Course M AU23203—Michaelmas Term 2021.
Worked Solutions.

1. Let X be a subset of n-dimensional Fuclidean space, let f: X — R and
h: X — R be real-valued functions on R, and let p be a limit point of
the set X. We say that the function h remains bounded as the point x
tends to the point p in X if there exist positive constants M and & such
that |h(x)| < M for all points x of the set X that satisfy the condition
0<|x—p|<d.

Suppose that lim f(x) = 0 and that the function h remains bounded as
X—Pp

the point x tends to the point p in the set X. Prove that
lim (h(x)f(x)) = 0.

X—=p

Let some positive real number € be given. Now there exist positive
real numbers M and §; with the property that |h(x)| < M for all
points x of X that satisfy 0 < |[x — p| < d;. There then exists some
positive real number d, with the property that |f(x)| < ¢/M whenever
0 < |[x—p| < 3. Let 0 be the minimum of §; and d,. If 0 < [x—p| < 4
then |h(x)f(x)| < e. Consequently )l(i_rg(h(x)f(x)) = 0, as required.

2. Let X be an open set in m-dimensional space R™, and let f: X — R and
g: X — R be real-valued functions on X, and let p be a point belonging
to the set X. Also let u: X — R and v: X — R be the real-valued
functions on X u(p) =0, v(p) =0,

fx)=fP)+(Vf)p. (x—p)+[x—plux)
forallx € X and
9(x) = g(p) + (Vg)p . (x = p) + [x = p[v(x)

for allx € X. Let w: X — R be the real-valued function on X that is
uniquely characterized by the properties that w(p) =0 and

fx)g(x) = fp)gp)+9P)(VSf)p.(x—p)+ f(P) (Vg  (x—p)
+[x — plw(x).

Now the definition of differentiability ensures that the function f is
differentiable at the point p if and only if lim u(x) = 0. Similarly the
X—p

function g is differentiable at the point p if and only if lim v(x) = 0.
X—p
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Suppose that the functions f and g are differentiable at the point p.
Find a formula that expresses the the value of the function w at each
point x of X in terms of the points x and p, the functions f, g u, v,
and the gradients (Vf)p and (Vg)p of the functions f and g at the
point p. Then prove that }1{1_r>rr1) w(x) = 0. (This result ensures that the

product of the functions f and g is differentiable at the point p, with
gradient g(p) (Vf)p + f(P) (Vg)p-)

Multiplying out, we find that

fX)g(x) = f(p)g(p)+9(P) (VS)p. (x=p)+ f(p) (Vg)p - (x—D)

+ [x = plg(p)u(x) + [x — p| f(P)v(x)
+[x = plv(x) (Vf)p - (x —p)
+ [x = plu(x) (Vg)p - (x — p)

+[x = pl*u(v)u(x)

(Ve x=p)) ((Vg)p . (x = P)).

Consequently
w(x) = g(p ) (x) + f(P)v(x)
+u(x) (Vf)p . (x = p)
+u(x) (Vg)p - (x — p)

+ [x = plu(v)v(x)

+ ‘Xip’ (Vf)p-(x=p))((Vg)p - (x—D)).

Now Schwarz’s Inequality ensures that
(Ve - (x =p)[ < [(VF)p| [x = P)

[(Vg)p - (x =P)| < [(Vg)p| Ix = p)|.
Consequently

1
x — p|

(Ve - x=P)[ [ (Vg)p . (x=P)[ < |(VS)p|[(Vg)plIx —p)I,

and therefore

1
lim
x—p X — P

(Vf)p - (x=p)) ((Vg)p . (x—p)) =0.



Also

i g(pu(x) = g(p) lim u(x) =
lim f(p)ox) = F(p) lim ulx) =
lin o(x) (V) G~ p) = lim o) L ((V flo- (- B)) =0,
lim 0(x) (Va)p - (x—p) — Jim u(x) lim ((Va)y - (x— D) =0
ti (x = pluv)o) = (tinx—pl) () (1 eeo)
__—

Consequently lim w(x) = 0, as required.
X—p



