
Course MAU23203—Michaelmas Term 2021.
Worked Solutions.

1. Let X be a subset of n-dimensional Euclidean space, let f :X → R and
h:X → R be real-valued functions on R, and let p be a limit point of
the set X. We say that the function h remains bounded as the point x
tends to the point p in X if there exist positive constants M and δ such
that |h(x)| ≤M for all points x of the set X that satisfy the condition
0 < |x− p| < δ.

Suppose that lim
x→p

f(x) = 0 and that the function h remains bounded as

the point x tends to the point p in the set X. Prove that

lim
x→p

(h(x)f(x)) = 0.

Let some positive real number ε be given. Now there exist positive
real numbers M and δ1 with the property that |h(x)| ≤ M for all
points x of X that satisfy 0 < |x − p| < δ1. There then exists some
positive real number δ2 with the property that |f(x)| < ε/M whenever
0 < |x−p| < δ2. Let δ be the minimum of δ1 and δ2. If 0 < |x−p| < δ
then |h(x)f(x)| < ε. Consequently lim

x→p
(h(x)f(x)) = 0, as required.

2. Let X be an open set in m-dimensional space Rm, and let f :X → R and
g:X → R be real-valued functions on X, and let p be a point belonging
to the set X. Also let u:X → R and v:X → R be the real-valued
functions on X u(p) = 0, v(p) = 0,

f(x) = f(p) + (∇f)p . (x− p) + |x− p|u(x)

for all x ∈ X and

g(x) = g(p) + (∇g)p . (x− p) + |x− p| v(x)

for all x ∈ X. Let w:X → R be the real-valued function on X that is
uniquely characterized by the properties that w(p) = 0 and

f(x)g(x) = f(p)g(p) + g(p) (∇f)p . (x− p) + f(p) (∇g)p . (x− p)

+ |x− p|w(x).

Now the definition of differentiability ensures that the function f is
differentiable at the point p if and only if lim

x→p
u(x) = 0. Similarly the

function g is differentiable at the point p if and only if lim
x→p

v(x) = 0.
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Suppose that the functions f and g are differentiable at the point p.
Find a formula that expresses the the value of the function w at each
point x of X in terms of the points x and p, the functions f , g u, v,
and the gradients (∇f)p and (∇g)p of the functions f and g at the
point p. Then prove that lim

x→p
w(x) = 0. (This result ensures that the

product of the functions f and g is differentiable at the point p, with
gradient g(p) (∇f)p + f(p) (∇g)p.)

Multiplying out, we find that

f(x)g(x) = f(p)g(p) + g(p) (∇f)p . (x− p) + f(p) (∇g)p . (x− p)

+ |x− p| g(p)u(x) + |x− p| f(p)v(x)

+ |x− p| v(x) (∇f)p . (x− p)

+ |x− p|u(x) (∇g)p . (x− p)

+ |x− p|2u(v)v(x)

+ ((∇f)p . (x− p)) ( (∇g)p . (x− p)) .

Consequently

w(x) = g(p)u(x) + f(p)v(x)

+ v(x) (∇f)p . (x− p)

+ u(x) (∇g)p . (x− p)

+ |x− p|u(v)v(x)

+
1

|x− p|
((∇f)p . (x− p)) ( (∇g)p . (x− p)) .

Now Schwarz’s Inequality ensures that

|(∇f)p . (x− p)| ≤ |(∇f)p| |x− p)|

|(∇g)p . (x− p)| ≤ |(∇g)p| |x− p)|.

Consequently

1

|x− p|
|(∇f)p . (x− p)| | (∇g)p . (x− p)| ≤ |(∇f)p| |(∇g)p| |x− p)|,

and therefore

lim
x→p

1

|x− p|
((∇f)p . (x− p)) ( (∇g)p . (x− p)) = 0.
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Also

lim
x→p

g(p)u(x) = g(p) lim
x→p

u(x) = 0,

lim
x→p

f(p)v(x) = f(p) lim
x→p

v(x) = 0,

lim
x→p

v(x) (∇f)p . (x− p) = lim
x→p

v(x) lim
x→p

((∇f)p . (x− p))) = 0,

lim
x→p

u(x) (∇g)p . (x− p) = lim
x→p

u(x) lim
x→p

((∇g)p . (x− p))) = 0,

lim
x→p

(|x− p|u(v)v(x)) =

(
lim
x→p
|x− p|

) (
lim
x→p

u(v)

) (
lim
x→p

v(x)

)
= 0.

Consequently lim
x→p

w(x) = 0, as required.

3


