
$$

for all $x, y \in \mathbb{R}$. We conclude that

$$
\begin{aligned}
& f_{x y}(0,0)=\left.\frac{d\left(f_{y}(x, 0)\right)}{d x}\right|_{x=0}=1 \\
& f_{y x}(0,0)=\left.\frac{d\left(f_{x}(0, y)\right)}{d y}\right|_{y=0}=-1
\end{aligned}
$$

Thus

$$
\frac{\partial^{2} f}{\partial x \partial y} \neq \frac{\partial^{2} f}{\partial y \partial x}
$$

at $(0,0)$.
Observe that in this example the functions $f_{x y}$ and $f_{y x}$ are continuous throughout $\mathbb{R}^{2} \backslash\{(0,0)\}$ and are equal to one another there. Although the functions $f_{x y}$ and $f_{y x}$ are well-defined at $(0,0)$, they are not continuous at $(0,0)$ and $f_{x y}(0,0) \neq f_{y x}(0,0)$.

